MULTISPECIES: VOC family protein [Acinetobacter calcoaceticus/baumannii complex]
VOC family protein( domain architecture ID 10170049)
vicinal oxygen chelate (VOC) family protein uses a metal center to coordinate a substrate, intermediate, or transition state through vicinal oxygen atoms; similar to type I, class II extradiol dioxygenases
List of domain hits
Name | Accession | Description | Interval | E-value | |||
ED_TypeI_classII_C | cd08343 | C-terminal domain of type I, class II extradiol dioxygenases, catalytic domain; This family ... |
154-281 | 4.69e-32 | |||
C-terminal domain of type I, class II extradiol dioxygenases, catalytic domain; This family contains the C-terminal, catalytic domain of type I, class II extradiol dioxygenases. Dioxygenases catalyze the incorporation of both atoms of molecular oxygen into substrates using a variety of reaction mechanisms, resulting in the cleavage of aromatic rings. Two major groups of dioxygenases have been identified according to the cleavage site; extradiol enzymes cleave the aromatic ring between a hydroxylated carbon and an adjacent non-hydroxylated carbon, whereas intradiol enzymes cleave the aromatic ring between two hydroxyl groups. Extradiol dioxygenases are classified into type I and type II enzymes. Type I extradiol dioxygenases include class I and class II enzymes. These two classes of enzymes show sequence similarity; the two-domain class II enzymes evolved from a class I enzyme through gene duplication. The extradiol dioxygenases represented in this family are type I, class II enzymes, and are composed of the N- and C-terminal domains of similar structure fold, resulting from an ancient gene duplication. The active site is located in a funnel-shaped space of the C-terminal domain. A catalytically essential metal, Fe(II) or Mn(II), presents in all the enzymes in this family. : Pssm-ID: 319931 Cd Length: 132 Bit Score: 115.88 E-value: 4.69e-32
|
|||||||
Name | Accession | Description | Interval | E-value | |||
ED_TypeI_classII_C | cd08343 | C-terminal domain of type I, class II extradiol dioxygenases, catalytic domain; This family ... |
154-281 | 4.69e-32 | |||
C-terminal domain of type I, class II extradiol dioxygenases, catalytic domain; This family contains the C-terminal, catalytic domain of type I, class II extradiol dioxygenases. Dioxygenases catalyze the incorporation of both atoms of molecular oxygen into substrates using a variety of reaction mechanisms, resulting in the cleavage of aromatic rings. Two major groups of dioxygenases have been identified according to the cleavage site; extradiol enzymes cleave the aromatic ring between a hydroxylated carbon and an adjacent non-hydroxylated carbon, whereas intradiol enzymes cleave the aromatic ring between two hydroxyl groups. Extradiol dioxygenases are classified into type I and type II enzymes. Type I extradiol dioxygenases include class I and class II enzymes. These two classes of enzymes show sequence similarity; the two-domain class II enzymes evolved from a class I enzyme through gene duplication. The extradiol dioxygenases represented in this family are type I, class II enzymes, and are composed of the N- and C-terminal domains of similar structure fold, resulting from an ancient gene duplication. The active site is located in a funnel-shaped space of the C-terminal domain. A catalytically essential metal, Fe(II) or Mn(II), presents in all the enzymes in this family. Pssm-ID: 319931 Cd Length: 132 Bit Score: 115.88 E-value: 4.69e-32
|
|||||||
CatE | COG2514 | Catechol-2,3-dioxygenase [Secondary metabolites biosynthesis, transport and catabolism]; |
150-225 | 1.06e-08 | |||
Catechol-2,3-dioxygenase [Secondary metabolites biosynthesis, transport and catabolism]; Pssm-ID: 442004 [Multi-domain] Cd Length: 141 Bit Score: 53.04 E-value: 1.06e-08
|
|||||||
Glyoxalase | pfam00903 | Glyoxalase/Bleomycin resistance protein/Dioxygenase superfamily; |
