MULTISPECIES: ADP-glyceromanno-heptose 6-epimerase [Klebsiella]
ADP-glyceromanno-heptose 6-epimerase( domain architecture ID 10793545)
ADP-glyceromanno-heptose 6-epimerase catalyzes the NAD-dependent interconversion of ADP-D-glycero-D-mannoheptose and ADP-L-glycero-D-mannoheptose in the lipopolysaccharide core biosynthesis pathway
List of domain hits
Name | Accession | Description | Interval | E-value | |||||
rfaD | PRK11150 | ADP-L-glycero-D-mannoheptose-6-epimerase; Provisional |
1-308 | 0e+00 | |||||
ADP-L-glycero-D-mannoheptose-6-epimerase; Provisional : Pssm-ID: 182998 [Multi-domain] Cd Length: 308 Bit Score: 680.27 E-value: 0e+00
|
|||||||||
Name | Accession | Description | Interval | E-value | |||||
rfaD | PRK11150 | ADP-L-glycero-D-mannoheptose-6-epimerase; Provisional |
1-308 | 0e+00 | |||||
ADP-L-glycero-D-mannoheptose-6-epimerase; Provisional Pssm-ID: 182998 [Multi-domain] Cd Length: 308 Bit Score: 680.27 E-value: 0e+00
|
|||||||||
heptose_epim | TIGR02197 | ADP-L-glycero-D-manno-heptose-6-epimerase; This family consists of examples of ... |
2-308 | 0e+00 | |||||
ADP-L-glycero-D-manno-heptose-6-epimerase; This family consists of examples of ADP-L-glycero-D-mannoheptose-6-epimerase, an enzyme involved in biosynthesis of the inner core of lipopolysaccharide (LPS) for Gram-negative bacteria. This enzyme is homologous to UDP-glucose 4-epimerase (TIGR01179) and belongs to the NAD dependent epimerase/dehydratase family (pfam01370). [Cell envelope, Biosynthesis and degradation of surface polysaccharides and lipopolysaccharides] Pssm-ID: 274028 [Multi-domain] Cd Length: 314 Bit Score: 518.76 E-value: 0e+00
|
|||||||||
ADP_GME_SDR_e | cd05248 | ADP-L-glycero-D-mannoheptose 6-epimerase (GME), extended (e) SDRs; This subgroup contains ... |
1-308 | 0e+00 | |||||
ADP-L-glycero-D-mannoheptose 6-epimerase (GME), extended (e) SDRs; This subgroup contains ADP-L-glycero-D-mannoheptose 6-epimerase, an extended SDR, which catalyzes the NAD-dependent interconversion of ADP-D-glycero-D-mannoheptose and ADP-L-glycero-D-mannoheptose. This subgroup has the canonical active site tetrad and NAD(P)-binding motif. Extended SDRs are distinct from classical SDRs. In addition to the Rossmann fold (alpha/beta folding pattern with a central beta-sheet) core region typical of all SDRs, extended SDRs have a less conserved C-terminal extension of approximately 100 amino acids. Extended SDRs are a diverse collection of proteins, and include isomerases, epimerases, oxidoreductases, and lyases; they typically have a TGXXGXXG cofactor binding motif. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold, an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Sequence identity between different SDR enzymes is typically in the 15-30% range; they catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase numbering). In addition to the Tyr and Lys, there is often an upstream Ser and/or an Asn, contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. Atypical SDRs generally lack the catalytic residues characteristic of the SDRs, and their glycine-rich NAD(P)-binding motif is often different from the forms normally seen in classical or extended SDRs. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid synthase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type ketoacyl reductases have a TGXXXGX(1-2)G NAD(P)-binding motif. Pssm-ID: 187559 [Multi-domain] Cd Length: 317 Bit Score: 517.24 E-value: 0e+00
|
|||||||||
WcaG | COG0451 | Nucleoside-diphosphate-sugar epimerase [Cell wall/membrane/envelope biogenesis]; |
1-306 | 4.47e-61 | |||||
Nucleoside-diphosphate-sugar epimerase [Cell wall/membrane/envelope biogenesis]; Pssm-ID: 440220 [Multi-domain] Cd Length: 295 Bit Score: 196.35 E-value: 4.47e-61
|
|||||||||
Epimerase | pfam01370 | NAD dependent epimerase/dehydratase family; This family of proteins utilize NAD as a cofactor. ... |
2-236 | 4.27e-46 | |||||
NAD dependent epimerase/dehydratase family; This family of proteins utilize NAD as a cofactor. The proteins in this family use nucleotide-sugar substrates for a variety of chemical reactions. Pssm-ID: 396097 [Multi-domain] Cd Length: 238 Bit Score: 155.92 E-value: 4.27e-46
|
|||||||||
Name | Accession | Description | Interval | E-value | ||||||
rfaD | PRK11150 | ADP-L-glycero-D-mannoheptose-6-epimerase; Provisional |
1-308 | 0e+00 | ||||||
ADP-L-glycero-D-mannoheptose-6-epimerase; Provisional Pssm-ID: 182998 [Multi-domain] Cd Length: 308 Bit Score: 680.27 E-value: 0e+00
|
||||||||||
heptose_epim | TIGR02197 | ADP-L-glycero-D-manno-heptose-6-epimerase; This family consists of examples of ... |
2-308 | 0e+00 | ||||||
ADP-L-glycero-D-manno-heptose-6-epimerase; This family consists of examples of ADP-L-glycero-D-mannoheptose-6-epimerase, an enzyme involved in biosynthesis of the inner core of lipopolysaccharide (LPS) for Gram-negative bacteria. This enzyme is homologous to UDP-glucose 4-epimerase (TIGR01179) and belongs to the NAD dependent epimerase/dehydratase family (pfam01370). [Cell envelope, Biosynthesis and degradation of surface polysaccharides and lipopolysaccharides] Pssm-ID: 274028 [Multi-domain] Cd Length: 314 Bit Score: 518.76 E-value: 0e+00
|
||||||||||
ADP_GME_SDR_e | cd05248 | ADP-L-glycero-D-mannoheptose 6-epimerase (GME), extended (e) SDRs; This subgroup contains ... |
1-308 | 0e+00 | ||||||
ADP-L-glycero-D-mannoheptose 6-epimerase (GME), extended (e) SDRs; This subgroup contains ADP-L-glycero-D-mannoheptose 6-epimerase, an extended SDR, which catalyzes the NAD-dependent interconversion of ADP-D-glycero-D-mannoheptose and ADP-L-glycero-D-mannoheptose. This subgroup has the canonical active site tetrad and NAD(P)-binding motif. Extended SDRs are distinct from classical SDRs. In addition to the Rossmann fold (alpha/beta folding pattern with a central beta-sheet) core region typical of all SDRs, extended SDRs have a less conserved C-terminal extension of approximately 100 amino acids. Extended SDRs are a diverse collection of proteins, and include isomerases, epimerases, oxidoreductases, and lyases; they typically have a TGXXGXXG cofactor binding motif. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold, an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Sequence identity between different SDR enzymes is typically in the 15-30% range; they catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase numbering). In addition to the Tyr and Lys, there is often an upstream Ser and/or an Asn, contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. Atypical SDRs generally lack the catalytic residues characteristic of the SDRs, and their glycine-rich NAD(P)-binding motif is often different from the forms normally seen in classical or extended SDRs. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid synthase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type ketoacyl reductases have a TGXXXGX(1-2)G NAD(P)-binding motif. Pssm-ID: 187559 [Multi-domain] Cd Length: 317 Bit Score: 517.24 E-value: 0e+00
|
||||||||||
WcaG | COG0451 | Nucleoside-diphosphate-sugar epimerase [Cell wall/membrane/envelope biogenesis]; |
1-306 | 4.47e-61 | ||||||
Nucleoside-diphosphate-sugar epimerase [Cell wall/membrane/envelope biogenesis]; Pssm-ID: 440220 [Multi-domain] Cd Length: 295 Bit Score: 196.35 E-value: 4.47e-61
|
||||||||||
Epimerase | pfam01370 | NAD dependent epimerase/dehydratase family; This family of proteins utilize NAD as a cofactor. ... |
2-236 | 4.27e-46 | ||||||
NAD dependent epimerase/dehydratase family; This family of proteins utilize NAD as a cofactor. The proteins in this family use nucleotide-sugar substrates for a variety of chemical reactions. Pssm-ID: 396097 [Multi-domain] Cd Length: 238 Bit Score: 155.92 E-value: 4.27e-46
|
||||||||||
SDR_e | cd08946 | extended (e) SDRs; Extended SDRs are distinct from classical SDRs. In addition to the Rossmann ... |
2-236 | 2.50e-40 | ||||||
