MULTISPECIES: GrxA family glutaredoxin [Enterobacteriaceae]
glutaredoxin( domain architecture ID 10013759)
glutaredoxin is a glutathione dependent reductase that catalyzes the reduction of disulfides in target proteins such as ribonucleotide reductase
List of domain hits
Name | Accession | Description | Interval | E-value | |||
grxA | PRK11200 | glutaredoxin 1; Provisional |
1-85 | 2.53e-65 | |||
glutaredoxin 1; Provisional : Pssm-ID: 183036 [Multi-domain] Cd Length: 85 Bit Score: 190.63 E-value: 2.53e-65
|
|||||||
Name | Accession | Description | Interval | E-value | |||
grxA | PRK11200 | glutaredoxin 1; Provisional |
1-85 | 2.53e-65 | |||
glutaredoxin 1; Provisional Pssm-ID: 183036 [Multi-domain] Cd Length: 85 Bit Score: 190.63 E-value: 2.53e-65
|
|||||||
GRXA | TIGR02183 | Glutaredoxin, GrxA family; Glutaredoxins are thioltransferases (disulfide reductases) which ... |
2-87 | 5.13e-52 | |||
Glutaredoxin, GrxA family; Glutaredoxins are thioltransferases (disulfide reductases) which utilize glutathione and NADPH as cofactors. Oxidized glutathione is regenerated by glutathione reductase. Together these components compose the glutathione system. Glutaredoxins utilize the CXXC motif common to thioredoxins and are involved in multiple cellular processes including protection from redox stress, reduction of critical enzymes such as ribonucleotide reductase and the generation of reduced sulfur for iron sulfur cluster formation. Glutaredoxins are capable of reduction of mixed disulfides of glutathione as well as the formation of glutathione mixed disulfides. This model includes the E. coli glyutaredoxin GrxA which appears to have primary responsibility for the reduction of ribonucleotide reductase. Pssm-ID: 131238 [Multi-domain] Cd Length: 86 Bit Score: 157.30 E-value: 5.13e-52
|
|||||||
GRX_family | cd02066 | Glutaredoxin (GRX) family; composed of GRX, approximately 10 kDa in size, and proteins ... |
4-80 | 1.48e-18 | |||
Glutaredoxin (GRX) family; composed of GRX, approximately 10 kDa in size, and proteins containing a GRX or GRX-like domain. GRX is a glutathione (GSH) dependent reductase, catalyzing the disulfide reduction of target proteins such as ribonucleotide reductase. It contains a redox active CXXC motif in a TRX fold and uses a similar dithiol mechanism employed by TRXs for intramolecular disulfide bond reduction of protein substrates. Unlike TRX, GRX has preference for mixed GSH disulfide substrates, in which it uses a monothiol mechanism where only the N-terminal cysteine is required. The flow of reducing equivalents in the GRX system goes from NADPH -> GSH reductase -> GSH -> GRX -> protein substrates. By altering the redox state of target proteins, GRX is involved in many cellular functions including DNA synthesis, signal transduction and the defense against oxidative stress. Different classes are known including human GRX1 and GRX2, as well as E. coli GRX1 and GRX3, which are members of this family. E. coli GRX2, however, is a 24-kDa protein that belongs to the GSH S-transferase (GST) family. Pssm-ID: 239017 [Multi-domain] Cd Length: 72 Bit Score: 72.11 E-value: 1.48e-18
|
|||||||
GrxC | COG0695 | Glutaredoxin [Posttranslational modification, protein turnover, chaperones]; |
4-74 | 1.56e-17 | |||
Glutaredoxin [Posttranslational modification, protein turnover, chaperones]; Pssm-ID: 440459 [Multi-domain] Cd Length: 74 Bit Score: 69.46 E-value: 1.56e-17
|
|||||||
Glutaredoxin | pfam00462 | Glutaredoxin; |
4-69 | 2.01e-14 | |||