153-266 | 2.24e-07 | |||
Glyoxalase/Bleomycin resistance protein/Dioxygenase superfamily; Pssm-ID: 395724 [Multi-domain] Cd Length: 121 Bit Score: 48.98 E-value: 2.24e-07
|
|||||||
Name | Accession | Description | Interval | E-value | |||
ED_TypeI_classII_C | cd08343 | C-terminal domain of type I, class II extradiol dioxygenases, catalytic domain; This family ... |
154-281 | 4.69e-32 | |||
C-terminal domain of type I, class II extradiol dioxygenases, catalytic domain; This family contains the C-terminal, catalytic domain of type I, class II extradiol dioxygenases. Dioxygenases catalyze the incorporation of both atoms of molecular oxygen into substrates using a variety of reaction mechanisms, resulting in the cleavage of aromatic rings. Two major groups of dioxygenases have been identified according to the cleavage site; extradiol enzymes cleave the aromatic ring between a hydroxylated carbon and an adjacent non-hydroxylated carbon, whereas intradiol enzymes cleave the aromatic ring between two hydroxyl groups. Extradiol dioxygenases are classified into type I and type II enzymes. Type I extradiol dioxygenases include class I and class II enzymes. These two classes of enzymes show sequence similarity; the two-domain class II enzymes evolved from a class I enzyme through gene duplication. The extradiol dioxygenases represented in this family are type I, class II enzymes, and are composed of the N- and C-terminal domains of similar structure fold, resulting from an ancient gene duplication. The active site is located in a funnel-shaped space of the C-terminal domain. A catalytically essential metal, Fe(II) or Mn(II), presents in all the enzymes in this family. Pssm-ID: 319931 Cd Length: 132 Bit Score: 115.88 E-value: 4.69e-32
|
|||||||
MhqB_like_C | cd08360 | C-terminal domain of Burkholderia sp. NF100 MhqB and similar proteins; This subfamily contains ... |
150-279 | 1.20e-26 | |||
C-terminal domain of Burkholderia sp. NF100 MhqB and similar proteins; This subfamily contains the C-terminal, catalytic, domain of Burkholderia sp. NF100 MhqB and similar proteins. MhqB is a type I extradiol dioxygenase involved in the catabolism of methylhydroquinone, an intermediate in the degradation of fenitrothion. The purified enzyme has shown extradiol ring cleavage activity toward 3-methylcatechol. Fe2+ was suggested as a cofactor, the same as most other enzymes in the family. Burkholderia sp. NF100 MhqB is encoded on the plasmid pNF1. The type I family of extradiol dioxygenases contains two structurally homologous barrel-shaped domains at the N- and C-terminal. The active-site metal is located in the C-terminal barrel and plays an essential role in the catalytic mechanism. Pssm-ID: 319948 Cd Length: 134 Bit Score: 101.82 E-value: 1.20e-26
|
|||||||
BphC5-RK37_C_like | cd07239 | C-terminal, catalytic domain of BphC5 (2,3-dihydroxybiphenyl 1,2-dioxygenase); 2, ... |
150-294 | 1.25e-17 | |||
C-terminal, catalytic domain of BphC5 (2,3-dihydroxybiphenyl 1,2-dioxygenase); 2,3-dihydroxybiphenyl 1,2-dioxygenase (BphC) catalyzes the extradiol ring cleavage reaction of 2,3-dihydroxybiphenyl, the third step in the polychlorinated biphenyls (PCBs) degradation pathway (bph pathway). The enzyme contains a N-terminal and a C-terminal domain of similar structure fold, resulting from an ancient gene duplication. BphC belongs to the type I extradiol dioxygenase family, which requires a metal in the active site for its catalytic activity. Polychlorinated biphenyl degrading bacteria demonstrate multiplicity of BphCs. Bacterium Rhodococcus rhodochrous K37 has eight genes encoding BphC enzymes. This family includes the C-terminal domain of BphC5-RrK37. The crystal structure of the protein from Novosphingobium aromaticivorans has a Mn(II)in the active site, although most proteins of type I extradiol dioxygenases are activated by Fe(II). Pssm-ID: 319904 Cd Length: 143 Bit Score: 78.01 E-value: 1.25e-17