extended (e) SDRs; Extended SDRs are distinct from classical SDRs. In addition to the Rossmann fold (alpha/beta folding pattern with a central beta-sheet) core region typical of all SDRs, extended SDRs have a less conserved C-terminal extension of approximately 100 amino acids. Extended SDRs are a diverse collection of proteins, and include isomerases, epimerases, oxidoreductases, and lyases; they typically have a TGXXGXXG cofactor binding motif. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold, an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Sequence identity between different SDR enzymes is typically in the 15-30% range; they catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase numbering). In addition to the Tyr and Lys, there is often an upstream Ser and/or an Asn, contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. Atypical SDRs generally lack the catalytic residues characteristic of the SDRs, and their glycine-rich NAD(P)-binding motif is often different from the forms normally seen in classical or extended SDRs. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid synthase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type ketoacyl reductases have a TGXXXGX(1-2)G NAD(P)-binding motif. Pssm-ID: 212494 [Multi-domain] Cd Length: 200 Bit Score: 139.74 E-value: 2.50e-40
|
||||||||||
UDP_AE_SDR_e | cd05256 | UDP-N-acetylglucosamine 4-epimerase, extended (e) SDRs; This subgroup contains ... |
1-305 | 1.05e-36 | ||||||
UDP-N-acetylglucosamine 4-epimerase, extended (e) SDRs; This subgroup contains UDP-N-acetylglucosamine 4-epimerase of Pseudomonas aeruginosa, WbpP, an extended SDR, that catalyzes the NAD+ dependent conversion of UDP-GlcNAc and UDPGalNA to UDP-Glc and UDP-Gal. This subgroup has the characteristic active site tetrad and NAD-binding motif of the extended SDRs. Extended SDRs are distinct from classical SDRs. In addition to the Rossmann fold (alpha/beta folding pattern with a central beta-sheet) core region typical of all SDRs, extended SDRs have a less conserved C-terminal extension of approximately 100 amino acids. Extended SDRs are a diverse collection of proteins, and include isomerases, epimerases, oxidoreductases, and lyases; they typically have a TGXXGXXG cofactor binding motif. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold, an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Sequence identity between different SDR enzymes is typically in the 15-30% range; they catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase numbering). In addition to the Tyr and Lys, there is often an upstream Ser and/or an Asn, contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. Atypical SDRs generally lack the catalytic residues characteristic of the SDRs, and their glycine-rich NAD(P)-binding motif is often different from the forms normally seen in classical or extended SDRs. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid synthase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type ketoacyl reductases have a TGXXXGX(1-2)G NAD(P)-binding motif. Pssm-ID: 187566 [Multi-domain] Cd Length: 304 Bit Score: 133.11 E-value: 1.05e-36
|
||||||||||
GalE | COG1087 | UDP-glucose 4-epimerase [Cell wall/membrane/envelope biogenesis]; |
2-239 | 8.87e-25 | ||||||
UDP-glucose 4-epimerase [Cell wall/membrane/envelope biogenesis]; Pssm-ID: 440704 [Multi-domain] Cd Length: 328 Bit Score: 101.63 E-value: 8.87e-25
|
||||||||||
UDP_G4E_1_SDR_e | cd05247 | UDP-glucose 4 epimerase, subgroup 1, extended (e) SDRs; UDP-glucose 4 epimerase (aka ... |
2-242 | 1.58e-22 | ||||||
UDP-glucose 4 epimerase, subgroup 1, extended (e) SDRs; UDP-glucose 4 epimerase (aka UDP-galactose-4-epimerase), is a homodimeric extended SDR. It catalyzes the NAD-dependent conversion of UDP-galactose to UDP-glucose, the final step in Leloir galactose synthesis. This subgroup has the characteristic active site tetrad and NAD-binding motif of the extended SDRs. Extended SDRs are distinct from classical SDRs. In addition to the Rossmann fold (alpha/beta folding pattern with a central beta-sheet) core region typical of all SDRs, extended SDRs have a less conserved C-terminal extension of approximately 100 amino acids. Extended SDRs are a diverse collection of proteins, and include isomerases, epimerases, oxidoreductases, and lyases; they typically have a TGXXGXXG cofactor binding motif. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold, an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Sequence identity between different SDR enzymes is typically in the 15-30% range; they catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase numbering). In addition to the Tyr and Lys, there is often an upstream Ser and/or an Asn, contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. Atypical SDRs generally lack the catalytic residues characteristic of the SDRs, and their glycine-rich NAD(P)-binding motif is often different from the forms normally seen in classical or extended SDRs. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid synthase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type ketoacyl reductases have a TGXXXGX(1-2)G NAD(P)-binding motif. Pssm-ID: 187558 [Multi-domain] Cd Length: 323 Bit Score: 95.29 E-value: 1.58e-22
|
||||||||||
UDP_GE_SDE_e | cd05253 | UDP glucuronic acid epimerase, extended (e) SDRs; This subgroup contains UDP-D-glucuronic acid ... |
2-305 | 4.13e-21 | ||||||
UDP glucuronic acid epimerase, extended (e) SDRs; This subgroup contains UDP-D-glucuronic acid 4-epimerase, an extended SDR, which catalyzes the conversion of UDP-alpha-D-glucuronic acid to UDP-alpha-D-galacturonic acid. This group has the SDR's canonical catalytic tetrad and the TGxxGxxG NAD-binding motif of the extended SDRs. Extended SDRs are distinct from classical SDRs. In addition to the Rossmann fold (alpha/beta folding pattern with a central beta-sheet) core region typical of all SDRs, extended SDRs have a less conserved C-terminal extension of approximately 100 amino acids. Extended SDRs are a diverse collection of proteins, and include isomerases, epimerases, oxidoreductases, and lyases; they typically have a TGXXGXXG cofactor binding motif. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold, an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Sequence identity between different SDR enzymes is typically in the 15-30% range; they catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase numbering). In addition to the Tyr and Lys, there is often an upstream Ser and/or an Asn, contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. Atypical SDRs generally lack the catalytic residues characteristic of the SDRs, and their glycine-rich NAD(P)-binding motif is often different from the forms normally seen in classical or extended SDRs. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid synthase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type ketoacyl reductases have a TGXXXGX(1-2)G NAD(P)-binding motif. Pssm-ID: 187563 [Multi-domain] Cd Length: 332 Bit Score: 91.63 E-value: 4.13e-21
|
||||||||||
UDP_G4E_5_SDR_e | cd05264 | UDP-glucose 4-epimerase (G4E), subgroup 5, extended (e) SDRs; This subgroup partially ... |
1-238 | 4.32e-18 | ||||||
UDP-glucose 4-epimerase (G4E), subgroup 5, extended (e) SDRs; This subgroup partially conserves the characteristic active site tetrad and NAD-binding motif of the extended SDRs, and has been identified as possible UDP-glucose 4-epimerase (aka UDP-galactose 4-epimerase), a homodimeric member of the extended SDR family. UDP-glucose 4-epimerase catalyzes the NAD-dependent conversion of UDP-galactose to UDP-glucose, the final step in Leloir galactose synthesis. Extended SDRs are distinct from classical SDRs. In addition to the Rossmann fold (alpha/beta folding pattern with a central beta-sheet) core region typical of all SDRs, extended SDRs have a less conserved C-terminal extension of approximately 100 amino acids. Extended SDRs are a diverse collection of proteins, and include isomerases, epimerases, oxidoreductases, and lyases; they typically have a TGXXGXXG cofactor binding motif. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold, an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Sequence identity between different SDR enzymes is typically in the 15-30% range; they catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase numbering). In addition to the Tyr and Lys, there is often an upstream Ser and/or an Asn, contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. Atypical SDRs generally lack the catalytic residues characteristic of the SDRs, and their glycine-rich NAD(P)-binding motif is often different from the forms normally seen in classical or extended SDRs. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid synthase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type ketoacyl reductases have a TGXXXGX(1-2)G NAD(P)-binding motif. Pssm-ID: 187574 [Multi-domain] Cd Length: 300 Bit Score: 82.75 E-value: 4.32e-18
