MULTISPECIES: MFS transporter [Enterobacter]
MFS transporter( domain architecture ID 999995)
major facilitator superfamily (MFS) transporter facilitates the transport across cytoplasmic or internal membranes of one or more from a variety of substrates including ions, sugar phosphates, drugs, neurotransmitters, nucleosides, amino acids, and peptides
List of domain hits
Name | Accession | Description | Interval | E-value | ||||||
MFS super family | cl28910 | Major Facilitator Superfamily; The Major Facilitator Superfamily (MFS) is a large and diverse ... |
24-382 | 1.42e-90 | ||||||
Major Facilitator Superfamily; The Major Facilitator Superfamily (MFS) is a large and diverse group of secondary transporters that includes uniporters, symporters, and antiporters. MFS proteins facilitate the transport across cytoplasmic or internal membranes of a variety of substrates including ions, sugar phosphates, drugs, neurotransmitters, nucleosides, amino acids, and peptides. They do so using the electrochemical potential of the transported substrates. Uniporters transport a single substrate, while symporters and antiporters transport two substrates in the same or in opposite directions, respectively, across membranes. MFS proteins are typically 400 to 600 amino acids in length, and the majority contain 12 transmembrane alpha helices (TMs) connected by hydrophilic loops. The N- and C-terminal halves of these proteins display weak similarity and may be the result of a gene duplication/fusion event. Based on kinetic studies and the structures of a few bacterial superfamily members, GlpT (glycerol-3-phosphate transporter), LacY (lactose permease), and EmrD (multidrug transporter), MFS proteins are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. Bacterial members function primarily for nutrient uptake, and as drug-efflux pumps to confer antibiotic resistance. Some MFS proteins have medical significance in humans such as the glucose transporter Glut4, which is impaired in type II diabetes, and glucose-6-phosphate transporter (G6PT), which causes glycogen storage disease when mutated. The actual alignment was detected with superfamily member cd17490: Pssm-ID: 475125 [Multi-domain] Cd Length: 371 Bit Score: 277.95 E-value: 1.42e-90
|
||||||||||
Name | Accession | Description | Interval | E-value | ||||||
MFS_YxlH_like | cd17490 | Bacillus subtilis YxlH and similar transporters of the Major Facilitator Superfamily; This ... |
24-382 | 1.42e-90 | ||||||
Bacillus subtilis YxlH and similar transporters of the Major Facilitator Superfamily; This subfamily is composed of Bacillus subtilis YxlH uncharacterized MFS-type transporter YxlH and similar proteins. The biological function of YxlH remains unclear. The YxlH-like subfamily belongs to the bacterial MdtG-like and eukaryotic solute carrier 18 (SLC18) family of the Major Facilitator Superfamily (MFS) of transporters. MFS proteins are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. Pssm-ID: 341043 [Multi-domain] Cd Length: 371 Bit Score: 277.95 E-value: 1.42e-90
|
||||||||||
AraJ | COG2814 | Predicted arabinose efflux permease AraJ, MFS family [Carbohydrate transport and metabolism]; |
28-348 | 1.39e-16 | ||||||
Predicted arabinose efflux permease AraJ, MFS family [Carbohydrate transport and metabolism]; Pssm-ID: 442063 [Multi-domain] Cd Length: 348 Bit Score: 80.40 E-value: 1.39e-16
|
||||||||||
MFS_1 | pfam07690 | Major Facilitator Superfamily; |
30-352 | 1.60e-13 | ||||||
Major Facilitator Superfamily; Pssm-ID: 429598 [Multi-domain] Cd Length: 344 Bit Score: 71.30 E-value: 1.60e-13
|
||||||||||
Name | Accession | Description | Interval | E-value | |||||||
MFS_YxlH_like | cd17490 | Bacillus subtilis YxlH and similar transporters of the Major Facilitator Superfamily; This ... |
24-382 | 1.42e-90 | |||||||
Bacillus subtilis YxlH and similar transporters of the Major Facilitator Superfamily; This subfamily is composed of Bacillus subtilis YxlH uncharacterized MFS-type transporter YxlH and similar proteins. The biological function of YxlH remains unclear. The YxlH-like subfamily belongs to the bacterial MdtG-like and eukaryotic solute carrier 18 (SLC18) family of the Major Facilitator Superfamily (MFS) of transporters. MFS proteins are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. Pssm-ID: 341043 [Multi-domain] Cd Length: 371 Bit Score: 277.95 E-value: 1.42e-90
|
|||||||||||
MFS_MdtG_SLC18_like | cd17325 | bacterial MdtG-like and eukaryotic solute carrier 18 (SLC18) family of the Major Facilitator ... |
40-382 | 8.35e-26 | |||||||
bacterial MdtG-like and eukaryotic solute carrier 18 (SLC18) family of the Major Facilitator Superfamily of transporters; This family is composed of eukaryotic solute carrier 18 (SLC18) family transporters and related bacterial multidrug resistance (MDR) transporters including several proteins from Escherichia coli such as multidrug resistance protein MdtG, from Bacillus subtilis such as multidrug resistance proteins 1 (Bmr1) and 2 (Bmr2), and from Staphylococcus aureus such as quinolone resistance protein NorA. The family also includes Escherichia coli arabinose efflux transporters YfcJ and YhhS. MDR transporters are drug/H+ antiporters (DHA) that mediate the efflux of a variety of drugs and toxic compounds, and confer resistance to these compounds. The SLC18 transporter family includes vesicular monoamine transporters (VAT1 and VAT2), vesicular acetylcholine transporter (VAChT), and SLC18B1, which is proposed to be a vesicular polyamine transporter (VPAT). The MdtG/SLC18 family belongs to the Major Facilitator Superfamily (MFS) of membrane transport proteins, which are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. Pssm-ID: 340883 [Multi-domain] Cd Length: 375 Bit Score: 107.28 E-value: 8.35e-26
