inositol 2-dehydrogenase; All members of the seed alignment for this model are known or ...
5-330
2.38e-102
inositol 2-dehydrogenase; All members of the seed alignment for this model are known or predicted inositol 2-dehydrogenase sequences co-clustered with other enzymes for catabolism of myo-inositol or closely related compounds. Inositol 2-dehydrogenase catalyzes the first step in inositol catabolism. Members of this family may vary somewhat in their ranges of acceptable substrates and some may act on analogs to myo-inositol rather than myo-inositol per se. [Energy metabolism, Sugars]
The actual alignment was detected with superfamily member TIGR04380:
Pssm-ID: 275173 [Multi-domain] Cd Length: 330 Bit Score: 303.76 E-value: 2.38e-102
inositol 2-dehydrogenase; All members of the seed alignment for this model are known or ...
5-330
2.38e-102
inositol 2-dehydrogenase; All members of the seed alignment for this model are known or predicted inositol 2-dehydrogenase sequences co-clustered with other enzymes for catabolism of myo-inositol or closely related compounds. Inositol 2-dehydrogenase catalyzes the first step in inositol catabolism. Members of this family may vary somewhat in their ranges of acceptable substrates and some may act on analogs to myo-inositol rather than myo-inositol per se. [Energy metabolism, Sugars]
Pssm-ID: 275173 [Multi-domain] Cd Length: 330 Bit Score: 303.76 E-value: 2.38e-102
Oxidoreductase family, NAD-binding Rossmann fold; This family of enzymes utilize NADP or NAD. ...
4-121
3.20e-21
Oxidoreductase family, NAD-binding Rossmann fold; This family of enzymes utilize NADP or NAD. This family is called the GFO/IDH/MOCA family in swiss-prot.
Pssm-ID: 426248 [Multi-domain] Cd Length: 120 Bit Score: 87.26 E-value: 3.20e-21
NADP-binding domain of glutamyl-tRNA reductase; Glutamyl-tRNA reductase catalyzes the ...
3-74
3.79e-04
NADP-binding domain of glutamyl-tRNA reductase; Glutamyl-tRNA reductase catalyzes the conversion of glutamyl-tRNA to glutamate-1-semialdehyde, initiating the synthesis of tetrapyrrole. Whereas tRNAs are generally associated with peptide bond formation in protein translation, here the tRNA activates glutamate in the initiation of tetrapyrrole biosynthesis in archaea, plants and many bacteria. In the first step, activated glutamate is reduced to glutamate-1-semi-aldehyde via the NADPH dependent glutamyl-tRNA reductase. Glutamyl-tRNA reductase forms a V-shaped dimer. Each monomer has 3 domains: an N-terminal catalytic domain, a classic nucleotide binding domain, and a C-terminal dimerization domain. Although the representative structure 1GPJ lacks a bound NADPH, a theoretical binding pocket has been described. (PMID 11172694). Amino acid dehydrogenase (DH)-like NAD(P)-binding domains are members of the Rossmann fold superfamily and include glutamate, leucine, and phenylalanine DHs, methylene tetrahydrofolate DH, methylene-tetrahydromethanopterin DH, methylene-tetrahydropholate DH/cyclohydrolase, Shikimate DH-like proteins, malate oxidoreductases, and glutamyl tRNA reductase. Amino acid DHs catalyze the deamination of amino acids to keto acids with NAD(P)+ as a cofactor. The NAD(P)-binding Rossmann fold superfamily includes a wide variety of protein families including NAD(P)- binding domains of alcohol DHs, tyrosine-dependent oxidoreductases, glyceraldehyde-3-phosphate DH, lactate/malate DHs, formate/glycerate DHs, siroheme synthases, 6-phosphogluconate DH, amino acid DHs, repressor rex, NAD-binding potassium channel domain, CoA-binding, and ornithine cyclodeaminase-like domains. These domains have an alpha-beta-alpha configuration. NAD binding involves numerous hydrogen and van der Waals contacts.
Pssm-ID: 133452 [Multi-domain] Cd Length: 311 Bit Score: 41.87 E-value: 3.79e-04
inositol 2-dehydrogenase; All members of the seed alignment for this model are known or ...
