Uncharacterized bacterial subgroup of the N-terminal domain of Fpg (formamidopyrimidine-DNA ...
2-118
3.58e-61
Uncharacterized bacterial subgroup of the N-terminal domain of Fpg (formamidopyrimidine-DNA glycosylase, MutM)_Nei (endonuclease VIII) base-excision repair DNA glycosylases; This family is an uncharacterized bacterial subgroup of the FpgNei_N domain superfamily. DNA glycosylases maintain genome integrity by recognizing base lesions created by ionizing radiation, alkylating or oxidizing agents, and endogenous reactive oxygen species. They initiate the base-excision repair process, which is completed with the help of enzymes such as phosphodiesterases, AP endonucleases, DNA polymerases and DNA ligases. DNA glycosylases cleave the N-glycosyl bond between the sugar and the damaged base, creating an AP (apurinic/apyrimidinic) site. Most FpgNei DNA glycosylases use their N-terminal proline residue as the key catalytic nucleophile, and the reaction proceeds via a Schiff base intermediate. One exception is mouse Nei-like glycosylase 3 (Neil3) which forms a Schiff base intermediate via its N-terminal valine. In this family the N-terminal proline is replaced by an isoleucine or valine. Escherichia coli Fpg prefers 8-oxo-7,8-dihydroguanine (8-oxoG) and oxidized purines and Escherichia coli Nei recognizes oxidized pyrimidines. However, neither Escherichia coli Fpg or Nei belong to this family. In addition to this BaFpgNei_N_3 domain, enzymes belonging to this family contain a helix-two turn-helix (H2TH) domain and a zinc-finger motif.
:
Pssm-ID: 176809 Cd Length: 117 Bit Score: 189.07 E-value: 3.58e-61
Uncharacterized bacterial subgroup of the N-terminal domain of Fpg (formamidopyrimidine-DNA ...
2-118
3.58e-61
Uncharacterized bacterial subgroup of the N-terminal domain of Fpg (formamidopyrimidine-DNA glycosylase, MutM)_Nei (endonuclease VIII) base-excision repair DNA glycosylases; This family is an uncharacterized bacterial subgroup of the FpgNei_N domain superfamily. DNA glycosylases maintain genome integrity by recognizing base lesions created by ionizing radiation, alkylating or oxidizing agents, and endogenous reactive oxygen species. They initiate the base-excision repair process, which is completed with the help of enzymes such as phosphodiesterases, AP endonucleases, DNA polymerases and DNA ligases. DNA glycosylases cleave the N-glycosyl bond between the sugar and the damaged base, creating an AP (apurinic/apyrimidinic) site. Most FpgNei DNA glycosylases use their N-terminal proline residue as the key catalytic nucleophile, and the reaction proceeds via a Schiff base intermediate. One exception is mouse Nei-like glycosylase 3 (Neil3) which forms a Schiff base intermediate via its N-terminal valine. In this family the N-terminal proline is replaced by an isoleucine or valine. Escherichia coli Fpg prefers 8-oxo-7,8-dihydroguanine (8-oxoG) and oxidized purines and Escherichia coli Nei recognizes oxidized pyrimidines. However, neither Escherichia coli Fpg or Nei belong to this family. In addition to this BaFpgNei_N_3 domain, enzymes belonging to this family contain a helix-two turn-helix (H2TH) domain and a zinc-finger motif.
Pssm-ID: 176809 Cd Length: 117 Bit Score: 189.07 E-value: 3.58e-61
DNA-formamidopyrimidine glycosylase; All proteins in the FPG family with known functions are ...
3-276
1.02e-24
DNA-formamidopyrimidine glycosylase; All proteins in the FPG family with known functions are FAPY-DNA glycosylases that function in base excision repair. Homologous to endonuclease VIII (nei). This family is based on the phylogenomic analysis of JA Eisen (1999, Ph.D. Thesis, Stanford University). [DNA metabolism, DNA replication, recombination, and repair]
Pssm-ID: 273150 [Multi-domain] Cd Length: 272 Bit Score: 99.68 E-value: 1.02e-24
Formamidopyrimidine-DNA glycosylase N-terminal domain; Formamidopyrimidine-DNA glycosylase (Fpg) is a DNA repair enzyme that excises oxidized purines from damaged DNA. This family is the N-terminal domain contains eight beta-strands, forming a beta-sandwich with two alpha-helices parallel to its edges.