Glutaredoxin; Pssm-ID: 425695 [Multi-domain] Cd Length: 60 Bit Score: 61.37 E-value: 2.01e-14
|
|||||||
Uxx_star | NF041212 | Uxx-star family glutaredoxin-like (seleno)protein; A number of proteins with glutaredoxin-like ... |
4-50 | 4.81e-04 | |||
Uxx-star family glutaredoxin-like (seleno)protein; A number of proteins with glutaredoxin-like folds, a length of about 75 amino acids, and a CxxC, C/UxxT, or CxxS motif near the N-terminus end with a UXX-COOH motif. That final motif typically is missed during coding region feature prediction by genome annotation pipelines. This HMM covers proteins from several distinctive families with this feature. The seed alignment illustrates the final selenocysteine or aligned Cys or Ser residues, but the HMM also hits proteins that lack an equivalent motif at the C-terminus. This C-terminal selenocysteine-containing motif has not yet been described in the literature. Pssm-ID: 469116 [Multi-domain] Cd Length: 70 Bit Score: 35.13 E-value: 4.81e-04
|
|||||||
UPxT_UxV_star | NF041114 | UXX-star (seleno)protein family 1; |
4-67 | 2.73e-03 | |||
UXX-star (seleno)protein family 1; Pssm-ID: 469037 Cd Length: 62 Bit Score: 32.93 E-value: 2.73e-03
|
|||||||
Name | Accession | Description | Interval | E-value | |||
grxA | PRK11200 | glutaredoxin 1; Provisional |
1-85 | 2.53e-65 | |||
glutaredoxin 1; Provisional Pssm-ID: 183036 [Multi-domain] Cd Length: 85 Bit Score: 190.63 E-value: 2.53e-65
|
|||||||
GRXA | TIGR02183 | Glutaredoxin, GrxA family; Glutaredoxins are thioltransferases (disulfide reductases) which ... |
2-87 | 5.13e-52 | |||
Glutaredoxin, GrxA family; Glutaredoxins are thioltransferases (disulfide reductases) which utilize glutathione and NADPH as cofactors. Oxidized glutathione is regenerated by glutathione reductase. Together these components compose the glutathione system. Glutaredoxins utilize the CXXC motif common to thioredoxins and are involved in multiple cellular processes including protection from redox stress, reduction of critical enzymes such as ribonucleotide reductase and the generation of reduced sulfur for iron sulfur cluster formation. Glutaredoxins are capable of reduction of mixed disulfides of glutathione as well as the formation of glutathione mixed disulfides. This model includes the E. coli glyutaredoxin GrxA which appears to have primary responsibility for the reduction of ribonucleotide reductase. Pssm-ID: 131238 [Multi-domain] Cd Length: 86 Bit Score: 157.30 E-value: 5.13e-52
|
|||||||
GRX_family | cd02066 | Glutaredoxin (GRX) family; composed of GRX, approximately 10 kDa in size, and proteins ... |
4-80 | 1.48e-18 | |||
Glutaredoxin (GRX) family; composed of GRX, approximately 10 kDa in size, and proteins containing a GRX or GRX-like domain. GRX is a glutathione (GSH) dependent reductase, catalyzing the disulfide reduction of target proteins such as ribonucleotide reductase. It contains a redox active CXXC motif in a TRX fold and uses a similar dithiol mechanism employed by TRXs for intramolecular disulfide bond reduction of protein substrates. Unlike TRX, GRX has preference for mixed GSH disulfide substrates, in which it uses a monothiol mechanism where only the N-terminal cysteine is required. The flow of reducing equivalents in the GRX system goes from NADPH -> GSH reductase -> GSH -> GRX -> protein substrates. By altering the redox state of target proteins, GRX is involved in many cellular functions including DNA synthesis, signal transduction and the defense against oxidative stress. Different classes are known including human GRX1 and GRX2, as well as E. coli GRX1 and GRX3, which are members of this family. E. coli GRX2, however, is a 24-kDa protein that belongs to the GSH S-transferase (GST) family. Pssm-ID: 239017 [Multi-domain] Cd Length: 72 Bit Score: 72.11 E-value: 1.48e-18