|
|||||||
THT_oxygenase_C | cd07257 | The C-terminal domain of 2,4,5-trihydroxytoluene (THT) oxygenase; This subfamily contains the ... |
153-292 | 1.20e-13 | |||
The C-terminal domain of 2,4,5-trihydroxytoluene (THT) oxygenase; This subfamily contains the C-terminal, catalytic, domain of THT oxygenase. THT oxygenase is an extradiol dioxygenase in the 2,4-dinitrotoluene (DNT) degradation pathway. It catalyzes the conversion of 2,4,5-trihydroxytoluene to an unstable ring fission product, 2,4-dihydroxy-5-methyl-6-oxo-2,4-hexadienoic acid. The native protein was determined to be a dimer by gel filtration. The enzyme belongs to the type I family of extradiol dioxygenases which contains two structurally homologous barrel-shaped domains at the N- and C-terminus of each monomer. The active-site metal is located in the C-terminal barrel. Fe(II) is required for its catalytic activity. Pssm-ID: 319920 Cd Length: 152 Bit Score: 67.36 E-value: 1.20e-13
|
|||||||
PpCmtC_C | cd07258 | C-terminal domain of 2,3-dihydroxy-p-cumate-3,4-dioxygenase (PpCmtC); This subfamily contains ... |
154-292 | 2.98e-12 | |||
C-terminal domain of 2,3-dihydroxy-p-cumate-3,4-dioxygenase (PpCmtC); This subfamily contains the C-terminal, catalytic, domain of PpCmtC. 2,3-dihydroxy-p-cumate-3,4-dioxygenase (CmtC of Pseudomonas putida F1) is a dioxygenase involved in the eight-step catabolism pathway of p-cymene. CmtC acts upon the reaction intermediate 2,3-dihydroxy-p-cumate, yielding 2-hydroxy-3-carboxy-6-oxo-7-methylocta-2,4-dienoate. The CmtC belongs to the type I family of extradiol dioxygenases. Fe2+ was suggested as a cofactor, same as for other enzymes in the family. The type I family of extradiol dioxygenases contains two structurally homologous barrel-shaped domains at the N- and C-terminal. The active-site metal is located in the C-terminal barrel and plays an essential role in the catalytic mechanism. Pssm-ID: 319921 Cd Length: 138 Bit Score: 62.99 E-value: 2.98e-12
|
|||||||
BphC1-RGP6_C_like | cd07237 | C-terminal domain of 2,3-dihydroxybiphenyl 1,2-dioxygenase; This subfamily contains the ... |
153-266 | 1.20e-11 | |||
C-terminal domain of 2,3-dihydroxybiphenyl 1,2-dioxygenase; This subfamily contains the C-terminal, catalytic, domain of BphC1-RGP6 and similar proteins. BphC catalyzes the extradiol ring cleavage reaction of 2,3-dihydroxybiphenyl, the third step in the polychlorinated biphenyls (PCBs) degradation pathway (bph pathway). This subfamily of BphCs belongs to the type I extradiol dioxygenase family, which require a metal in the active site in its catalytic mechanism. Polychlorinated biphenyl degrading bacteria demonstrate a multiplicity of BphCs. For example, three types of BphC enzymes have been found in Rhodococcus globerulus (BphC1-RGP6 - BphC3-RGP6), all three enzymes are type I extradiol dioxygenases. BphC1-RGP6 has an internal duplication, it is a two-domain dioxygenase which forms octamers, and has Fe(II) at the catalytic site. Its C-terminal repeat is represented in this subfamily. BphC2-RGP6 and BphC3-RGP6 are one-domain dioxygenases, they belong to a different subfamily of the ED_TypeI_classII_C (C-terminal domain of type I, class II extradiol dioxygenases) family. Pssm-ID: 319902 Cd Length: 153 Bit Score: 61.52 E-value: 1.20e-11
|
|||||||
HPCD_C_class_II | cd07256 | C-terminal domain of 3,4-dihydroxyphenylacetate 2,3-dioxygenase (HPCD); This subfamily ... |
150-274 | 6.11e-10 | |||