|
||||||||||
UDP_G4E_2_SDR_e | cd05234 | UDP-glucose 4 epimerase, subgroup 2, extended (e) SDRs; UDP-glucose 4 epimerase (aka ... |
2-248 | 3.92e-15 | ||||||
UDP-glucose 4 epimerase, subgroup 2, extended (e) SDRs; UDP-glucose 4 epimerase (aka UDP-galactose-4-epimerase), is a homodimeric extended SDR. It catalyzes the NAD-dependent conversion of UDP-galactose to UDP-glucose, the final step in Leloir galactose synthesis. This subgroup is comprised of archaeal and bacterial proteins, and has the characteristic active site tetrad and NAD-binding motif of the extended SDRs. Extended SDRs are distinct from classical SDRs. In addition to the Rossmann fold (alpha/beta folding pattern with a central beta-sheet) core region typical of all SDRs, extended SDRs have a less conserved C-terminal extension of approximately 100 amino acids. Extended SDRs are a diverse collection of proteins, and include isomerases, epimerases, oxidoreductases, and lyases; they typically have a TGXXGXXG cofactor binding motif. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold, an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Sequence identity between different SDR enzymes is typically in the 15-30% range; they catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase numbering). In addition to the Tyr and Lys, there is often an upstream Ser and/or an Asn, contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. Atypical SDRs generally lack the catalytic residues characteristic of the SDRs, and their glycine-rich NAD(P)-binding motif is often different from the forms normally seen in classical or extended SDRs. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid synthase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type ketoacyl reductases have a TGXXXGX(1-2)G NAD(P)-binding motif. Pssm-ID: 187545 [Multi-domain] Cd Length: 305 Bit Score: 74.26 E-value: 3.92e-15
|
||||||||||
GME-like_SDR_e | cd05273 | Arabidopsis thaliana GDP-mannose-3',5'-epimerase (GME)-like, extended (e) SDRs; This subgroup ... |
2-305 | 9.86e-13 | ||||||
Arabidopsis thaliana GDP-mannose-3',5'-epimerase (GME)-like, extended (e) SDRs; This subgroup of NDP-sugar epimerase/dehydratases are extended SDRs; they have the characteristic active site tetrad, and an NAD-binding motif: TGXXGXX[AG], which is a close match to the canonical NAD-binding motif. Members include Arabidopsis thaliana GDP-mannose-3',5'-epimerase (GME) which catalyzes the epimerization of two positions of GDP-alpha-D-mannose to form GDP-beta-L-galactose. Extended SDRs are distinct from classical SDRs. In addition to the Rossmann fold (alpha/beta folding pattern with a central beta-sheet) core region typical of all SDRs, extended SDRs have a less conserved C-terminal extension of approximately 100 amino acids. Extended SDRs are a diverse collection of proteins, and include isomerases, epimerases, oxidoreductases, and lyases; they typically have a TGXXGXXG cofactor binding motif. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold, an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Sequence identity between different SDR enzymes is typically in the 15-30% range; they catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase numbering). In addition to the Tyr and Lys, there is often an upstream Ser and/or an Asn, contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. Atypical SDRs generally lack the catalytic residues characteristic of the SDRs, and their glycine-rich NAD(P)-binding motif is often different from the forms normally seen in classical or extended SDRs. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid synthase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type ketoacyl reductases have a TGXXXGX(1-2)G NAD(P)-binding motif. Pssm-ID: 187581 [Multi-domain] Cd Length: 328 Bit Score: 67.50 E-value: 9.86e-13
|
||||||||||
UGD_SDR_e | cd05230 | UDP-glucuronate decarboxylase (UGD) and related proteins, extended (e) SDRs; UGD catalyzes the ... |
2-285 | 2.58e-12 | ||||||
UDP-glucuronate decarboxylase (UGD) and related proteins, extended (e) SDRs; UGD catalyzes the formation of UDP-xylose from UDP-glucuronate; it is an extended-SDR, and has the characteristic glycine-rich NAD-binding pattern, TGXXGXXG, and active site tetrad. Extended SDRs are distinct from classical SDRs. In addition to the Rossmann fold (alpha/beta folding pattern with a central beta-sheet) core region typical of all SDRs, extended SDRs have a less conserved C-terminal extension of approximately 100 amino acids. Extended SDRs are a diverse collection of proteins, and include isomerases, epimerases, oxidoreductases, and lyases; they typically have a TGXXGXXG cofactor binding motif. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold, an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Sequence identity between different SDR enzymes is typically in the 15-30% range; they catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase numbering). In addition to the Tyr and Lys, there is often an upstream Ser and/or an Asn, contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. Atypical SDRs generally lack the catalytic residues characteristic of the SDRs, and their glycine-rich NAD(P)-binding motif is often different from the forms normally seen in classical or extended SDRs. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid synthase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type ketoacyl reductases have a TGXXXGX(1-2)G NAD(P)-binding motif. Pssm-ID: 187541 [Multi-domain] Cd Length: 305 Bit Score: 66.12 E-value: 2.58e-12
|
||||||||||
UDP_G4E_4_SDR_e | cd05232 | UDP-glucose 4 epimerase, subgroup 4, extended (e) SDRs; UDP-glucose 4 epimerase (aka ... |
1-219 | 2.94e-12 | ||||||
UDP-glucose 4 epimerase, subgroup 4, extended (e) SDRs; UDP-glucose 4 epimerase (aka UDP-galactose-4-epimerase), is a homodimeric extended SDR. It catalyzes the NAD-dependent conversion of UDP-galactose to UDP-glucose, the final step in Leloir galactose synthesis. This subgroup is comprised of bacterial proteins, and includes the Staphylococcus aureus capsular polysaccharide Cap5N, which may have a role in the synthesis of UDP-N-acetyl-d-fucosamine. This subgroup has the characteristic active site tetrad and NAD-binding motif of the extended SDRs. Extended SDRs are distinct from classical SDRs. In addition to the Rossmann fold (alpha/beta folding pattern with a central beta-sheet) core region typical of all SDRs, extended SDRs have a less conserved C-terminal extension of approximately 100 amino acids. Extended SDRs are a diverse collection of proteins, and include isomerases, epimerases, oxidoreductases, and lyases; they typically have a TGXXGXXG cofactor binding motif. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold, an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Sequence identity between different SDR enzymes is typically in the 15-30% range; they catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase numbering). In addition to the Tyr and Lys, there is often an upstream Ser and/or an Asn, contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. Atypical SDRs generally lack the catalytic residues characteristic of the SDRs, and their glycine-rich NAD(P)-binding motif is often different from the forms normally seen in classical or extended SDRs. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid synthase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type ketoacyl reductases have a TGXXXGX(1-2)G NAD(P)-binding motif. Pssm-ID: 187543 [Multi-domain] Cd Length: 303 Bit Score: 65.83 E-value: 2.94e-12
|
||||||||||
GDP_Man_Dehyd | pfam16363 | GDP-mannose 4,6 dehydratase; |
4-242 | 6.29e-12 | ||||||
GDP-mannose 4,6 dehydratase; Pssm-ID: 465104 [Multi-domain] Cd Length: 327 Bit Score: 65.26 E-value: 6.29e-12
|
||||||||||
AR_FR_like_1_SDR_e | cd05228 | uncharacterized subgroup of aldehyde reductase and flavonoid reductase related proteins, ... |
2-231 | 3.05e-11 | ||||||