|
|||||||
GrxC | COG0695 | Glutaredoxin [Posttranslational modification, protein turnover, chaperones]; |
4-74 | 1.56e-17 | |||
Glutaredoxin [Posttranslational modification, protein turnover, chaperones]; Pssm-ID: 440459 [Multi-domain] Cd Length: 74 Bit Score: 69.46 E-value: 1.56e-17
|
|||||||
GRX_GRXh_1_2_like | cd03419 | Glutaredoxin (GRX) family, GRX human class 1 and 2 (h_1_2)-like subfamily; composed of ... |
4-81 | 8.93e-17 | |||
Glutaredoxin (GRX) family, GRX human class 1 and 2 (h_1_2)-like subfamily; composed of proteins similar to human GRXs, approximately 10 kDa in size, and proteins containing a GRX or GRX-like domain. GRX is a glutathione (GSH) dependent reductase, catalyzing the disulfide reduction of target proteins such as ribonucleotide reductase. It contains a redox active CXXC motif in a TRX fold and uses a similar dithiol mechanism employed by TRXs for intramolecular disulfide bond reduction of protein substrates. Unlike TRX, GRX has preference for mixed GSH disulfide substrates, in which it uses a monothiol mechanism where only the N-terminal cysteine is required. The flow of reducing equivalents in the GRX system goes from NADPH -> GSH reductase -> GSH -> GRX -> protein substrates. By altering the redox state of target proteins, GRX is involved in many cellular functions including DNA synthesis, signal transduction and the defense against oxidative stress. Different classes are known including human GRX1 and GRX2, which are members of this subfamily. Also included in this subfamily are the N-terminal GRX domains of proteins similar to human thioredoxin reductase 1 and 3. Pssm-ID: 239511 [Multi-domain] Cd Length: 82 Bit Score: 67.95 E-value: 8.93e-17
|
|||||||
GRX_euk | TIGR02180 | Glutaredoxin; Glutaredoxins are thioltransferases (disulfide reductases) which utilize ... |
4-81 | 3.05e-15 | |||
Glutaredoxin; Glutaredoxins are thioltransferases (disulfide reductases) which utilize glutathione and NADPH as cofactors. Oxidized glutathione is regenerated by glutathione reductase. Together these components compose the glutathione system. Glutaredoxins utilize the CXXC motif common to thioredoxins and are involved in multiple cellular processes including protection from redox stress, reduction of critical enzymes such as ribonucleotide reductase and the generation of reduced sulfur for iron sulfur cluster formation. Glutaredoxins are capable of reduction of mixed disulfides of glutathione as well as the formation of glutathione mixed disulfides. This model represents eukaryotic glutaredoxins and includes sequences from fungi, plants and metazoans as well as viruses. Pssm-ID: 274016 [Multi-domain] Cd Length: 83 Bit Score: 64.19 E-value: 3.05e-15
|
|||||||
Glutaredoxin | pfam00462 | Glutaredoxin; |
4-69 | 2.01e-14 | |||
Glutaredoxin; Pssm-ID: 425695 [Multi-domain] Cd Length: 60 Bit Score: 61.37 E-value: 2.01e-14
|
|||||||
GRX_hybridPRX5 | cd03029 | Glutaredoxin (GRX) family, PRX5 hybrid subfamily; composed of hybrid proteins containing ... |
2-78 | 3.78e-13 | |||