|
|||||||||||
AraJ | COG2814 | Predicted arabinose efflux permease AraJ, MFS family [Carbohydrate transport and metabolism]; |
28-348 | 1.39e-16 | |||||||
Predicted arabinose efflux permease AraJ, MFS family [Carbohydrate transport and metabolism]; Pssm-ID: 442063 [Multi-domain] Cd Length: 348 Bit Score: 80.40 E-value: 1.39e-16
|
|||||||||||
MFS_YfcJ_like | cd17489 | Escherichia coli YfcJ, YhhS, and similar transporters of the Major Facilitator Superfamily; ... |
30-380 | 5.26e-15 | |||||||
Escherichia coli YfcJ, YhhS, and similar transporters of the Major Facilitator Superfamily; This subfamily is composed of Escherichia coli membrane proteins, YfcJ and YhhS, Bacillus subtilis uncharacterized MFS-type transporter YwoG, and similar proteins. YfcJ and YhhS are putative arabinose efflux transporters. YhhS has been implicated glyphosate resistance. YfcJ-like arabinose efflux transporters belong to the bacterial MdtG-like and eukaryotic solute carrier 18 (SLC18) family of the Major Facilitator Superfamily (MFS) of transporters. MFS proteins are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. Pssm-ID: 341042 [Multi-domain] Cd Length: 367 Bit Score: 75.71 E-value: 5.26e-15
|
|||||||||||
MFS_MJ1317_like | cd17370 | MJ1317 and similar transporters of the Major Facilitator Superfamily; This family is composed ... |
40-381 | 6.48e-15 | |||||||
MJ1317 and similar transporters of the Major Facilitator Superfamily; This family is composed of Methanocaldococcus jannaschii MFS-type transporter MJ1317, Mycobacterium bovis protein Mb2288, and similar proteins. They are uncharacterized transporters belonging to the Major Facilitator Superfamily (MFS) of membrane transport proteins, which are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. Pssm-ID: 340928 [Multi-domain] Cd Length: 371 Bit Score: 75.66 E-value: 6.48e-15
|
|||||||||||
NarK | COG2223 | Nitrate/nitrite transporter NarK [Inorganic ion transport and metabolism]; |
30-398 | 1.05e-13 | |||||||
Nitrate/nitrite transporter NarK [Inorganic ion transport and metabolism]; Pssm-ID: 441825 [Multi-domain] Cd Length: 392 Bit Score: 72.22 E-value: 1.05e-13
|
|||||||||||
MFS_1 | pfam07690 | Major Facilitator Superfamily; |
30-352 | 1.60e-13 | |||||||
Major Facilitator Superfamily; Pssm-ID: 429598 [Multi-domain] Cd Length: 344 Bit Score: 71.30 E-value: 1.60e-13
|
|||||||||||
UhpC | COG2271 | Sugar phosphate permease [Carbohydrate transport and metabolism]; |
27-387 | 2.44e-12 | |||||||
Sugar phosphate permease [Carbohydrate transport and metabolism]; Pssm-ID: 441872 [Multi-domain] Cd Length: 363 Bit Score: 67.59 E-value: 2.44e-12
|
|||||||||||
MFS | cd06174 | Major Facilitator Superfamily; The Major Facilitator Superfamily (MFS) is a large and diverse ... |
27-382 | 9.58e-12 | |||||||
Major Facilitator Superfamily; The Major Facilitator Superfamily (MFS) is a large and diverse group of secondary transporters that includes uniporters, symporters, and antiporters. MFS proteins facilitate the transport across cytoplasmic or internal membranes of a variety of substrates including ions, sugar phosphates, drugs, neurotransmitters, nucleosides, amino acids, and peptides. They do so using the electrochemical potential of the transported substrates. Uniporters transport a single substrate, while symporters and antiporters transport two substrates in the same or in opposite directions, respectively, across membranes. MFS proteins are typically 400 to 600 amino acids in length, and the majority contain 12 transmembrane alpha helices (TMs) connected by hydrophilic loops. The N- and C-terminal halves of these proteins display weak similarity and may be the result of a gene duplication/fusion event. Based on kinetic studies and the structures of a few bacterial superfamily members, GlpT (glycerol-3-phosphate transporter), LacY (lactose permease), and EmrD (multidrug transporter), MFS proteins are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. Bacterial members function primarily for nutrient uptake, and as drug-efflux pumps to confer antibiotic resistance. Some MFS proteins have medical significance in humans such as the glucose transporter Glut4, which is impaired in type II diabetes, and glucose-6-phosphate transporter (G6PT), which causes glycogen storage disease when mutated. Pssm-ID: 349949 [Multi-domain] Cd Length: 378 Bit Score: 65.91 E-value: 9.58e-12
|
|||||||||||
MFS_MefA_like | cd06173 | Macrolide efflux protein A and similar proteins of the Major Facilitator Superfamily of ... |
43-385 | 2.13e-11 | |||||||
Macrolide efflux protein A and similar proteins of the Major Facilitator Superfamily of transporters; This family is composed of Streptococcus pyogenes macrolide efflux protein A (MefA) and similar transporters, many of which remain uncharacterized. Some members may be multidrug resistance (MDR) transporters, which are drug/H+ antiporters (DHAs) that mediate the efflux of a variety of drugs and toxic compounds, conferring resistance to these compounds. MefA confers resistance to 14-membered macrolides including erythromycin and to 15-membered macrolides. It functions as an efflux pump to regulate intracellular macrolide levels. The MefA-like family belongs to the Major Facilitator Superfamily (MFS) of membrane transport proteins, which are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. Pssm-ID: 340863 [Multi-domain] Cd Length: 383 Bit Score: 64.94 E-value: 2.13e-11