uncharacterized subgroup of aldehyde reductase and flavonoid reductase related proteins, extended (e) SDRs; This subgroup contains proteins of unknown function related to aldehyde reductase and flavonoid reductase of the extended SDR-type. Aldehyde reductase I (aka carbonyl reductase) is an NADP-binding SDR; it has an NADP-binding motif consensus that is slightly different from the canonical SDR form and lacks the Asn of the extended SDR active site tetrad. Aldehyde reductase I catalyzes the NADP-dependent reduction of ethyl 4-chloro-3-oxobutanoate to ethyl (R)-4-chloro-3-hydroxybutanoate. The related flavonoid reductases act in the NADP-dependent reduction of flavonoids, ketone-containing plant secondary metabolites. Extended SDRs are distinct from classical SDRs. In addition to the Rossmann fold (alpha/beta folding pattern with a central beta-sheet) core region typical of all SDRs, extended SDRs have a less conserved C-terminal extension of approximately 100 amino acids. Extended SDRs are a diverse collection of proteins, and include isomerases, epimerases, oxidoreductases, and lyases; they typically have a TGXXGXXG cofactor binding motif. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold, an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Sequence identity between different SDR enzymes is typically in the 15-30% range; they catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase numbering). In addition to the Tyr and Lys, there is often an upstream Ser and/or an Asn, contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. Atypical SDRs generally lack the catalytic residues characteristic of the SDRs, and their glycine-rich NAD(P)-binding motif is often different from the forms normally seen in classical or extended SDRs. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid synthase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type ketoacyl reductases have a TGXXXGX(1-2)G NAD(P)-binding motif. Pssm-ID: 187539 [Multi-domain] Cd Length: 318 Bit Score: 63.07 E-value: 3.05e-11
|
||||||||||
3Beta_HSD | pfam01073 | 3-beta hydroxysteroid dehydrogenase/isomerase family; The enzyme 3 beta-hydroxysteroid ... |
3-219 | 2.15e-10 | ||||||
3-beta hydroxysteroid dehydrogenase/isomerase family; The enzyme 3 beta-hydroxysteroid dehydrogenase/5-ene-4-ene isomerase (3 beta-HSD) catalyzes the oxidation and isomerization of 5-ene-3 beta-hydroxypregnene and 5-ene-hydroxyandrostene steroid precursors into the corresponding 4-ene-ketosteroids necessary for the formation of all classes of steroid hormones. Pssm-ID: 366449 [Multi-domain] Cd Length: 279 Bit Score: 60.07 E-value: 2.15e-10
|
||||||||||
Arna_like_SDR_e | cd05257 | Arna decarboxylase_like, extended (e) SDRs; Decarboxylase domain of ArnA. ArnA, is an enzyme ... |
1-305 | 2.42e-10 | ||||||
Arna decarboxylase_like, extended (e) SDRs; Decarboxylase domain of ArnA. ArnA, is an enzyme involved in the modification of outer membrane protein lipid A of gram-negative bacteria. It is a bifunctional enzyme that catalyzes the NAD-dependent decarboxylation of UDP-glucuronic acid and N-10-formyltetrahydrofolate-dependent formylation of UDP-4-amino-4-deoxy-l-arabinose; its NAD-dependent decaboxylating activity is in the C-terminal 360 residues. This subgroup belongs to the extended SDR family, however the NAD binding motif is not a perfect match and the upstream Asn of the canonical active site tetrad is not conserved. Extended SDRs are distinct from classical SDRs. In addition to the Rossmann fold (alpha/beta folding pattern with a central beta-sheet) core region typical of all SDRs, extended SDRs have a less conserved C-terminal extension of approximately 100 amino acids. Extended SDRs are a diverse collection of proteins, and include isomerases, epimerases, oxidoreductases, and lyases; they typically have a TGXXGXXG cofactor binding motif. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold, an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Sequence identity between different SDR enzymes is typically in the 15-30% range; they catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase numbering). In addition to the Tyr and Lys, there is often an upstream Ser and/or an Asn, contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. Atypical SDRs generally lack the catalytic residues characteristic of the SDRs, and their glycine-rich NAD(P)-binding motif is often different from the forms normally seen in classical or extended SDRs. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid synthase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type ketoacyl reductases have a TGXXXGX(1-2)G NAD(P)-binding motif. Pssm-ID: 187567 [Multi-domain] Cd Length: 316 Bit Score: 60.39 E-value: 2.42e-10
|
||||||||||
dTDP_GD_SDR_e | cd05246 | dTDP-D-glucose 4,6-dehydratase, extended (e) SDRs; This subgroup contains dTDP-D-glucose 4, ... |
2-239 | 2.50e-10 | ||||||
dTDP-D-glucose 4,6-dehydratase, extended (e) SDRs; This subgroup contains dTDP-D-glucose 4,6-dehydratase and related proteins, members of the extended-SDR family, with the characteristic Rossmann fold core region, active site tetrad and NAD(P)-binding motif. dTDP-D-glucose 4,6-dehydratase is closely related to other sugar epimerases of the SDR family. dTDP-D-dlucose 4,6,-dehydratase catalyzes the second of four steps in the dTDP-L-rhamnose pathway (the dehydration of dTDP-D-glucose to dTDP-4-keto-6-deoxy-D-glucose) in the synthesis of L-rhamnose, a cell wall component of some pathogenic bacteria. In many gram negative bacteria, L-rhamnose is an important constituent of lipopoylsaccharide O-antigen. The larger N-terminal portion of dTDP-D-Glucose 4,6-dehydratase forms a Rossmann fold NAD-binding domain, while the C-terminus binds the sugar substrate. Extended SDRs are distinct from classical SDRs. In addition to the Rossmann fold (alpha/beta folding pattern with a central beta-sheet) core region typical of all SDRs, extended SDRs have a less conserved C-terminal extension of approximately 100 amino acids. Extended SDRs are a diverse collection of proteins, and include isomerases, epimerases, oxidoreductases, and lyases; they typically have a TGXXGXXG cofactor binding motif. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold, an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Sequence identity between different SDR enzymes is typically in the 15-30% range; they catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase numbering). In addition to the Tyr and Lys, there is often an upstream Ser and/or an Asn, contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. Atypical SDRs generally lack the catalytic residues characteristic of the SDRs, and their glycine-rich NAD(P)-binding motif is often different from the forms normally seen in classical or extended SDRs. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid synthase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type ketoacyl reductases have a TGXXXGX(1-2)G NAD(P)-binding motif. Pssm-ID: 187557 [Multi-domain] Cd Length: 315 Bit Score: 60.26 E-value: 2.50e-10
|
||||||||||
GDP_FS_SDR_e | cd05239 | GDP-fucose synthetase, extended (e) SDRs; GDP-fucose synthetase (aka 3, ... |
2-305 | 3.43e-10 | ||||||
GDP-fucose synthetase, extended (e) SDRs; GDP-fucose synthetase (aka 3, 5-epimerase-4-reductase) acts in the NADP-dependent synthesis of GDP-fucose from GDP-mannose. Two activities have been proposed for the same active site: epimerization and reduction. Proteins in this subgroup are extended SDRs, which have a characteristic active site tetrad and an NADP-binding motif, [AT]GXXGXXG, that is a close match to the archetypical form. Extended SDRs are distinct from classical SDRs. In addition to the Rossmann fold (alpha/beta folding pattern with a central beta-sheet) core region typical of all SDRs, extended SDRs have a less conserved C-terminal extension of approximately 100 amino acids. Extended SDRs are a diverse collection of proteins, and include isomerases, epimerases, oxidoreductases, and lyases; they typically have a TGXXGXXG cofactor binding motif. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold, an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Sequence identity between different SDR enzymes is typically in the 15-30% range; they catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase numbering). In addition to the Tyr and Lys, there is often an upstream Ser and/or an Asn, contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. Atypical SDRs generally lack the catalytic residues characteristic of the SDRs, and their glycine-rich NAD(P)-binding motif is often different from the forms normally seen in classical or extended SDRs. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid synthase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type ketoacyl reductases have a TGXXXGX(1-2)G NAD(P)-binding motif. Pssm-ID: 187550 [Multi-domain] Cd Length: 300 Bit Score: 59.90 E-value: 3.43e-10