Glutaredoxin (GRX) family, PRX5 hybrid subfamily; composed of hybrid proteins containing peroxiredoxin (PRX) and GRX domains, which is found in some pathogenic bacteria and cyanobacteria. PRXs are thiol-specific antioxidant (TSA) proteins that confer a protective antioxidant role in cells through their peroxidase activity in which hydrogen peroxide, peroxynitrate, and organic hydroperoxides are reduced and detoxified using reducing equivalents derived from either thioredoxin, glutathione, trypanothione and AhpF. GRX is a glutathione (GSH) dependent reductase, catalyzing the disulfide reduction of target proteins. PRX-GRX hybrid proteins from Haemophilus influenza and Neisseria meningitis exhibit GSH-dependent peroxidase activity. The flow of reducing equivalents in the catalytic cycle of the hybrid protein goes from NADPH -> GSH reductase -> GSH -> GRX domain of hybrid -> PRX domain of hybrid -> peroxide substrate. Pssm-ID: 239327 [Multi-domain] Cd Length: 72 Bit Score: 58.68 E-value: 3.78e-13
|
|||||||
GRX_GRXb_1_3_like | cd03418 | Glutaredoxin (GRX) family, GRX bacterial class 1 and 3 (b_1_3)-like subfamily; composed of ... |
4-81 | 2.27e-12 | |||
Glutaredoxin (GRX) family, GRX bacterial class 1 and 3 (b_1_3)-like subfamily; composed of bacterial GRXs, approximately 10 kDa in size, and proteins containing a GRX or GRX-like domain. GRX is a glutathione (GSH) dependent reductase, catalyzing the disulfide reduction of target proteins such as ribonucleotide reductase. It contains a redox active CXXC motif in a TRX fold and uses a similar dithiol mechanism employed by TRXs for intramolecular disulfide bond reduction of protein substrates. Unlike TRX, GRX has preference for mixed GSH disulfide substrates, in which it uses a monothiol mechanism where only the N-terminal cysteine is required. The flow of reducing equivalents in the GRX system goes from NADPH -> GSH reductase -> GSH -> GRX -> protein substrates. By altering the redox state of target proteins, GRX is involved in many cellular functions including DNA synthesis, signal transduction and the defense against oxidative stress. Different classes are known including E. coli GRX1 and GRX3, which are members of this subfamily. Pssm-ID: 239510 [Multi-domain] Cd Length: 75 Bit Score: 56.44 E-value: 2.27e-12
|
|||||||
GlrX-dom | TIGR02190 | Glutaredoxin-family domain; This C-terminal domain with homology to glutaredoxin is fused to ... |
4-78 | 4.31e-12 | |||
Glutaredoxin-family domain; This C-terminal domain with homology to glutaredoxin is fused to an N-terminal peroxiredoxin-like domain. Pssm-ID: 131245 [Multi-domain] Cd Length: 79 Bit Score: 56.00 E-value: 4.31e-12
|
|||||||
GRX_bact | TIGR02181 | Glutaredoxin, GrxC family; Glutaredoxins are thioltransferases (disulfide reductases) which ... |
4-74 | 4.59e-11 | |||
Glutaredoxin, GrxC family; Glutaredoxins are thioltransferases (disulfide reductases) which utilize glutathione and NADPH as cofactors. Oxidized glutathione is regenerated by glutathione reductase. Together these components compose the glutathione system. Glutaredoxins utilize the CXXC motif common to thioredoxins and are involved in multiple cellular processes including protection from redox stress, reduction of critical enzymes such as ribonucleotide reductase and the generation of reduced sulfur for iron sulfur cluster formation. Glutaredoxins are capable of reduction of mixed disulfides of glutathione as well as the formation of glutathione mixed disulfides. This family of glutaredoxins includes the E. coli protein GrxC (Grx3) which appears to have a secondary role in reducing ribonucleotide reductase (in the absence of GrxA) possibly indicating a role in the reduction of other protein disulfides. [Energy metabolism, Electron transport] Pssm-ID: 274017 [Multi-domain] Cd Length: 79 Bit Score: 53.42 E-value: 4.59e-11