5-330
2.38e-102
inositol 2-dehydrogenase; All members of the seed alignment for this model are known or predicted inositol 2-dehydrogenase sequences co-clustered with other enzymes for catabolism of myo-inositol or closely related compounds. Inositol 2-dehydrogenase catalyzes the first step in inositol catabolism. Members of this family may vary somewhat in their ranges of acceptable substrates and some may act on analogs to myo-inositol rather than myo-inositol per se. [Energy metabolism, Sugars]
Pssm-ID: 275173 [Multi-domain] Cd Length: 330 Bit Score: 303.76 E-value: 2.38e-102
Oxidoreductase family, NAD-binding Rossmann fold; This family of enzymes utilize NADP or NAD. ...
4-121
3.20e-21
Oxidoreductase family, NAD-binding Rossmann fold; This family of enzymes utilize NADP or NAD. This family is called the GFO/IDH/MOCA family in swiss-prot.
Pssm-ID: 426248 [Multi-domain] Cd Length: 120 Bit Score: 87.26 E-value: 3.20e-21
Oxidoreductase family, C-terminal alpha/beta domain; This family of enzymes utilize NADP or ...
133-331
4.97e-19
Oxidoreductase family, C-terminal alpha/beta domain; This family of enzymes utilize NADP or NAD. This family is called the GFO/IDH/MOCA family in swiss-prot.
Pssm-ID: 427044 Cd Length: 203 Bit Score: 83.62 E-value: 4.97e-19
NADP-binding domain of glutamyl-tRNA reductase; Glutamyl-tRNA reductase catalyzes the ...
3-74
3.79e-04
NADP-binding domain of glutamyl-tRNA reductase; Glutamyl-tRNA reductase catalyzes the conversion of glutamyl-tRNA to glutamate-1-semialdehyde, initiating the synthesis of tetrapyrrole. Whereas tRNAs are generally associated with peptide bond formation in protein translation, here the tRNA activates glutamate in the initiation of tetrapyrrole biosynthesis in archaea, plants and many bacteria. In the first step, activated glutamate is reduced to glutamate-1-semi-aldehyde via the NADPH dependent glutamyl-tRNA reductase. Glutamyl-tRNA reductase forms a V-shaped dimer. Each monomer has 3 domains: an N-terminal catalytic domain, a classic nucleotide binding domain, and a C-terminal dimerization domain. Although the representative structure 1GPJ lacks a bound NADPH, a theoretical binding pocket has been described. (PMID 11172694). Amino acid dehydrogenase (DH)-like NAD(P)-binding domains are members of the Rossmann fold superfamily and include glutamate, leucine, and phenylalanine DHs, methylene tetrahydrofolate DH, methylene-tetrahydromethanopterin DH, methylene-tetrahydropholate DH/cyclohydrolase, Shikimate DH-like proteins, malate oxidoreductases, and glutamyl tRNA reductase. Amino acid DHs catalyze the deamination of amino acids to keto acids with NAD(P)+ as a cofactor. The NAD(P)-binding Rossmann fold superfamily includes a wide variety of protein families including NAD(P)- binding domains of alcohol DHs, tyrosine-dependent oxidoreductases, glyceraldehyde-3-phosphate DH, lactate/malate DHs, formate/glycerate DHs, siroheme synthases, 6-phosphogluconate DH, amino acid DHs, repressor rex, NAD-binding potassium channel domain, CoA-binding, and ornithine cyclodeaminase-like domains. These domains have an alpha-beta-alpha configuration. NAD binding involves numerous hydrogen and van der Waals contacts.
Pssm-ID: 133452 [Multi-domain] Cd Length: 311 Bit Score: 41.87 E-value: 3.79e-04
Saccharopine dehydrogenase NADP binding domain; This family contains the NADP binding domain ...
8-56
2.87e-03
Saccharopine dehydrogenase NADP binding domain; This family contains the NADP binding domain of saccharopine dehydrogenase. In some organizms this enzyme is found as a bifunctional polypeptide with lysine ketoglutarate reductase. The saccharopine dehydrogenase can also function as a saccharopine reductase.
Pssm-ID: 397480 [Multi-domain] Cd Length: 120 Bit Score: 37.18 E-value: 2.87e-03
2-desacetyl-2-hydroxyethyl bacteriochlorophyllide and other MDR family members; This subgroup ...