|
|||||||||||
MFS_SLC46_TetA_like | cd17330 | Eukaryotic Solute carrier 46 (SLC46) family, Bacterial Tetracycline resistance proteins, and ... |
31-380 | 1.57e-10 | |||||||
Eukaryotic Solute carrier 46 (SLC46) family, Bacterial Tetracycline resistance proteins, and similar proteins of the Major Facilitator Superfamily of transporters; This family is composed of the eukaryotic proteins MFSD9, MFSD10, MFSD14, and SLC46 family proteins, as well as bacterial multidrug resistance (MDR) transporters such as tetracycline resistance protein TetA and multidrug resistance protein MdtG. MDR transporters are drug/H+ antiporters (DHA) that mediate the efflux of a variety of drugs and toxic compounds, and confer resistance to these compounds. TetA proteins confer resistance to tetracycline while MdtG confers resistance to fosfomycin and deoxycholate. The Solute carrier 46 (SLC46) family is composed of three vertebrate members (SLC46A1, SLC46A2, and SLC46A3), the best-studied of which is SLC46A1, which functions both as an intestinal proton-coupled high-affinity folate transporter involved in the absorption of folates and as an intestinal heme transporter which mediates heme uptake. MFSD10 facilitates the uptake of organic anions such as some non-steroidal anti-inflammatory drugs (NSAIDs) and confers resistance to such NSAIDs. The SLC46/TetA-like family belongs to the Major Facilitator Superfamily (MFS) of membrane transport proteins, which are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. Pssm-ID: 340888 [Multi-domain] Cd Length: 349 Bit Score: 62.21 E-value: 1.57e-10
|
|||||||||||
MFS_YfmO_like | cd17474 | Bacillus subtilis multidrug efflux protein YfmO and similar transporters of the Major ... |
144-382 | 7.57e-10 | |||||||
Bacillus subtilis multidrug efflux protein YfmO and similar transporters of the Major Facilitator Superfamily; This family is composed of Bacillus subtilis multidrug efflux protein YfmO, bacillibactin exporter YmfD/YmfE, uncharacterized MFS-type transporter YvmA, and similar proteins. YfmO acts to efflux copper or a copper complex, and could contribute to copper resistance. YmfD/YmfE is involved in secretion of bacillibactin. The YfmO-like family belongs to the Major Facilitator Superfamily (MFS) of membrane transport proteins, which are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. Pssm-ID: 341027 [Multi-domain] Cd Length: 374 Bit Score: 60.28 E-value: 7.57e-10
|
|||||||||||
MelB | COG2211 | Na+/melibiose symporter or related transporter [Carbohydrate transport and metabolism]; |
40-381 | 2.93e-09 | |||||||
Na+/melibiose symporter or related transporter [Carbohydrate transport and metabolism]; Pssm-ID: 441813 [Multi-domain] Cd Length: 447 Bit Score: 58.37 E-value: 2.93e-09
|
|||||||||||
MFS_1 | pfam07690 | Major Facilitator Superfamily; |
231-381 | 6.93e-09 | |||||||
Major Facilitator Superfamily; Pssm-ID: 429598 [Multi-domain] Cd Length: 344 Bit Score: 57.04 E-value: 6.93e-09
|
|||||||||||
AraJ | COG2814 | Predicted arabinose efflux permease AraJ, MFS family [Carbohydrate transport and metabolism]; |
209-381 | 7.75e-09 | |||||||
Predicted arabinose efflux permease AraJ, MFS family [Carbohydrate transport and metabolism]; Pssm-ID: 442063 [Multi-domain] Cd Length: 348 Bit Score: 56.91 E-value: 7.75e-09
|
|||||||||||
UhpC | COG2271 | Sugar phosphate permease [Carbohydrate transport and metabolism]; |
211-382 | 1.33e-08 | |||||||
Sugar phosphate permease [Carbohydrate transport and metabolism]; Pssm-ID: 441872 [Multi-domain] Cd Length: 363 Bit Score: 56.03 E-value: 1.33e-08
|
|||||||||||
FucP | COG0738 | Fucose permease [Carbohydrate transport and metabolism]; |
225-381 | 1.68e-08 | |||||||
Fucose permease [Carbohydrate transport and metabolism]; Pssm-ID: 440501 [Multi-domain] Cd Length: 391 Bit Score: 56.02 E-value: 1.68e-08
|
|||||||||||
NarK | COG2223 | Nitrate/nitrite transporter NarK [Inorganic ion transport and metabolism]; |
212-381 | 2.80e-08 | |||||||
Nitrate/nitrite transporter NarK [Inorganic ion transport and metabolism]; Pssm-ID: 441825 [Multi-domain] Cd Length: 392 Bit Score: 55.27 E-value: 2.80e-08
|
|||||||||||
MFS_ExuT_GudP_like | cd17319 | Hexuronate transporter, Glucarate transporter, and similar transporters of the Major ... |
32-382 | 7.92e-08 | |||||||
Hexuronate transporter, Glucarate transporter, and similar transporters of the Major Facilitator Superfamily; This family is composed of predominantly bacterial transporters for hexuronate (ExuT), glucarate (GudP), galactarate (GarP), and galactonate (DgoT). They mediate the uptake of these compounds into the cell. They belong to the Major Facilitator Superfamily (MFS) of membrane transport proteins, which are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. Pssm-ID: 340877 [Multi-domain] Cd Length: 358 Bit Score: 53.73 E-value: 7.92e-08
|
|||||||||||
FucP | COG0738 | Fucose permease [Carbohydrate transport and metabolism]; |
46-387 | 1.34e-07 | |||||||
Fucose permease [Carbohydrate transport and metabolism]; Pssm-ID: 440501 [Multi-domain] Cd Length: 391 Bit Score: 53.32 E-value: 1.34e-07
|
|||||||||||
CynX | COG2807 | Cyanate permease [Inorganic ion transport and metabolism]; |
25-387 | 3.82e-07 | |||||||