|
|||||||
PRK10638 | PRK10638 | glutaredoxin 3; Provisional |
5-77 | 2.62e-10 | |||
glutaredoxin 3; Provisional Pssm-ID: 182607 [Multi-domain] Cd Length: 83 Bit Score: 51.74 E-value: 2.62e-10
|
|||||||
GRX_DEP | cd03027 | Glutaredoxin (GRX) family, Dishevelled, Egl-10, and Pleckstrin (DEP) subfamily; composed of ... |
4-76 | 2.38e-09 | |||
Glutaredoxin (GRX) family, Dishevelled, Egl-10, and Pleckstrin (DEP) subfamily; composed of uncharacterized proteins containing a GRX domain and additional domains DEP and DUF547, both of which have unknown functions. GRX is a glutathione (GSH) dependent reductase containing a redox active CXXC motif in a TRX fold. It has preference for mixed GSH disulfide substrates, in which it uses a monothiol mechanism where only the N-terminal cysteine is required. By altering the redox state of target proteins, GRX is involved in many cellular functions. Pssm-ID: 239325 [Multi-domain] Cd Length: 73 Bit Score: 48.95 E-value: 2.38e-09
|
|||||||
TRX_superfamily | cd01659 | Thioredoxin (TRX) superfamily; a large, diverse group of proteins containing a TRX-fold. Many ... |
4-70 | 2.08e-04 | |||
Thioredoxin (TRX) superfamily; a large, diverse group of proteins containing a TRX-fold. Many members contain a classic TRX domain with a redox active CXXC motif. They function as protein disulfide oxidoreductases (PDOs), altering the redox state of target proteins via the reversible oxidation of their active site dithiol. The PDO members of this superfamily include TRX, protein disulfide isomerase (PDI), tlpA-like, glutaredoxin, NrdH redoxin, and the bacterial Dsb (DsbA, DsbC, DsbG, DsbE, DsbDgamma) protein families. Members of the superfamily that do not function as PDOs but contain a TRX-fold domain include phosducins, peroxiredoxins and glutathione (GSH) peroxidases, SCO proteins, GSH transferases (GST, N-terminal domain), arsenic reductases, TRX-like ferredoxins and calsequestrin, among others. Pssm-ID: 238829 [Multi-domain] Cd Length: 69 Bit Score: 36.14 E-value: 2.08e-04
|
|||||||
Glrx-like | pfam05768 | Glutaredoxin-like domain (DUF836); These proteins are related to the pfam00462 family. This ... |
4-65 | 4.42e-04 | |||
Glutaredoxin-like domain (DUF836); These proteins are related to the pfam00462 family. This entry includes several viral glutaredoxins and many related bacterial and eukaryotic proteins of unknown function. The best characterized member is G4L from Vaccinia virus (strain Western Reserve/WR) (VACV), which is necessary for virion morphogenesis and replication. This is a cytoplasmic protein which functions as a shuttle in a redox pathway between membrane-associated E10R and L1R or F9L. Pssm-ID: 399055 Cd Length: 80 Bit Score: 35.34 E-value: 4.42e-04
|
|||||||
Uxx_star | NF041212 | Uxx-star family glutaredoxin-like (seleno)protein; A number of proteins with glutaredoxin-like ... |
4-50 | 4.81e-04 | |||
Uxx-star family glutaredoxin-like (seleno)protein; A number of proteins with glutaredoxin-like folds, a length of about 75 amino acids, and a CxxC, C/UxxT, or CxxS motif near the N-terminus end with a UXX-COOH motif. That final motif typically is missed during coding region feature prediction by genome annotation pipelines. This HMM covers proteins from several distinctive families with this feature. The seed alignment illustrates the final selenocysteine or aligned Cys or Ser residues, but the HMM also hits proteins that lack an equivalent motif at the C-terminus. This C-terminal selenocysteine-containing motif has not yet been described in the literature. Pssm-ID: 469116 [Multi-domain] Cd Length: 70 Bit Score: 35.13 E-value: 4.81e-04