|
||||||||||
PRK15181 | PRK15181 | Vi polysaccharide biosynthesis UDP-N-acetylglucosaminuronic acid C-4 epimerase TviC; |
3-305 | 6.45e-10 | ||||||
Vi polysaccharide biosynthesis UDP-N-acetylglucosaminuronic acid C-4 epimerase TviC; Pssm-ID: 185103 [Multi-domain] Cd Length: 348 Bit Score: 59.34 E-value: 6.45e-10
|
||||||||||
RfbB | COG1088 | dTDP-D-glucose 4,6-dehydratase [Cell wall/membrane/envelope biogenesis]; |
1-309 | 2.67e-09 | ||||||
dTDP-D-glucose 4,6-dehydratase [Cell wall/membrane/envelope biogenesis]; Pssm-ID: 440705 [Multi-domain] Cd Length: 333 Bit Score: 57.40 E-value: 2.67e-09
|
||||||||||
PLN02240 | PLN02240 | UDP-glucose 4-epimerase |
2-271 | 5.51e-09 | ||||||
UDP-glucose 4-epimerase Pssm-ID: 177883 [Multi-domain] Cd Length: 352 Bit Score: 56.51 E-value: 5.51e-09
|
||||||||||
PLN02166 | PLN02166 | dTDP-glucose 4,6-dehydratase |
2-236 | 1.82e-08 | ||||||
dTDP-glucose 4,6-dehydratase Pssm-ID: 165812 [Multi-domain] Cd Length: 436 Bit Score: 55.02 E-value: 1.82e-08
|
||||||||||
3b-HSD-NSDHL-like_SDR_e | cd09813 | human NSDHL (NAD(P)H steroid dehydrogenase-like protein)-like, extended (e) SDRs; This ... |
3-222 | 2.46e-07 | ||||||
human NSDHL (NAD(P)H steroid dehydrogenase-like protein)-like, extended (e) SDRs; This subgroup includes human NSDHL and related proteins. These proteins have the characteristic active site tetrad of extended SDRs, and also have a close match to their NAD(P)-binding motif. Human NSDHL is a 3beta-hydroxysteroid dehydrogenase (3 beta-HSD) which functions in the cholesterol biosynthetic pathway. 3 beta-HSD catalyzes the oxidative conversion of delta 5-3 beta-hydroxysteroids to the delta 4-3-keto configuration; this activity is essential for the biosynthesis of all classes of hormonal steroids. Mutations in the gene encoding NSDHL cause CHILD syndrome (congenital hemidysplasia with ichthyosiform nevus and limb defects), an X-linked dominant, male-lethal trait. This subgroup also includes an unusual bifunctional [3beta-hydroxysteroid dehydrogenase (3b-HSD)/C-4 decarboxylase from Arabidopsis thaliana, and Saccharomyces cerevisiae ERG26, a 3b-HSD/C-4 decarboxylase, involved in the synthesis of ergosterol, the major sterol of yeast. Extended SDRs are distinct from classical SDRs. In addition to the Rossmann fold (alpha/beta folding pattern with a central beta-sheet) core region typical of all SDRs, extended SDRs have a less conserved C-terminal extension of approximately 100 amino acids. Extended SDRs are a diverse collection of proteins, and include isomerases, epimerases, oxidoreductases, and lyases; they typically have a TGXXGXXG cofactor binding motif. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold, an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Sequence identity between different SDR enzymes is typically in the 15-30% range; they catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase numbering). In addition to the Tyr and Lys, there is often an upstream Ser and/or an Asn, contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. Atypical SDRs generally lack the catalytic residues characteristic of the SDRs, and their glycine-rich NAD(P)-binding motif is often different from the forms normally seen in classical or extended SDRs. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid sythase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type ketoacyl reductases have a TGXXXGX(1-2)G NAD(P)-binding motif. Pssm-ID: 187673 [Multi-domain] Cd Length: 335 Bit Score: 51.59 E-value: 2.46e-07
|
||||||||||
PRK10675 | PRK10675 | UDP-galactose-4-epimerase; Provisional |
2-249 | 3.85e-07 | ||||||
UDP-galactose-4-epimerase; Provisional Pssm-ID: 182639 [Multi-domain] Cd Length: 338 Bit Score: 50.97 E-value: 3.85e-07
|
||||||||||
PLN02695 | PLN02695 | GDP-D-mannose-3',5'-epimerase |
2-271 | 5.06e-07 | ||||||
GDP-D-mannose-3',5'-epimerase Pssm-ID: 178298 [Multi-domain] Cd Length: 370 Bit Score: 50.58 E-value: 5.06e-07
|
||||||||||
WbmH_like_SDR_e | cd08957 | Bordetella bronchiseptica enzymes WbmH and WbmG-like, extended (e) SDRs; Bordetella ... |
2-251 | 5.19e-07 | ||||||
Bordetella bronchiseptica enzymes WbmH and WbmG-like, extended (e) SDRs; Bordetella bronchiseptica enzymes WbmH and WbmG, and related proteins. This subgroup exhibits the active site tetrad and NAD-binding motif of the extended SDR family. It has been proposed that the active site in Bordetella WbmG and WbmH cannot function as an epimerase, and that it plays a role in O-antigen synthesis pathway from UDP-2,3-diacetamido-2,3-dideoxy-l-galacturonic acid. Extended SDRs are distinct from classical SDRs. In addition to the Rossmann fold (alpha/beta folding pattern with a central beta-sheet) core region typical of all SDRs, extended SDRs have a less conserved C-terminal extension of approximately 100 amino acids. Extended SDRs are a diverse collection of proteins, and include isomerases, epimerases, oxidoreductases, and lyases; they typically have a TGXXGXXG cofactor binding motif. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold, an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Sequence identity between different SDR enzymes is typically in the 15-30% range; they catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase numbering). In addition to the Tyr and Lys, there is often an upstream Ser and/or an Asn, contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. Atypical SDRs generally lack the catalytic residues characteristic of the SDRs, and their glycine-rich NAD(P)-binding motif is often different from the forms normally seen in classical or extended SDRs. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid synthase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type ketoacyl reductases have a TGXXXGX(1-2)G NAD(P)-binding motif. Pssm-ID: 187660 [Multi-domain] Cd Length: 307 Bit Score: 50.19 E-value: 5.19e-07
|
||||||||||
3b-HSD-like_SDR_e | cd05241 | 3beta-hydroxysteroid dehydrogenases (3b-HSD)-like, extended (e) SDRs; Extended SDR family ... |
2-219 | 5.66e-07 | ||||||
3beta-hydroxysteroid dehydrogenases (3b-HSD)-like, extended (e) SDRs; Extended SDR family domains belonging to this subgroup have the characteristic active site tetrad and a fairly well-conserved NAD(P)-binding motif. 3b-HSD catalyzes the NAD-dependent conversion of various steroids, such as pregnenolone to progesterone, or androstenediol to testosterone. This subgroup includes an unusual bifunctional 3b-HSD/C-4 decarboxylase from Arabidopsis thaliana, and Saccharomyces cerevisiae ERG26, a 3b-HSD/C-4 decarboxylase, involved in the synthesis of ergosterol, the major sterol of yeast. It also includes human 3 beta-HSD/HSD3B1 and C(27) 3beta-HSD/ [3beta-hydroxy-delta(5)-C(27)-steroid oxidoreductase; HSD3B7]. C(27) 3beta-HSD/HSD3B7 is a membrane-bound enzyme of the endoplasmic reticulum, that catalyzes the isomerization and oxidation of 7alpha-hydroxylated sterol intermediates, an early step in bile acid biosynthesis. Mutations in the human NSDHL (NAD(P)H steroid dehydrogenase-like protein) cause CHILD syndrome (congenital hemidysplasia with ichthyosiform nevus and limb defects), an X-linked dominant, male-lethal trait. Mutations in the human gene encoding C(27) 3beta-HSD underlie a rare autosomal recessive form of neonatal cholestasis. Extended SDRs are distinct from classical SDRs. In addition to the Rossmann fold (alpha/beta folding pattern with a central beta-sheet) core region typical of all SDRs, extended SDRs have a less conserved C-terminal extension of approximately 100 amino acids. Extended SDRs are a diverse collection of proteins, and include isomerases, epimerases, oxidoreductases, and lyases; they typically have a TGXXGXXG cofactor binding motif. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold, an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Sequence identity between different SDR enzymes is typically in the 15-30% range; they catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase numbering). In addition to the Tyr and Lys, there is often an upstream Ser and/or an Asn, contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. Atypical SDRs generally lack the catalytic residues characteristic of the SDRs, and their glycine-rich NAD(P)-binding motif is often different from the forms normally seen in classical or extended SDRs. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid sythase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type ketoacyl reductases have a TGXXXGX(1-2)G NAD(P)-binding motif. Pssm-ID: 187552 [Multi-domain] Cd Length: 331 Bit Score: 50.12 E-value: 5.66e-07