Cyanate permease [Inorganic ion transport and metabolism]; Pssm-ID: 442057 [Multi-domain] Cd Length: 399 Bit Score: 51.80 E-value: 3.82e-07
|
|||||||||||
MFS_YcaD_like | cd17477 | YcaD and similar transporters of the Major Facilitator Superfamily; This family is composed of ... |
257-402 | 1.37e-06 | |||||||
YcaD and similar transporters of the Major Facilitator Superfamily; This family is composed of Escherichia coli MFS-type transporter YcaD, Bacillus subtilis MFS-type transporter YfkF, and similar proteins. They are uncharacterized transporters belonging to the Major Facilitator Superfamily (MFS) of membrane transport proteins, which are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. Pssm-ID: 341030 [Multi-domain] Cd Length: 360 Bit Score: 49.86 E-value: 1.37e-06
|
|||||||||||
MFS_NepI_like | cd17324 | Purine ribonucleoside efflux pump NepI and similar transporters of the Major Facilitator ... |
40-382 | 1.83e-06 | |||||||
Purine ribonucleoside efflux pump NepI and similar transporters of the Major Facilitator Superfamily; This family is composed of purine efflux pumps such as Escherichia coli NepI and Bacillus subtilis PbuE, sugar efflux transporters such as Corynebacterium glutamicum arabinose efflux permease, multidrug resistance (MDR) transporters such as Streptomyces lividans chloramphenicol resistance protein (CmlR), and similar proteins. NepI and PbuE are involved in the efflux of purine ribonucleosides such as guanosine, adenosine and inosine, as well as purine bases like guanine, adenine, and hypoxanthine, and purine base analogs. They play a role in the maintenance of cellular purine base pools, as well as in protecting the cells and conferring resistance against toxic purine base analogs such as 6-mercaptopurine. MDR transporters are drug/H+ antiporters (DHA) that mediate the efflux of a variety of drugs and toxic compounds, and confer resistance to these compounds. The NepI-like family belongs to the Major Facilitator Superfamily (MFS) of membrane transport proteins, which are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. Pssm-ID: 340882 [Multi-domain] Cd Length: 370 Bit Score: 49.47 E-value: 1.83e-06
|
|||||||||||
MFS_MdtH_MDR_like | cd17329 | Multidrug resistance protein MdtH and similar multidrug resistance (MDR) transporters of the ... |
144-380 | 3.30e-06 | |||||||
Multidrug resistance protein MdtH and similar multidrug resistance (MDR) transporters of the Major Facilitator Superfamily; This family is composed of Escherichia coli MdtH and similar multidrug resistance (MDR) transporters from bacteria and archaea, many of which remain uncharacterized. MDR transporters are drug/H+ antiporters (DHA) that mediate the efflux of a variety of drugs and toxic compounds, and confer resistance to these compounds. MdtH confers resistance to norfloxacin and enoxacin. MdtH-like MDR transporters belong to the Major Facilitator Superfamily (MFS) of membrane transport proteins, which are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. Pssm-ID: 340887 [Multi-domain] Cd Length: 376 Bit Score: 48.76 E-value: 3.30e-06
|
|||||||||||
MFS_arabinose_efflux_permease_like | cd17473 | Putative arabinose efflux permease family transporters of the Major Facilitator Superfamily; ... |
209-382 | 7.43e-06 | |||||||
Putative arabinose efflux permease family transporters of the Major Facilitator Superfamily; This family includes a group of putative arabinose efflux permease family transporters, such as alpha proteobacterium quinolone resistance protein NorA (characterized Staphylococcus aureus Quinolone resistance protein NorA belongs to a different group), Desulfovibrio dechloracetivorans bacillibactin exporter, Vibrio aerogenes antiseptic resistance protein. The biological function of those transporters remain unclear. They belong to the Major Facilitator Superfamily (MFS) of membrane transport proteins, which are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. Pssm-ID: 341026 [Multi-domain] Cd Length: 374 Bit Score: 47.57 E-value: 7.43e-06
|
|||||||||||
CynX | COG2807 | Cyanate permease [Inorganic ion transport and metabolism]; |
209-387 | 1.22e-05 | |||||||
Cyanate permease [Inorganic ion transport and metabolism]; Pssm-ID: 442057 [Multi-domain] Cd Length: 399 Bit Score: 47.18 E-value: 1.22e-05
|
|||||||||||
MFS_OFA_like | cd17353 | Oxalate:formate antiporter (OFA) and similar proteins of the Major Facilitator Superfamily of ... |
145-382 | 2.57e-05 | |||||||
Oxalate:formate antiporter (OFA) and similar proteins of the Major Facilitator Superfamily of transporters; This subfamily is composed of Oxalobacter formigenes oxalate:formate antiporter (OFA or OxlT) and similar proteins. O. formigenes, a commensal found in the gut of animals and humans, plays an important role in clearing dietary oxalate from the intestinal tract, which is carried out by OFA/OxlT, an anion transporter that facilitates the exchange of divalent oxalate with monovalent formate, the product of oxalate decarboxylation. This exchange generates an electrochemical proton gradient and is the source of energy for ATP synthesis in this cell. The OFA-like subfamily belongs to the Monocarboxylate transporter -like (MCT-like) family of the Major Facilitator Superfamily (MFS) of membrane transport proteins. MFS proteins are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. Pssm-ID: 340911 [Multi-domain] Cd Length: 389 Bit Score: 46.06 E-value: 2.57e-05
|
|||||||||||
ProP | COG0477 | MFS family permease, includes anhydromuropeptide permease AmpG [Carbohydrate transport and ... |