C-terminal domain of 3,4-dihydroxyphenylacetate 2,3-dioxygenase (HPCD); This subfamily contains the C-terminal, catalytic, domain of HPCD. HPCD catalyses the second step in the degradation of 4-hydroxyphenylacetate to succinate and pyruvate. The aromatic ring of 4-hydroxyphenylacetate is opened by this dioxygenase to yield the 3,4-diol product, 2-hydroxy-5-carboxymethylmuconate semialdehyde. HPCD is a homotetramer and each monomer contains two structurally homologous barrel-shaped domains at the N- and C-terminus. The active-site metal is located in the C-terminal barrel and plays an essential role in the catalytic mechanism. Most extradiol dioxygenases contain Fe(II) in their active site, but HPCD can be activated by either Mn(II) or Fe(II). These enzymes belong to the type I class II family of extradiol dioxygenases. The class III 3,4-dihydroxyphenylacetate 2,3-dioxygenases belong to a different superfamily. Pssm-ID: 319919 Cd Length: 160 Bit Score: 57.13 E-value: 6.11e-10
|
|||||||
2_3_CTD_C | cd07243 | C-terminal domain of catechol 2,3-dioxygenase; This subfamily contains the C-terminal, ... |
150-278 | 2.00e-09 | |||
C-terminal domain of catechol 2,3-dioxygenase; This subfamily contains the C-terminal, catalytic, domain of catechol 2,3-dioxygenase. Catechol 2,3-dioxygenase (2,3-CTD, catechol:oxygen 2,3-oxidoreductase) catalyzes an extradiol cleavage of catechol to form 2-hydroxymuconate semialdehyde with the insertion of two atoms of oxygen. The enzyme is a homotetramer and contains catalytically essential Fe(II) . The reaction proceeds by an ordered bi-unit mechanism. First, catechol binds to the enzyme, this is then followed by the binding of dioxygen to form a tertiary complex, and then the aromatic ring is cleaved to produce 2-hydroxymuconate semialdehyde. Catechol 2,3-dioxygenase belongs to the type I extradiol dioxygenase family. The subunit comprises the N- and C-terminal domains of similar structure fold, resulting from an ancient gene duplication. The active site is located in a funnel-shaped space of the C-terminal domain. This subfamily represents the C-terminal domain. Pssm-ID: 319907 Cd Length: 144 Bit Score: 55.10 E-value: 2.00e-09
|
|||||||
CatE | COG2514 | Catechol-2,3-dioxygenase [Secondary metabolites biosynthesis, transport and catabolism]; |
150-225 | 1.06e-08 | |||
Catechol-2,3-dioxygenase [Secondary metabolites biosynthesis, transport and catabolism]; Pssm-ID: 442004 [Multi-domain] Cd Length: 141 Bit Score: 53.04 E-value: 1.06e-08
|
|||||||
Glyoxalase | pfam00903 | Glyoxalase/Bleomycin resistance protein/Dioxygenase superfamily; |
153-266 | 2.24e-07 | |||
Glyoxalase/Bleomycin resistance protein/Dioxygenase superfamily; Pssm-ID: 395724 [Multi-domain] Cd Length: 121 Bit Score: 48.98 E-value: 2.24e-07
|
|||||||
HPCD_N_class_II | cd07266 | N-terminal domain of 3,4-dihydroxyphenylacetate 2,3-dioxygenase (HPCD); This subfamily ... |
151-221 | 4.49e-07 | |||
N-terminal domain of 3,4-dihydroxyphenylacetate 2,3-dioxygenase (HPCD); This subfamily contains the N-terminal, non-catalytic, domain of HPCD. HPCD catalyses the second step in the degradation of 4-hydroxyphenylacetate to succinate and pyruvate. The aromatic ring of 4-hydroxyphenylacetate is opened by this dioxygenase to yield the 3,4-diol product, 2-hydroxy-5-carboxymethylmuconate semialdehyde. HPCD is a homotetramer and each monomer contains two structurally homologous barrel-shaped domains at the N- and C-terminus. The active-site metal is located in the C-terminal barrel and plays an essential role in the catalytic mechanism. Most extradiol dioxygenases contain Fe(II) in their active site, but HPCD can be activated by either Mn(II) or Fe(II). These enzymes belong to the type I class II family of extradiol dioxygenases. The class III 3,4-dihydroxyphenylacetate 2,3-dioxygenases belong to a different superfamily. Pssm-ID: 319927 Cd Length: 118 Bit Score: 47.79 E-value: 4.49e-07
|
|||||||
VOC | cd06587 | vicinal oxygen chelate (VOC) family; The vicinal oxygen chelate (VOC) superfamily is composed ... |
155-225 | 1.59e-06 | |||