|
||||||||||
CDP_TE_SDR_e | cd05258 | CDP-tyvelose 2-epimerase, extended (e) SDRs; CDP-tyvelose 2-epimerase is a tetrameric SDR that ... |
2-239 | 6.24e-07 | ||||||
CDP-tyvelose 2-epimerase, extended (e) SDRs; CDP-tyvelose 2-epimerase is a tetrameric SDR that catalyzes the conversion of CDP-D-paratose to CDP-D-tyvelose, the last step in tyvelose biosynthesis. This subgroup is a member of the extended SDR subfamily, with a characteristic active site tetrad and NAD-binding motif. Extended SDRs are distinct from classical SDRs. In addition to the Rossmann fold (alpha/beta folding pattern with a central beta-sheet) core region typical of all SDRs, extended SDRs have a less conserved C-terminal extension of approximately 100 amino acids. Extended SDRs are a diverse collection of proteins, and include isomerases, epimerases, oxidoreductases, and lyases; they typically have a TGXXGXXG cofactor binding motif. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold, an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Sequence identity between different SDR enzymes is typically in the 15-30% range; they catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase numbering). In addition to the Tyr and Lys, there is often an upstream Ser and/or an Asn, contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. Atypical SDRs generally lack the catalytic residues characteristic of the SDRs, and their glycine-rich NAD(P)-binding motif is often different from the forms normally seen in classical or extended SDRs. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid synthase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type ketoacyl reductases have a TGXXXGX(1-2)G NAD(P)-binding motif. Pssm-ID: 187568 [Multi-domain] Cd Length: 337 Bit Score: 49.98 E-value: 6.24e-07
|
||||||||||
dTDP_gluc_dehyt | TIGR01181 | dTDP-glucose 4,6-dehydratase; This protein is related to UDP-glucose 4-epimerase (GalE) and ... |
2-240 | 4.00e-06 | ||||||
dTDP-glucose 4,6-dehydratase; This protein is related to UDP-glucose 4-epimerase (GalE) and likewise has an NAD cofactor. [Cell envelope, Biosynthesis and degradation of surface polysaccharides and lipopolysaccharides] Pssm-ID: 273489 [Multi-domain] Cd Length: 317 Bit Score: 47.76 E-value: 4.00e-06
|
||||||||||
dTDP_HR_like_SDR_e | cd05254 | dTDP-6-deoxy-L-lyxo-4-hexulose reductase and related proteins, extended (e) SDRs; ... |
1-291 | 1.66e-05 | ||||||
dTDP-6-deoxy-L-lyxo-4-hexulose reductase and related proteins, extended (e) SDRs; dTDP-6-deoxy-L-lyxo-4-hexulose reductase, an extended SDR, synthesizes dTDP-L-rhamnose from alpha-D-glucose-1-phosphate, providing the precursor of L-rhamnose, an essential cell wall component of many pathogenic bacteria. This subgroup has the characteristic active site tetrad and NADP-binding motif. This subgroup also contains human MAT2B, the regulatory subunit of methionine adenosyltransferase (MAT); MAT catalyzes S-adenosylmethionine synthesis. The human gene encoding MAT2B encodes two major splicing variants which are induced in human cell liver cancer and regulate HuR, an mRNA-binding protein which stabilizes the mRNA of several cyclins, to affect cell proliferation. Both MAT2B variants include this extended SDR domain. Extended SDRs are distinct from classical SDRs. In addition to the Rossmann fold (alpha/beta folding pattern with a central beta-sheet) core region typical of all SDRs, extended SDRs have a less conserved C-terminal extension of approximately 100 amino acids. Extended SDRs are a diverse collection of proteins, and include isomerases, epimerases, oxidoreductases, and lyases; they typically have a TGXXGXXG cofactor binding motif. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold, an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Sequence identity between different SDR enzymes is typically in the 15-30% range; they catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase numbering). In addition to the Tyr and Lys, there is often an upstream Ser and/or an Asn, contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. Atypical SDRs generally lack the catalytic residues characteristic of the SDRs, and their glycine-rich NAD(P)-binding motif is often different from the forms normally seen in classical or extended SDRs. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid synthase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type ketoacyl reductases have a TGXXXGX(1-2)G NAD(P)-binding motif. Pssm-ID: 187564 [Multi-domain] Cd Length: 280 Bit Score: 45.70 E-value: 1.66e-05
|
||||||||||
UDP_invert_4-6DH_SDR_e | cd05237 | UDP-Glcnac (UDP-linked N-acetylglucosamine) inverting 4,6-dehydratase, extended (e) SDRs; ... |
2-181 | 2.67e-05 | ||||||
UDP-Glcnac (UDP-linked N-acetylglucosamine) inverting 4,6-dehydratase, extended (e) SDRs; UDP-Glcnac inverting 4,6-dehydratase was identified in Helicobacter pylori as the hexameric flaA1 gene product (FlaA1). FlaA1 is hexameric, possesses UDP-GlcNAc-inverting 4,6-dehydratase activity, and catalyzes the first step in the creation of a pseudaminic acid derivative in protein glycosylation. Although this subgroup has the NADP-binding motif characteristic of extended SDRs, its members tend to have a Met substituted for the active site Tyr found in most SDR families. Extended SDRs are distinct from classical SDRs. In addition to the Rossmann fold (alpha/beta folding pattern with a central beta-sheet) core region typical of all SDRs, extended SDRs have a less conserved C-terminal extension of approximately 100 amino acids. Extended SDRs are a diverse collection of proteins, and include isomerases, epimerases, oxidoreductases, and lyases; they typically have a TGXXGXXG cofactor binding motif. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold, an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Sequence identity between different SDR enzymes is typically in the 15-30% range; they catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase numbering). In addition to the Tyr and Lys, there is often an upstream Ser and/or an Asn, contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. Atypical SDRs generally lack the catalytic residues characteristic of the SDRs, and their glycine-rich NAD(P)-binding motif is often different from the forms normally seen in classical or extended SDRs. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid synthase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type ketoacyl reductases have a TGXXXGX(1-2)G NAD(P)-binding motif. Pssm-ID: 187548 [Multi-domain] Cd Length: 287 Bit Score: 44.92 E-value: 2.67e-05
|
||||||||||
RmlD_sub_bind | pfam04321 | RmlD substrate binding domain; L-rhamnose is a saccharide required for the virulence of some ... |
2-291 | 2.84e-05 | ||||||
RmlD substrate binding domain; L-rhamnose is a saccharide required for the virulence of some bacteria. Its precursor, dTDP-L-rhamnose, is synthesized by four different enzymes the final one of which is RmlD. The RmlD substrate binding domain is responsible for binding a sugar nucleotide. Pssm-ID: 427865 [Multi-domain] Cd Length: 284 Bit Score: 44.96 E-value: 2.84e-05
|
||||||||||
Gne_like_SDR_e | cd05238 | Escherichia coli Gne (a nucleoside-diphosphate-sugar 4-epimerase)-like, extended (e) SDRs; ... |
2-144 | 4.21e-05 | ||||||