209-384 | 2.83e-05 | |||||||
MFS family permease, includes anhydromuropeptide permease AmpG [Carbohydrate transport and metabolism, Amino acid transport and metabolism, Inorganic ion transport and metabolism, General function prediction only]; Pssm-ID: 440245 [Multi-domain] Cd Length: 295 Bit Score: 45.57 E-value: 2.83e-05
|
|||||||||||
MFS_FucP_MFSD4_like | cd17333 | Bacterial fucose permease, eukaryotic Major facilitator superfamily domain-containing protein ... |
247-410 | 3.20e-05 | |||||||
Bacterial fucose permease, eukaryotic Major facilitator superfamily domain-containing protein 4, and similar proteins; This family is composed of bacterial L-fucose permease (FucP), eukaryotic Major facilitator superfamily domain-containing protein 4 (MFSD4) proteins, and similar proteins. L-fucose permease facilitates the uptake of L-fucose across the boundary membrane with the concomitant transport of protons into the cell; it can also transport L-galactose and D-arabinose. The MFSD4 subfamily consists of two vertebrate members: MFSD4A and MFSD4B. The function of MFSD4A is unknown. MFSD4B is more commonly know as Sodium-dependent glucose transporter 1 (NaGLT1), a primary fructose transporter in rat renal brush-border membranes that also facilitates sodium-independent urea uptake. The FucP/MFSD4 family belongs to the Major Facilitator Superfamily (MFS) of membrane transport proteins, which are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. Pssm-ID: 340891 [Multi-domain] Cd Length: 372 Bit Score: 45.78 E-value: 3.20e-05
|
|||||||||||
MFS_SLC18B1 | cd17385 | Solute carrier family 18 member B1 of the Major Facilitator Superfamily of transporters; ... |
144-384 | 3.82e-05 | |||||||
Solute carrier family 18 member B1 of the Major Facilitator Superfamily of transporters; Solute carrier family 18 member B1 (SLC18B1) is the fourth member of the SLC18 transporter family, which includes vesicular monoamine transporters and vesicular acetylcholine transporter. It is predominantly expressed in the hippocampus and is associated with vesicles in astrocytes. It actively transports spermine and spermidine by exchange of H(+), and has been suggested to be a vesicular polyamine transporter (VPAT). SLC18B1 belongs to the bacterial MdtG-like and eukaryotic solute carrier 18 (SLC18) family of the Major Facilitator Superfamily (MFS) of transporters. MFS proteins are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. Pssm-ID: 340943 [Multi-domain] Cd Length: 390 Bit Score: 45.67 E-value: 3.82e-05
|
|||||||||||
MFS | cd06174 | Major Facilitator Superfamily; The Major Facilitator Superfamily (MFS) is a large and diverse ... |
217-384 | 6.31e-05 | |||||||
Major Facilitator Superfamily; The Major Facilitator Superfamily (MFS) is a large and diverse group of secondary transporters that includes uniporters, symporters, and antiporters. MFS proteins facilitate the transport across cytoplasmic or internal membranes of a variety of substrates including ions, sugar phosphates, drugs, neurotransmitters, nucleosides, amino acids, and peptides. They do so using the electrochemical potential of the transported substrates. Uniporters transport a single substrate, while symporters and antiporters transport two substrates in the same or in opposite directions, respectively, across membranes. MFS proteins are typically 400 to 600 amino acids in length, and the majority contain 12 transmembrane alpha helices (TMs) connected by hydrophilic loops. The N- and C-terminal halves of these proteins display weak similarity and may be the result of a gene duplication/fusion event. Based on kinetic studies and the structures of a few bacterial superfamily members, GlpT (glycerol-3-phosphate transporter), LacY (lactose permease), and EmrD (multidrug transporter), MFS proteins are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. Bacterial members function primarily for nutrient uptake, and as drug-efflux pumps to confer antibiotic resistance. Some MFS proteins have medical significance in humans such as the glucose transporter Glut4, which is impaired in type II diabetes, and glucose-6-phosphate transporter (G6PT), which causes glycogen storage disease when mutated. Pssm-ID: 349949 [Multi-domain] Cd Length: 378 Bit Score: 44.72 E-value: 6.31e-05
|
|||||||||||
MFS_SLC45_SUC | cd17313 | Solute carrier family 45 and similar sugar transporters of the Major Facilitator Superfamily ... |
30-381 | 1.35e-04 | |||||||
Solute carrier family 45 and similar sugar transporters of the Major Facilitator Superfamily of transporters; This group includes the solute carrier 45 (SLC45) family as well as plant sucrose transporters (SUCs or SUTs) and similar proteins such as Schizosaccharomyces pombe general alpha-glucoside permease. the SLC45 family is composed of four (A1-A4) vertebrate proteins as well as related insect proteins such as Drosophila sucrose transporter SCRT or Slc45-1. Members of this group transport sucrose and other sugars like maltose into the cell, with the concomitant uptake of protons (symport system). Plant sucrose transporters are crucial to carbon partitioning, playing a key role in phloem loading/unloading. They play a key role in loading and unloading of sucrose into the phloem and as a result, they control sucrose distribution throughout the whole plant and drive the osmotic flow system in the phloem. They also play a role in the exchange of sucrose between beneficial symbionts (mycorrhiza and Rhizobium) as