vicinal oxygen chelate (VOC) family; The vicinal oxygen chelate (VOC) superfamily is composed of structurally related proteins with paired beta.alpha.beta.beta.beta motifs that provide a metal coordination environment with two or three open or readily accessible coordination sites to promote direct electrophilic participation of the metal ion in catalysis. VOC is found in a variety of structurally related metalloproteins, including the type I extradiol dioxygenases, glyoxalase I and a group of antibiotic resistance proteins. A bound metal ion is required for protein activities for the members of this superfamily. A variety of metal ions have been found in the catalytic centers of these proteins including Fe(II), Mn(II), Zn(II), Ni(II) and Mg(II). Type I extradiol dioxygenases catalyze the incorporation of both atoms of molecular oxygen into aromatic substrates, which results in the cleavage of aromatic rings. They are key enzymes in the degradation of aromatic compounds. Type I extradiol dioxygenases include class I and class II enzymes. Class I and II enzymes show sequence similarity; the two-domain class II enzymes evolved from a class I enzyme through gene duplication. Glyoxylase I catalyzes the glutathione-dependent inactivation of toxic methylglyoxal, requiring zinc or nickel ions for activity. The antibiotic resistance proteins in this family use a variety of mechanisms to block the function of antibiotics. Bleomycin resistance protein (BLMA) sequesters bleomycin's activity by directly binding to it. Whereas, three types of fosfomycin resistance proteins employ different mechanisms to render fosfomycin inactive by modifying the fosfomycin molecule. Although the proteins in this superfamily are functionally distinct, their structures are similar. The difference among the three dimensional structures of the three types of proteins in this superfamily is interesting from an evolutionary perspective. Both glyoxalase I and BLMA show domain swapping between subunits. However, there is no domain swapping for type 1 extradiol dioxygenases. Pssm-ID: 319898 [Multi-domain] Cd Length: 112 Bit Score: 45.98 E-value: 1.59e-06
|
|||||||
GloA | COG0346 | Catechol 2,3-dioxygenase or related enzyme, vicinal oxygen chelate (VOC) family [Secondary ... |
153-226 | 6.11e-06 | |||
Catechol 2,3-dioxygenase or related enzyme, vicinal oxygen chelate (VOC) family [Secondary metabolites biosynthesis, transport and catabolism]; Pssm-ID: 440115 [Multi-domain] Cd Length: 125 Bit Score: 44.60 E-value: 6.11e-06
|
|||||||
ED_TypeI_classII_N | cd16360 | N-terminal domain of type I, class II extradiol dioxygenases; This family contains the ... |
155-221 | 6.84e-05 | |||
N-terminal domain of type I, class II extradiol dioxygenases; This family contains the N-terminal non-catalytic domain of type I, class II extradiol dioxygenases. Dioxygenases catalyze the incorporation of both atoms of molecular oxygen into substrates using a variety of reaction mechanisms, resulting in the cleavage of aromatic rings. Two major groups of dioxygenases have been identified according to the cleavage site; extradiol enzymes cleave the aromatic ring between a hydroxylated carbon and an adjacent non-hydroxylated carbon, whereas intradiol enzymes cleave the aromatic ring between two hydroxyl groups. Extradiol dioxygenases are classified into type I and type II enzymes. Type I extradiol dioxygenases include class I and class II enzymes. These two classes of enzymes show sequence similarity; the two-domain class II enzymes evolved from a class I enzyme through gene duplication. The extradiol dioxygenases represented in this family are type I, class II enzymes, and are composed of the N- and C-terminal domains of similar structure fold, resulting from an ancient gene duplication. The active site is located in a funnel-shaped space of the C-terminal domain. A catalytically essential metal, Fe(II) or Mn(II), presents in all the enzymes in this family. Pssm-ID: 319967 Cd Length: 111 Bit Score: 41.53 E-value: 6.84e-05
|
|||||||
BphC-JF8_C_like | cd09014 | C-terminal, catalytic domain of BphC_JF8, (2,3-dihydroxybiphenyl 1,2-dioxygenase); 2, ... |