5-75
3.33e-03
2-desacetyl-2-hydroxyethyl bacteriochlorophyllide and other MDR family members; This subgroup of the medium chain dehydrogenases/reductase (MDR)/zinc-dependent alcohol dehydrogenase-like family has members identified as 2-desacetyl-2-hydroxyethyl bacteriochlorophyllide A dehydrogenase and alcohol dehydrogenases. The medium chain dehydrogenases/reductase (MDR)/zinc-dependent alcohol dehydrogenase-like family, which contains the zinc-dependent alcohol dehydrogenase (ADH-Zn) and related proteins, is a diverse group of proteins related to the first identified member, class I mammalian ADH. MDRs display a broad range of activities and are distinguished from the smaller short chain dehydrogenases (~ 250 amino acids vs. the ~ 350 amino acids of the MDR). The MDR proteins have 2 domains: a C-terminal NAD(P) binding-Rossmann fold domain of a beta-alpha form and an N-terminal catalytic domain with distant homology to GroES. The MDR group contains a host of activities, including the founding alcohol dehydrogenase (ADH), quinone reductase, sorbitol dehydrogenase, formaldehyde dehydrogenase, butanediol DH, ketose reductase, cinnamyl reductase, and numerous others. The zinc-dependent alcohol dehydrogenases (ADHs) catalyze the NAD(P)(H)-dependent interconversion of alcohols to aldehydes or ketones. Active site zinc has a catalytic role, while structural zinc aids in stability.
Pssm-ID: 176217 [Multi-domain] Cd Length: 277 Bit Score: 38.79 E-value: 3.33e-03
Database: CDSEARCH/cdd Low complexity filter: no Composition Based Adjustment: yes E-value threshold: 0.01
References:
Wang J et al. (2023), "The conserved domain database in 2023", Nucleic Acids Res.51(D)384-8.
Lu S et al. (2020), "The conserved domain database in 2020", Nucleic Acids Res.48(D)265-8.
Marchler-Bauer A et al. (2017), "CDD/SPARCLE: functional classification of proteins via subfamily domain architectures.", Nucleic Acids Res.45(D)200-3.
of the residues that compose this conserved feature have been mapped to the query sequence.
Click on the triangle to view details about the feature, including a multiple sequence alignment
of your query sequence and the protein sequences used to curate the domain model,
where hash marks (#) above the aligned sequences show the location of the conserved feature residues.
The thumbnail image, if present, provides an approximate view of the feature's location in 3 dimensions.
Click on the triangle for interactive 3D structure viewing options.
Functional characterization of the conserved domain architecture found on the query.
Click here to see more details.
This image shows a graphical summary of conserved domains identified on the query sequence.
The Show Concise/Full Display button at the top of the page can be used to select the desired level of detail: only top scoring hits
(labeled illustration) or all hits
(labeled illustration).
Domains are color coded according to superfamilies
to which they have been assigned. Hits with scores that pass a domain-specific threshold
(specific hits) are drawn in bright colors.
Others (non-specific hits) and
superfamily placeholders are drawn in pastel colors.
if a domain or superfamily has been annotated with functional sites (conserved features),
they are mapped to the query sequence and indicated through sets of triangles
with the same color and shade of the domain or superfamily that provides the annotation. Mouse over the colored bars or triangles to see descriptions of the domains and features.
click on the bars or triangles to view your query sequence embedded in a multiple sequence alignment of the proteins used to develop the corresponding domain model.
The table lists conserved domains identified on the query sequence. Click on the plus sign (+) on the left to display full descriptions, alignments, and scores.
Click on the domain model's accession number to view the multiple sequence alignment of the proteins used to develop the corresponding domain model.
To view your query sequence embedded in that multiple sequence alignment, click on the colored bars in the Graphical Summary portion of the search results page,
or click on the triangles, if present, that represent functional sites (conserved features)
mapped to the query sequence.
Concise Display shows only the best scoring domain model, in each hit category listed below except non-specific hits, for each region on the query sequence.
(labeled illustration) Standard Display shows only the best scoring domain model from each source, in each hit category listed below for each region on the query sequence.
(labeled illustration) Full Display shows all domain models, in each hit category below, that meet or exceed the RPS-BLAST threshold for statistical significance.
(labeled illustration) Four types of hits can be shown, as available,
for each region on the query sequence:
specific hits meet or exceed a domain-specific e-value threshold
(illustrated example)
and represent a very high confidence that the query sequence belongs to the same protein family as the sequences use to create the domain model
non-specific hits
meet or exceed the RPS-BLAST threshold for statistical significance (default E-value cutoff of 0.01, or an E-value selected by user via the
advanced search options)
the domain superfamily to which the specific and non-specific hits belong
multi-domain models that were computationally detected and are likely to contain multiple single domains
Retrieve proteins that contain one or more of the domains present in the query sequence, using the Conserved Domain Architecture Retrieval Tool
(CDART).
Modify your query to search against a different database and/or use advanced search options