well as pathogens such as nematodes and parasitic fungi. There are nine sucrose transporter genes in Arabidopsis and five in rice. Vertebrate SLC45 family proteins have been implicated in the regulation of glucose homoeostasis in the brain (SLC45A1), with skin and hair pigmentation (SLC45A2), and with prostate cancer and myelination (SLC45A3). Mutations in SLC45A2, also called MATP (membrane-associated transporter protein) or melanoma antigen AIM1, cause oculocutaneous albinism type 4 (OCA4), an autosomal recessive disorder of melanin biosynthesis that results in congenital hypopigmentation of ocular and cutaneous tissues. The SLC45 family and related sugar transporters belong to the Major Facilitator Superfamily (MFS) of membrane transport proteins, which are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. Pssm-ID: 340871 [Multi-domain] Cd Length: 421 Bit Score: 43.77 E-value: 1.35e-04
|
|||||||||||
ProP | COG0477 | MFS family permease, includes anhydromuropeptide permease AmpG [Carbohydrate transport and ... |
40-290 | 2.34e-04 | |||||||
MFS family permease, includes anhydromuropeptide permease AmpG [Carbohydrate transport and metabolism, Amino acid transport and metabolism, Inorganic ion transport and metabolism, General function prediction only]; Pssm-ID: 440245 [Multi-domain] Cd Length: 295 Bit Score: 42.88 E-value: 2.34e-04
|
|||||||||||
MFS_MFSD6 | cd17335 | Major facilitator superfamily domain-containing protein 6; Human Major facilitator superfamily ... |
163-381 | 2.57e-04 | |||||||
Major facilitator superfamily domain-containing protein 6; Human Major facilitator superfamily domain-containing protein 6 (MFSD6) is also called macrophage MHC class I receptor 2 homolog (MMR2). It has been postulated as a possible receptor for human leukocyte antigen (HLA)-B62. MFSD6 is conserved through evolution and appeared before bilateral animals. It belongs to the Major Facilitator Superfamily (MFS) of membrane transport proteins, which are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. Pssm-ID: 340893 [Multi-domain] Cd Length: 375 Bit Score: 42.96 E-value: 2.57e-04
|
|||||||||||
MFS_YajR_like | cd17472 | Escherichia coli inner membrane transport protein YajR and similar multidrug-efflux ... |
47-377 | 4.59e-04 | |||||||
Escherichia coli inner membrane transport protein YajR and similar multidrug-efflux transporters of the Major Facilitator Superfamily; This family is composed of Escherichia coli inner membrane transport protein YajR and some uncharacterized multidrug-efflux transporters. YajR is a putative proton-driven major facilitator superfamily (MFS) transporter found in many gram-negative bacteria. Unlike most MFS transporters, YajR contains a C-terminal, cytosolic YAM domain, which may play an essential role for the proper functioning of the transporter. YajR-like transporters belong to the Major Facilitator Superfamily (MFS) of membrane transport proteins, which are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. Pssm-ID: 341025 [Multi-domain] Cd Length: 371 Bit Score: 42.20 E-value: 4.59e-04
|
|||||||||||
MFS_NepI_like | cd17324 | Purine ribonucleoside efflux pump NepI and similar transporters of the Major Facilitator ... |
211-409 | 4.97e-04 | |||||||
Purine ribonucleoside efflux pump NepI and similar transporters of the Major Facilitator Superfamily; This family is composed of purine efflux pumps such as Escherichia coli NepI and Bacillus subtilis PbuE, sugar efflux transporters such as Corynebacterium glutamicum arabinose efflux permease, multidrug resistance (MDR) transporters such as Streptomyces lividans chloramphenicol resistance protein (CmlR), and similar proteins. NepI and PbuE are involved in the efflux of purine ribonucleosides such as guanosine, adenosine and inosine, as well as purine bases like guanine, adenine, and hypoxanthine, and purine base analogs. They play a role in the maintenance of cellular purine base pools, as well as in protecting the cells and conferring resistance against toxic purine base analogs such as 6-mercaptopurine. MDR transporters are drug/H+ antiporters (DHA) that mediate the efflux of a variety of drugs and toxic compounds, and confer resistance to these compounds. The NepI-like family belongs to the Major Facilitator Superfamily (MFS) of membrane transport proteins, which are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. Pssm-ID: 340882 [Multi-domain] Cd Length: 370 Bit Score: 41.77 E-value: 4.97e-04
|
|||||||||||
MFS_MelB_like | cd17332 | Salmonella enterica Na+/melibiose symporter MelB and similar transporters of the Major ... |
40-323 | 7.43e-04 | |||||||
Salmonella enterica Na+/melibiose symporter MelB and similar transporters of the Major Facilitator Superfamily; This family is composed of Salmonella enterica Na+/melibiose symporter MelB, Major Facilitator Superfamily domain-containing proteins, MFSD2 and MFSD12, and other sugar transporters. MelB catalyzes the electrogenic symport of galactosides with Na+, Li+ or H+. The MFSD2 subfamily is composed of two vertebrate members, MFSD2A and MFSD2B. MFSD2A is more commonly called sodium-dependent lysophosphatidylcholine symporter 1 (NLS1). It is an LPC symporter that plays an essential role for blood-brain barrier formation and function. Inactivating mutations in MFSD2A cause a lethal microcephaly syndrome. MFSD2B is a potential risk or protect factor in the prognosis of lung adenocarcinoma. MelB-like family belongs to the Major Facilitator Superfamily (MFS) of membrane transport proteins, which are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. Pssm-ID: 340890 [Multi-domain] Cd Length: 424 Bit Score: 41.44 E-value: 7.43e-04