Pssm-ID: 460082 Cd Length: 116 Bit Score: 46.35 E-value: 1.13e-06
Formamidopyrimidine-DNA glycosylase H2TH domain; Formamidopyrimidine-DNA glycosylase (Fpg) is ...
139-228
3.84e-05
Formamidopyrimidine-DNA glycosylase H2TH domain; Formamidopyrimidine-DNA glycosylase (Fpg) is a DNA repair enzyme that excises oxidized purines from damaged DNA. This family is the central domain containing the DNA-binding helix-two turn-helix domain.
Pssm-ID: 399664 [Multi-domain] Cd Length: 89 Bit Score: 41.51 E-value: 3.84e-05
Uncharacterized bacterial subgroup of the N-terminal domain of Fpg (formamidopyrimidine-DNA ...
2-118
3.58e-61
Uncharacterized bacterial subgroup of the N-terminal domain of Fpg (formamidopyrimidine-DNA glycosylase, MutM)_Nei (endonuclease VIII) base-excision repair DNA glycosylases; This family is an uncharacterized bacterial subgroup of the FpgNei_N domain superfamily. DNA glycosylases maintain genome integrity by recognizing base lesions created by ionizing radiation, alkylating or oxidizing agents, and endogenous reactive oxygen species. They initiate the base-excision repair process, which is completed with the help of enzymes such as phosphodiesterases, AP endonucleases, DNA polymerases and DNA ligases. DNA glycosylases cleave the N-glycosyl bond between the sugar and the damaged base, creating an AP (apurinic/apyrimidinic) site. Most FpgNei DNA glycosylases use their N-terminal proline residue as the key catalytic nucleophile, and the reaction proceeds via a Schiff base intermediate. One exception is mouse Nei-like glycosylase 3 (Neil3) which forms a Schiff base intermediate via its N-terminal valine. In this family the N-terminal proline is replaced by an isoleucine or valine. Escherichia coli Fpg prefers 8-oxo-7,8-dihydroguanine (8-oxoG) and oxidized purines and Escherichia coli Nei recognizes oxidized pyrimidines. However, neither Escherichia coli Fpg or Nei belong to this family. In addition to this BaFpgNei_N_3 domain, enzymes belonging to this family contain a helix-two turn-helix (H2TH) domain and a zinc-finger motif.
Pssm-ID: 176809 Cd Length: 117 Bit Score: 189.07 E-value: 3.58e-61
DNA-formamidopyrimidine glycosylase; All proteins in the FPG family with known functions are ...
3-276
1.02e-24
DNA-formamidopyrimidine glycosylase; All proteins in the FPG family with known functions are FAPY-DNA glycosylases that function in base excision repair. Homologous to endonuclease VIII (nei). This family is based on the phylogenomic analysis of JA Eisen (1999, Ph.D. Thesis, Stanford University). [DNA metabolism, DNA replication, recombination, and repair]
Pssm-ID: 273150 [Multi-domain] Cd Length: 272 Bit Score: 99.68 E-value: 1.02e-24
Formamidopyrimidine-DNA glycosylase N-terminal domain; Formamidopyrimidine-DNA glycosylase (Fpg) is a DNA repair enzyme that excises oxidized purines from damaged DNA. This family is the N-terminal domain contains eight beta-strands, forming a beta-sandwich with two alpha-helices parallel to its edges.
Pssm-ID: 460082 Cd Length: 116 Bit Score: 46.35 E-value: 1.13e-06
Formamidopyrimidine-DNA glycosylase H2TH domain; Formamidopyrimidine-DNA glycosylase (Fpg) is ...
139-228
3.84e-05
Formamidopyrimidine-DNA glycosylase H2TH domain; Formamidopyrimidine-DNA glycosylase (Fpg) is a DNA repair enzyme that excises oxidized purines from damaged DNA. This family is the central domain containing the DNA-binding helix-two turn-helix domain.
Pssm-ID: 399664 [Multi-domain] Cd Length: 89 Bit Score: 41.51 E-value: 3.84e-05
N-terminal domain of Escherichia coli Fpg1/MutM and related bacterial DNA glycosylases; This ...