|
|||||||
NrdH | cd02976 | NrdH-redoxin (NrdH) family; NrdH is a small monomeric protein with a conserved redox active ... |
4-71 | 7.22e-04 | |||
NrdH-redoxin (NrdH) family; NrdH is a small monomeric protein with a conserved redox active CXXC motif within a TRX fold, characterized by a glutaredoxin (GRX)-like sequence and TRX-like activity profile. In vitro, it displays protein disulfide reductase activity that is dependent on TRX reductase, not glutathione (GSH). It is part of the NrdHIEF operon, where NrdEF codes for class Ib ribonucleotide reductase (RNR-Ib), an efficient enzyme at low oxygen levels. Under these conditions when GSH is mostly conjugated to spermidine, NrdH can still function and act as a hydrogen donor for RNR-Ib. It has been suggested that the NrdHEF system may be the oldest RNR reducing system, capable of functioning in a microaerophilic environment, where GSH was not yet available. NrdH from Corynebacterium ammoniagenes can form domain-swapped dimers, although it is unknown if this happens in vivo. Domain-swapped dimerization, which results in the blocking of the TRX reductase binding site, could be a mechanism for regulating the oxidation state of the protein. Pssm-ID: 239274 [Multi-domain] Cd Length: 73 Bit Score: 34.89 E-value: 7.22e-04
|
|||||||
PRK10824 | PRK10824 | Grx4 family monothiol glutaredoxin; |
7-72 | 1.71e-03 | |||
Grx4 family monothiol glutaredoxin; Pssm-ID: 182759 Cd Length: 115 Bit Score: 34.49 E-value: 1.71e-03
|
|||||||
SoxW | cd02951 | SoxW family; SoxW is a bacterial periplasmic TRX, containing a redox active CXXC motif, ... |
1-54 | 2.22e-03 | |||
SoxW family; SoxW is a bacterial periplasmic TRX, containing a redox active CXXC motif, encoded by a genetic locus (sox operon) involved in thiosulfate oxidation. Sulfur bacteria oxidize sulfur compounds to provide reducing equivalents for carbon dioxide fixation during autotrophic growth and the respiratory electron transport chain. It is unclear what the role of SoxW is, since it has been found to be dispensable in the oxidation of thiosulfate to sulfate. SoxW is specifically kept in the reduced state by SoxV, which is essential in thiosulfate oxidation. Pssm-ID: 239249 [Multi-domain] Cd Length: 125 Bit Score: 34.60 E-value: 2.22e-03
|
|||||||
UPxT_UxV_star | NF041114 | UXX-star (seleno)protein family 1; |
4-67 | 2.73e-03 | |||
UXX-star (seleno)protein family 1; Pssm-ID: 469037 Cd Length: 62 Bit Score: 32.93 E-value: 2.73e-03
|
|||||||
Thioredoxin_2 | pfam13098 | Thioredoxin-like domain; |
2-80 | 5.14e-03 | |||
Thioredoxin-like domain; Pssm-ID: 379034 [Multi-domain] Cd Length: 103 Bit Score: 33.17 E-value: 5.14e-03
|
|||||||
GlrX_YruB | TIGR02196 | Glutaredoxin-like protein, YruB-family; This glutaredoxin-like protein family contains the ... |
4-71 | 7.07e-03 | |||
Glutaredoxin-like protein, YruB-family; This glutaredoxin-like protein family contains the conserved CxxC motif and includes the Clostridium pasteurianum protein YruB which has been cloned from a rubredoxin operon. Somewhat related to NrdH, it is unknown whether this protein actually interacts with glutathione/glutathione reducatase, or, like NrdH, some other reductant system. Pssm-ID: 274027 [Multi-domain] Cd Length: 74 Bit Score: 32.35 E-value: 7.07e-03
|
|||||||
Blast search parameters | ||||
|