Escherichia coli Gne (a nucleoside-diphosphate-sugar 4-epimerase)-like, extended (e) SDRs; Nucleoside-diphosphate-sugar 4-epimerase has the characteristic active site tetrad and NAD-binding motif of the extended SDR, and is related to more specifically defined epimerases such as UDP-glucose 4 epimerase (aka UDP-galactose-4-epimerase), which catalyzes the NAD-dependent conversion of UDP-galactose to UDP-glucose, the final step in Leloir galactose synthesis. This subgroup includes Escherichia coli 055:H7 Gne, a UDP-GlcNAc 4-epimerase, essential for O55 antigen synthesis. Extended SDRs are distinct from classical SDRs. In addition to the Rossmann fold (alpha/beta folding pattern with a central beta-sheet) core region typical of all SDRs, extended SDRs have a less conserved C-terminal extension of approximately 100 amino acids. Extended SDRs are a diverse collection of proteins, and include isomerases, epimerases, oxidoreductases, and lyases; they typically have a TGXXGXXG cofactor binding motif. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold, an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Sequence identity between different SDR enzymes is typically in the 15-30% range; they catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase numbering). In addition to the Tyr and Lys, there is often an upstream Ser and/or an Asn, contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. Atypical SDRs generally lack the catalytic residues characteristic of the SDRs, and their glycine-rich NAD(P)-binding motif is often different from the forms normally seen in classical or extended SDRs. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid synthase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type ketoacyl reductases have a TGXXXGX(1-2)G NAD(P)-binding motif. Pssm-ID: 187549 [Multi-domain] Cd Length: 305 Bit Score: 44.30 E-value: 4.21e-05
|
||||||||||
MupV_like_SDR_e | cd05263 | Pseudomonas fluorescens MupV-like, extended (e) SDRs; This subgroup of extended SDR family ... |
2-248 | 4.41e-05 | ||||||
Pseudomonas fluorescens MupV-like, extended (e) SDRs; This subgroup of extended SDR family domains have the characteristic active site tetrad and a well-conserved NAD(P)-binding motif. This subgroup is not well characterized, its members are annotated as having a variety of putative functions. One characterized member is Pseudomonas fluorescens MupV a protein involved in the biosynthesis of Mupirocin, a polyketide-derived antibiotic. Extended SDRs are distinct from classical SDRs. In addition to the Rossmann fold (alpha/beta folding pattern with a central beta-sheet) core region typical of all SDRs, extended SDRs have a less conserved C-terminal extension of approximately 100 amino acids. Extended SDRs are a diverse collection of proteins, and include isomerases, epimerases, oxidoreductases, and lyases; they typically have a TGXXGXXG cofactor binding motif. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold, an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Sequence identity between different SDR enzymes is typically in the 15-30% range; they catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase numbering). In addition to the Tyr and Lys, there is often an upstream Ser and/or an Asn, contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. Atypical SDRs generally lack the catalytic residues characteristic of the SDRs, and their glycine-rich NAD(P)-binding motif is often different from the forms normally seen in classical or extended SDRs. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid synthase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type ketoacyl reductases have a TGXXXGX(1-2)G NAD(P)-binding motif. Pssm-ID: 187573 [Multi-domain] Cd Length: 293 Bit Score: 44.28 E-value: 4.41e-05
|
||||||||||
SDR_a1 | cd05265 | atypical (a) SDRs, subgroup 1; Atypical SDRs in this subgroup are poorly defined and have been ... |
2-250 | 7.44e-05 | ||||||
atypical (a) SDRs, subgroup 1; Atypical SDRs in this subgroup are poorly defined and have been identified putatively as isoflavones reductase, sugar dehydratase, mRNA binding protein etc. Atypical SDRs are distinct from classical SDRs. Members of this subgroup retain the canonical active site triad (though not the upstream Asn found in most SDRs) but have an unusual putative glycine-rich NAD(P)-binding motif, GGXXXXG, in the usual location. Atypical SDRs generally lack the catalytic residues characteristic of the SDRs, and their glycine-rich NAD(P)-binding motif is often different from the forms normally seen in classical or extended SDRs. Atypical SDRs include biliverdin IX beta reductase (BVR-B,aka flavin reductase), NMRa (a negative transcriptional regulator of various fungi), progesterone 5-beta-reductase like proteins, phenylcoumaran benzylic ether and pinoresinol-lariciresinol reductases, phenylpropene synthases, eugenol synthase, triphenylmethane reductase, isoflavone reductases, and others. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold, an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Sequence identity between different SDR enzymes is typically in the 15-30% range; they catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase numbering). In addition to the Tyr and Lys, there is often an upstream Ser and/or an Asn, contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. In addition to the Rossmann fold core region typical of all SDRs, extended SDRs have a less conserved C-terminal extension of approximately 100 amino acids, and typically have a TGXXGXXG cofactor binding motif. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid synthase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type ketoacyl reductases have a TGXXXGX(1-2)G NAD(P)-binding motif. Pssm-ID: 187575 [Multi-domain] Cd Length: 250 Bit Score: 43.43 E-value: 7.44e-05
|
||||||||||
CAPF_like_SDR_e | cd05261 | capsular polysaccharide assembling protein (CAPF) like, extended (e) SDRs; This subgroup of ... |
2-219 | 1.41e-04 | ||||||
capsular polysaccharide assembling protein (CAPF) like, extended (e) SDRs; This subgroup of extended SDRs, includes some members which have been identified as capsular polysaccharide assembling proteins, such as Staphylococcus aureus Cap5F which is involved in the biosynthesis of N-acetyl-l-fucosamine, a constituent of surface polysaccharide structures of S. aureus. This subgroup has the characteristic active site tetrad and NAD-binding motif of extended SDRs. Extended SDRs are distinct from classical SDRs. In addition to the Rossmann fold (alpha/beta folding pattern with a central beta-sheet) core region typical of all SDRs, extended SDRs have a less conserved C-terminal extension of approximately 100 amino acids. Extended SDRs are a diverse collection of proteins, and include isomerases, epimerases, oxidoreductases, and lyases; they typically have a TGXXGXXG cofactor binding motif. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold, an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Sequence identity between different SDR enzymes is typically in the 15-30% range; they catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase numbering). In addition to the Tyr and Lys, there is often an upstream Ser and/or an Asn, contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. Atypical SDRs generally lack the catalytic residues characteristic of the SDRs, and their glycine-rich NAD(P)-binding motif is often different from the forms normally seen in classical or extended SDRs. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid synthase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type ketoacyl reductases have a TGXXXGX(1-2)G NAD(P)-binding motif. Pssm-ID: 187571 [Multi-domain] Cd Length: 248 Bit Score: 42.34 E-value: 1.41e-04
|
||||||||||
PLN02206 | PLN02206 | UDP-glucuronate decarboxylase |
2-236 | 2.01e-04 | ||||||
UDP-glucuronate decarboxylase Pssm-ID: 177856 [Multi-domain] Cd Length: 442 Bit Score: 42.66 E-value: 2.01e-04
|
||||||||||
YbjT | COG0702 | Uncharacterized conserved protein YbjT, contains NAD(P)-binding and DUF2867 domains [General ... |
1-74 | 1.86e-03 | ||||||
Uncharacterized conserved protein YbjT, contains NAD(P)-binding and DUF2867 domains [General function prediction only]; Pssm-ID: 440466 [Multi-domain] Cd Length: 215 Bit Score: 39.06 E-value: 1.86e-03
|
||||||||||