3-123
5.03e-03
N-terminal domain of Escherichia coli Fpg1/MutM and related bacterial DNA glycosylases; This family contains the N-terminal domain of Escherichia coli Fpg1/MutM and related bacterial DNA glycosylases. It belongs to the FpgNei_N, [N-terminal domain of Fpg (formamidopyrimidine-DNA glycosylase, MutM)_Nei (endonuclease VIII)] domain superfamily. DNA glycosylases maintain genome integrity by recognizing base lesions created by ionizing radiation, alkylating or oxidizing agents, and endogenous reactive oxygen species. They initiate the base-excision repair process, which is completed with the help of enzymes such as phosphodiesterases, AP endonucleases, DNA polymerases and DNA ligases. DNA glycosylases cleave the N-glycosyl bond between the sugar and the damaged base, creating an AP (apurinic/apyrimidinic) site. Most FpgNei DNA glycosylases use their N-terminal proline residue as the key catalytic nucleophile, and the reaction proceeds via a Schiff base intermediate. Escherichia coli Fpg mainly recognizes and excises damaged purines such as 8-oxo-7,8-dihydroguanine (8-oxoG) and 2,6-diamino-4-hydroxy-5-formamidopyrimidine (FapyG). It is bifunctional, having both a DNA glycosylase (recognition activity) and a AP lyase activity. In addition to this EcFpg-like_N domain, enzymes belonging to this family contain a helix-two turn-helix (H2TH) domain and a zinc-finger motif, which also contribute residues to the active site.
Pssm-ID: 176800 Cd Length: 120 Bit Score: 36.32 E-value: 5.03e-03
Database: CDSEARCH/cdd Low complexity filter: no Composition Based Adjustment: yes E-value threshold: 0.01
References:
Wang J et al. (2023), "The conserved domain database in 2023", Nucleic Acids Res.51(D)384-8.
Lu S et al. (2020), "The conserved domain database in 2020", Nucleic Acids Res.48(D)265-8.
Marchler-Bauer A et al. (2017), "CDD/SPARCLE: functional classification of proteins via subfamily domain architectures.", Nucleic Acids Res.45(D)200-3.
of the residues that compose this conserved feature have been mapped to the query sequence.
Click on the triangle to view details about the feature, including a multiple sequence alignment
of your query sequence and the protein sequences used to curate the domain model,
where hash marks (#) above the aligned sequences show the location of the conserved feature residues.
The thumbnail image, if present, provides an approximate view of the feature's location in 3 dimensions.
Click on the triangle for interactive 3D structure viewing options.
Functional characterization of the conserved domain architecture found on the query.
Click here to see more details.
This image shows a graphical summary of conserved domains identified on the query sequence.
The Show Concise/Full Display button at the top of the page can be used to select the desired level of detail: only top scoring hits
(labeled illustration) or all hits
(labeled illustration).
Domains are color coded according to superfamilies
to which they have been assigned. Hits with scores that pass a domain-specific threshold
(specific hits) are drawn in bright colors.
Others (non-specific hits) and
superfamily placeholders are drawn in pastel colors.
if a domain or superfamily has been annotated with functional sites (conserved features),
they are mapped to the query sequence and indicated through sets of triangles
with the same color and shade of the domain or superfamily that provides the annotation. Mouse over the colored bars or triangles to see descriptions of the domains and features.
click on the bars or triangles to view your query sequence embedded in a multiple sequence alignment of the proteins used to develop the corresponding domain model.
The table lists conserved domains identified on the query sequence. Click on the plus sign (+) on the left to display full descriptions, alignments, and scores.
Click on the domain model's accession number to view the multiple sequence alignment of the proteins used to develop the corresponding domain model.
To view your query sequence embedded in that multiple sequence alignment, click on the colored bars in the Graphical Summary portion of the search results page,
or click on the triangles, if present, that represent functional sites (conserved features)
mapped to the query sequence.
Concise Display shows only the best scoring domain model, in each hit category listed below except non-specific hits, for each region on the query sequence.
(labeled illustration) Standard Display shows only the best scoring domain model from each source, in each hit category listed below for each region on the query sequence.
(labeled illustration) Full Display shows all domain models, in each hit category below, that meet or exceed the RPS-BLAST threshold for statistical significance.
(labeled illustration) Four types of hits can be shown, as available,
for each region on the query sequence:
specific hits meet or exceed a domain-specific e-value threshold
(illustrated example)
and represent a very high confidence that the query sequence belongs to the same protein family as the sequences use to create the domain model
non-specific hits
meet or exceed the RPS-BLAST threshold for statistical significance (default E-value cutoff of 0.01, or an E-value selected by user via the
advanced search options)
the domain superfamily to which the specific and non-specific hits belong
multi-domain models that were computationally detected and are likely to contain multiple single domains
Retrieve proteins that contain one or more of the domains present in the query sequence, using the Conserved Domain Architecture Retrieval Tool
(CDART).
Modify your query to search against a different database and/or use advanced search options