153-287 | 1.02e-04 | |||
C-terminal, catalytic domain of BphC_JF8, (2,3-dihydroxybiphenyl 1,2-dioxygenase); 2,3-dihydroxybiphenyl 1,2-dioxygenase (BphC) catalyzes the extradiol ring cleavage reaction of 2,3-dihydroxybiphenyl, a key step in the polychlorinated biphenyls (PCBs) degradation pathway (bph pathway). BphC belongs to the type I extradiol dioxygenase family, which requires a metal ion in the active site in its catalytic mechanism. Polychlorinated biphenyl degrading bacteria demonstrate a multiplicity of BphCs. This subfamily of BphC is represented by the enzyme purified from the thermophilic biphenyl and naphthalene degrader, Bacillus sp. JF8. The members in this family of BphC enzymes may use either Mn(II) or Fe(II) as cofactors. The enzyme purified from Bacillus sp. JF8 is Mn(II)-dependent, however, the enzyme from Rhodococcus jostii RHAI has Fe(II) bound to it. BphC_JF8 is thermostable and its optimum activity is at 85 degrees C. The enzymes in this family have an internal duplication. This family represents the C-terminal repeat. Pssm-ID: 319956 Cd Length: 167 Bit Score: 41.98 E-value: 1.02e-04
|
|||||||
VOC_Bs_YwkD_like | cd08352 | vicinal oxygen chelate (VOC) family protein Bacillus subtilis YwkD and similar proteins; ... |
152-227 | 2.74e-04 | |||
vicinal oxygen chelate (VOC) family protein Bacillus subtilis YwkD and similar proteins; uncharacterized subfamily of vicinal oxygen chelate (VOC) family contains Bacillus subtilis YwkD and similar proteins. The vicinal oxygen chelate (VOC) superfamily is composed of structurally related proteins with paired beta.alpha.beta.beta.beta motifs that provide a metal coordination environment with two or three open or readily accessible coordination sites to promote direct electrophilic participation of the metal ion in catalysis. VOC domain is found in a variety of structurally related metalloproteins, including the bleomycin resistance protein, glyoxalase I, and type I ring-cleaving dioxygenases. A bound metal ion is required for protein activities for the members of this superfamily. A variety of metal ions have been found in the catalytic centers of these proteins including Fe(II), Mn(II), Zn(II), Ni(II) and Mg(II). The protein superfamily contains members with or without domain swapping. The proteins of this family share three conserved metal binding amino acids with the type I extradiol dioxygenases, which shows no domain swapping. Pssm-ID: 319940 [Multi-domain] Cd Length: 123 Bit Score: 39.83 E-value: 2.74e-04
|
|||||||
BphC-JF8_N_like | cd09013 | N-terminal, non-catalytic, domain of BphC_JF8, (2,3-dihydroxybiphenyl 1,2-dioxygenase) from ... |
153-216 | 1.16e-03 | |||
N-terminal, non-catalytic, domain of BphC_JF8, (2,3-dihydroxybiphenyl 1,2-dioxygenase) from Bacillus sp. JF8, and similar proteins; 2,3-dihydroxybiphenyl 1,2-dioxygenase (BphC) catalyzes the extradiol ring cleavage reaction of 2,3-dihydroxybiphenyl, a key step in the polychlorinated biphenyls (PCBs) degradation pathway (bph pathway). BphC belongs to the type I extradiol dioxygenase family, which requires a metal ion in the active site in its catalytic mechanism. Polychlorinated biphenyl degrading bacteria demonstrate a multiplicity of BphCs. This subfamily of BphC is represented by the enzyme purified from the thermophilic biphenyl and naphthalene degrader, Bacillus sp. JF8. The members in this family of BphC enzymes may use either Mn(II) or Fe(II) as cofactors. The enzyme purified from Bacillus sp. JF8 is Mn(II)-dependent, however, the enzyme from Rhodococcus jostii RHAI has Fe(II) bound to it. BphC_JF8 is thermostable and its optimum activity is at 85 degrees C. The enzymes in this family have an internal duplication. This family represents the N-terminal repeat. Pssm-ID: 319955 Cd Length: 121 Bit Score: 38.10 E-value: 1.16e-03
|
|||||||
Blast search parameters | ||||
|