FR_SDR_e | cd08958 | flavonoid reductase (FR), extended (e) SDRs; This subgroup contains FRs of the extended ... |
4-49 | 2.38e-03 | ||||||
flavonoid reductase (FR), extended (e) SDRs; This subgroup contains FRs of the extended SDR-type and related proteins. These FRs act in the NADP-dependent reduction of flavonoids, ketone-containing plant secondary metabolites; they have the characteristic active site triad of the SDRs (though not the upstream active site Asn) and a NADP-binding motif that is very similar to the typical extended SDR motif. Extended SDRs are distinct from classical SDRs. In addition to the Rossmann fold (alpha/beta folding pattern with a central beta-sheet) core region typical of all SDRs, extended SDRs have a less conserved C-terminal extension of approximately 100 amino acids. Extended SDRs are a diverse collection of proteins, and include isomerases, epimerases, oxidoreductases, and lyases; they typically have a TGXXGXXG cofactor binding motif. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold, an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Sequence identity between different SDR enzymes is typically in the 15-30% range; they catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase numbering). In addition to the Tyr and Lys, there is often an upstream Ser and/or an Asn, contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. Atypical SDRs generally lack the catalytic residues characteristic of the SDRs, and their glycine-rich NAD(P)-binding motif is often different from the forms normally seen in classical or extended SDRs. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid synthase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type ketoacyl reductases have a TGXXXGX(1-2)G NAD(P)-binding motif. Pssm-ID: 187661 [Multi-domain] Cd Length: 293 Bit Score: 39.10 E-value: 2.38e-03
|
||||||||||
TDH_SDR_e | cd05272 | L-threonine dehydrogenase, extended (e) SDRs; This subgroup contains members identified as ... |
1-144 | 4.36e-03 | ||||||
L-threonine dehydrogenase, extended (e) SDRs; This subgroup contains members identified as L-threonine dehydrogenase (TDH). TDH catalyzes the zinc-dependent formation of 2-amino-3-ketobutyrate from L-threonine via NAD(H)-dependent oxidation. This group is distinct from TDHs that are members of the medium chain dehydrogenase/reductase family. This group has the NAD-binding motif and active site tetrad of the extended SDRs. Extended SDRs are distinct from classical SDRs. In addition to the Rossmann fold (alpha/beta folding pattern with a central beta-sheet) core region typical of all SDRs, extended SDRs have a less conserved C-terminal extension of approximately 100 amino acids. Extended SDRs are a diverse collection of proteins, and include isomerases, epimerases, oxidoreductases, and lyases; they typically have a TGXXGXXG cofactor binding motif. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold, an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Sequence identity between different SDR enzymes is typically in the 15-30% range; they catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase numbering). In addition to the Tyr and Lys, there is often an upstream Ser and/or an Asn, contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. Atypical SDRs generally lack the catalytic residues characteristic of the SDRs, and their glycine-rich NAD(P)-binding motif is often different from the forms normally seen in classical or extended SDRs. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid synthase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type ketoacyl reductases have a TGXXXGX(1-2)G NAD(P)-binding motif. Pssm-ID: 187580 [Multi-domain] Cd Length: 308 Bit Score: 38.06 E-value: 4.36e-03
|
||||||||||
TMR_SDR_a | cd05269 | triphenylmethane reductase (TMR)-like proteins, NMRa-like, atypical (a) SDRs; TMR is an ... |
2-63 | 4.67e-03 | ||||||
triphenylmethane reductase (TMR)-like proteins, NMRa-like, atypical (a) SDRs; TMR is an atypical NADP-binding protein of the SDR family. It lacks the active site residues of the SDRs but has a glycine rich NAD(P)-binding motif that matches the extended SDRs. Proteins in this subgroup however, are more similar in length to the classical SDRs. TMR was identified as a reducer of triphenylmethane dyes, important environmental pollutants. This subgroup also includes Escherichia coli NADPH-dependent quinine oxidoreductase (QOR2), which catalyzes two-electron reduction of quinone; but is unlikely to play a major role in protecting against quinone cytotoxicity. Atypical SDRs are distinct from classical SDRs. Atypical SDRs include biliverdin IX beta reductase (BVR-B,aka flavin reductase), NMRa (a negative transcriptional regulator of various fungi), progesterone 5-beta-reductase like proteins, phenylcoumaran benzylic ether and pinoresinol-lariciresinol reductases, phenylpropene synthases, eugenol synthase, triphenylmethane reductase, isoflavone reductases, and others. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold, an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Sequence identity between different SDR enzymes is typically in the 15-30% range; they catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase numbering). In addition to the Tyr and Lys, there is often an upstream Ser and/or an Asn, contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. In addition to the Rossmann fold core region typical of all SDRs, extended SDRs have a less conserved C-terminal extension of approximately 100 amino acids, and typically have a TGXXGXXG cofactor binding motif. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid synthase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type ketoacyl reductases have a TGXXXGX(1-2)G NAD(P)-binding motif. Pssm-ID: 187578 [Multi-domain] Cd Length: 272 Bit Score: 38.02 E-value: 4.67e-03
|
||||||||||
3b-HSD_HSDB1_like_SDR_e | cd09811 | human 3beta-HSD (hydroxysteroid dehydrogenase) and HSD3B1(delta 5-delta 4-isomerase)-like, ... |
3-218 | 8.30e-03 | ||||||
human 3beta-HSD (hydroxysteroid dehydrogenase) and HSD3B1(delta 5-delta 4-isomerase)-like, extended (e) SDRs; This extended-SDR subgroup includes human 3 beta-HSD/HSD3B1 and C(27) 3beta-HSD/ [3beta-hydroxy-delta(5)-C(27)-steroid oxidoreductase; HSD3B7], and related proteins. These proteins have the characteristic active site tetrad and NAD(P)-binding motif of extended SDRs. 3 beta-HSD catalyzes the oxidative conversion of delta 5-3 beta-hydroxysteroids to the delta 4-3-keto configuration; this activity is essential for the biosynthesis of all classes of hormonal steroids. C(27) 3beta-HSD is a membrane-bound enzyme of the endoplasmic reticulum, it catalyzes the isomerization and oxidation of 7alpha-hydroxylated sterol intermediates, an early step in bile acid biosynthesis. Mutations in the human gene encoding C(27) 3beta-HSD underlie a rare autosomal recessive form of neonatal cholestasis. Extended SDRs are distinct from classical SDRs. In addition to the Rossmann fold (alpha/beta folding pattern with a central beta-sheet) core region typical of all SDRs, extended SDRs have a less conserved C-terminal extension of approximately 100 amino acids. Extended SDRs are a diverse collection of proteins, and include isomerases, epimerases, oxidoreductases, and lyases; they typically have a TGXXGXXG cofactor binding motif. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold, an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Sequence identity between different SDR enzymes is typically in the 15-30% range; they catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase numbering). In addition to the Tyr and Lys, there is often an upstream Ser and/or an Asn, contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. Atypical SDRs generally lack the catalytic residues characteristic of the SDRs, and their glycine-rich NAD(P)-binding motif is often different from the forms normally seen in classical or extended SDRs. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid sythase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type ketoacyl reductases have a TGXXXGX(1-2)G NAD(P)-binding motif. Pssm-ID: 187671 [Multi-domain] Cd Length: 354 Bit Score: 37.49 E-value: 8.30e-03
|
||||||||||
Blast search parameters | ||||
|