|
|||||||||||
MFS_CsbX | cd17337 | CsbX family of the Major Facilitator Superfamily of transporters; The CsbX family is composed ... |
257-381 | 7.93e-04 | |||||||
CsbX family of the Major Facilitator Superfamily of transporters; The CsbX family is composed of Bacillus subtilis CsbX protein (also named alpha-ketoglutarate permease), Klebsiella pneumoniae D-arabinitol transporter (DalT), and similar proteins. The csbX gene is a sigmaB-controlled gene that is expressed during the stationary phase of cell growth. DalT is a pentose-specific ion symporter for D-arabinitol uptake. Most members of this family remain uncharacterized. The CsbX family belongs to the Major Facilitator Superfamily (MFS) of membrane transport proteins, which are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. Pssm-ID: 340895 [Multi-domain] Cd Length: 388 Bit Score: 41.33 E-value: 7.93e-04
|
|||||||||||
MFS_MCT_SLC16 | cd17352 | Monocarboxylate transporter (MCT) family of the Major Facilitator Superfamily of transporters; ... |
236-381 | 1.66e-03 | |||||||
Monocarboxylate transporter (MCT) family of the Major Facilitator Superfamily of transporters; The animal Monocarboxylate transporter (MCT) family is also called Solute carrier family 16 (SLC16 or SLC16A). It is composed of 14 members, MCT1-14. MCTs play an integral role in cellular metabolism via lactate transport and have been implicated in metabolic synergy in tumors. MCT1-4 are proton-coupled transporters that facilitate the transport across the plasma membrane of monocarboxylates such as lactate, pyruvate, branched-chain oxo acids derived from leucine, valine and isoleucine, and ketone bodies such as acetoacetate, beta-hydroxybutyrate and acetate. MCT8 and MCT10 are transporters which stimulate the cellular uptake of thyroid hormones such as thyroxine (T4), triiodothyronine (T3), reverse triiodothyronine (rT3) and diidothyronine (T2). MCT10 also functions as a sodium-independent transporter that mediates the uptake or efflux of aromatic acids. Many members are orphan transporters whose substrates are yet to be determined. The MCT family belongs to the Major Facilitator Superfamily (MFS) of membrane transport proteins, which are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. Pssm-ID: 340910 [Multi-domain] Cd Length: 361 Bit Score: 40.23 E-value: 1.66e-03
|
|||||||||||
MFS_MMR_MDR_like | cd17321 | Methylenomycin A resistance protein (also called MMR peptide) and similar multidrug resistance ... |
63-359 | 1.82e-03 | |||||||
Methylenomycin A resistance protein (also called MMR peptide) and similar multidrug resistance (MDR) transporters of the Major Facilitator Superfamily; This family is composed of bacterial, fungal, and archaeal multidrug resistance (MDR) transporters including several proteins from Bacilli such as methylenomycin A resistance protein (also called MMR peptide), tetracycline resistance protein (TetB), and lincomycin resistance protein LmrB, as well as fungal proteins such as vacuolar basic amino acid transporters, which are involved in the transport into vacuoles of the basic amino acids histidine, lysine, and arginine in Saccharomyces cerevisiae, and aminotriazole/azole resistance proteins. MDR transporters are drug/H+ antiporters (DHA) that mediate the efflux of a variety of drugs and toxic compounds, and confer resistance to these compounds. For example, MMR confers resistance to the epoxide antibiotic methylenomycin while TetB resistance to tetracycline by an active tetracycline efflux. MMR-like MDR transporters belong to the Major Facilitator Superfamily (MFS) of membrane transport proteins, which are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. Pssm-ID: 340879 [Multi-domain] Cd Length: 370 Bit Score: 40.23 E-value: 1.82e-03
|
|||||||||||
MFS_MFSD9 | cd17390 | Major facilitator superfamily domain-containing protein 9; Major facilitator superfamily ... |
284-382 | 1.84e-03 | |||||||
Major facilitator superfamily domain-containing protein 9; Major facilitator superfamily domain-containing protein 9 (MFSD9) is expressed in the central nervous system (CNS) and in most peripheral tissues but at very low expression levels. The function of MFSD9 is unknown. MFSD9 belongs to the Eukaryotic Solute carrier 46 (SLC46)/Bacterial Tetracycline resistance (TetA) -like (SLC46/TetA-like) family of the Major Facilitator Superfamily (MFS) of transporters. MFS proteins are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. Pssm-ID: 340948 [Multi-domain] Cd Length: 350 Bit Score: 40.29 E-value: 1.84e-03
|
|||||||||||
MFS_MelB_like | cd17332 | Salmonella enterica Na+/melibiose symporter MelB and similar transporters of the Major ... |
144-326 | 2.69e-03 | |||||||
Salmonella enterica Na+/melibiose symporter MelB and similar transporters of the Major Facilitator Superfamily; This family is composed of Salmonella enterica Na+/melibiose symporter MelB, Major Facilitator Superfamily domain-containing proteins, MFSD2 and MFSD12, and other sugar transporters. MelB catalyzes the electrogenic symport of galactosides with Na+, Li+ or H+. The MFSD2 subfamily is composed of two vertebrate members, MFSD2A and MFSD2B. MFSD2A is more commonly called sodium-dependent lysophosphatidylcholine symporter 1 (NLS1). It is an LPC symporter that plays an essential role for blood-brain barrier formation and function. Inactivating mutations in MFSD2A cause a lethal microcephaly syndrome. MFSD2B is a potential risk or protect factor in the prognosis of lung adenocarcinoma. MelB-like family belongs to the Major Facilitator Superfamily (MFS) of membrane transport proteins, which are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. Pssm-ID: 340890 [Multi-domain] Cd Length: 424 Bit Score: 39.90 E-value: 2.69e-03
|
|||||||||||
MFS_MMR_MDR_like | cd17504 | Methylenomycin A resistance protein (also called MMR peptide)-like multidrug resistance (MDR) ... |
64-359 | 4.14e-03 | |||||||
Methylenomycin A resistance protein (also called MMR peptide)-like multidrug resistance (MDR) transporters of the Major Facilitator Superfamily; This subfamily is composed of putative multidrug resistance (MDR) transporters including Chlamydia trachomatis antiseptic resistance protein QacA_2, and Serratia sp. DD3 Bmr3. MDR transporters are drug/H+ antiporters (DHA) that mediate the efflux of a variety of drugs and toxic compounds, and confer resistance to these compounds. This subfamily belongs to the Methylenomycin A resistance protein (also called MMR peptide) and similar multidrug resistance (MDR) transporters (MMR-like MDR transporter) family of the Major Facilitator Superfamily (MFS) of transporters. MFS proteins are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. Pssm-ID: 341047 [Multi-domain] Cd Length: 371 Bit Score: 39.10 E-value: 4.14e-03
|
|||||||||||
MFS_MdtG_SLC18_like | cd17325 | bacterial MdtG-like and eukaryotic solute carrier 18 (SLC18) family of the Major Facilitator ... |
2-183 | 5.38e-03 | |||||||
bacterial MdtG-like and eukaryotic solute carrier 18 (SLC18) family of the Major Facilitator Superfamily of transporters; This family is composed of eukaryotic solute carrier 18 (SLC18) family transporters and related bacterial multidrug resistance (MDR) transporters including several proteins from Escherichia coli such as multidrug resistance protein MdtG, from Bacillus subtilis such as multidrug resistance proteins 1 (Bmr1) and 2 (Bmr2), and from Staphylococcus aureus such as quinolone resistance protein NorA. The family also includes Escherichia coli arabinose efflux transporters YfcJ and YhhS. MDR transporters are drug/H+ antiporters (DHA) that mediate the efflux of a variety of drugs and toxic compounds, and confer resistance to these compounds. The SLC18 transporter family includes vesicular monoamine transporters (VAT1 and VAT2), vesicular acetylcholine transporter (VAChT), and SLC18B1, which is proposed to be a vesicular polyamine transporter (VPAT). The MdtG/SLC18 family belongs to the Major Facilitator Superfamily (MFS) of membrane transport proteins, which are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. Pssm-ID: 340883 [Multi-domain] Cd Length: 375 Bit Score: 38.71 E-value: 5.38e-03
|
|||||||||||
MFS_MMR_MDR_like | cd17321 | Methylenomycin A resistance protein (also called MMR peptide) and similar multidrug resistance ... |
234-391 | 6.11e-03 | |||||||
Methylenomycin A resistance protein (also called MMR peptide) and similar multidrug resistance (MDR) transporters of the Major Facilitator Superfamily; This family is composed of bacterial, fungal, and archaeal multidrug resistance (MDR) transporters including several proteins from Bacilli such as methylenomycin A resistance protein (also called MMR peptide), tetracycline resistance protein (TetB), and lincomycin resistance protein LmrB, as well as fungal proteins such as vacuolar basic amino acid transporters, which are involved in the transport into vacuoles of the basic amino acids histidine, lysine, and arginine in Saccharomyces cerevisiae, and aminotriazole/azole resistance proteins. MDR transporters are drug/H+ antiporters (DHA) that mediate the efflux of a variety of drugs and toxic compounds, and confer resistance to these compounds. For example, MMR confers resistance to the epoxide antibiotic methylenomycin while TetB resistance to tetracycline by an active tetracycline efflux. MMR-like MDR transporters belong to the Major Facilitator Superfamily (MFS) of membrane transport proteins, which are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. Pssm-ID: 340879 [Multi-domain] Cd Length: 370 Bit Score: 38.69 E-value: 6.11e-03
|
|||||||||||
MFS_MdtG_MDR_like | cd17391 | Multidrug resistance protein MdtG and similar multidrug resistance (MDR) transporters of the ... |
145-380 | 7.58e-03 | |||||||
Multidrug resistance protein MdtG and similar multidrug resistance (MDR) transporters of the Major Facilitator Superfamily; This subfamily is composed of Escherichia coli multidrug resistance protein MdtG, Streptococcus pneumoniae multidrug resistance efflux pump PmrA, and similar multidrug resistance (MDR) transporters from bacteria. MDR transporters are drug/H+ antiporters (DHA) that mediate the efflux of a variety of drugs and toxic compounds, and confer resistance to these compounds. MdtG confers resistance to fosfomycin and deoxycholate. PmrA serves as an efflux pump for various substrates and is associated with fluoroquinolone resistance. MdtG-like MDR transporters belong to the bacterial MdtG-like and eukaryotic solute carrier 18 (SLC18) family of the Major Facilitator Superfamily (MFS) of transporters. MFS proteins are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. Pssm-ID: 340949 [Multi-domain] Cd Length: 380 Bit Score: 38.40 E-value: 7.58e-03
|
|||||||||||
Blast search parameters | ||||
|