flagellar hook-length control protein FliK controls elongation by determining hook length and by stopping the supply of hook protein to the filament protein
C-terminal domain of flagellar hook-length control protein FliK and similar domains; The ...
239-321
2.49e-25
C-terminal domain of flagellar hook-length control protein FliK and similar domains; The flagellar hook-length control protein FliK is a soluble cytoplasmic protein that is secreted during flagellar formation. It controls hook elongation by two successive events: by determining hook length and by stopping the supply of hook protein. It contains an N-terminal domain that determines hook length and a C-terminal domain that is responsible for switching secretion from the hook protein to that of the filament protein, by interacting with FlhB, the switchable secretion gate.
Pssm-ID: 350657 [Multi-domain] Cd Length: 86 Bit Score: 97.93 E-value: 2.49e-25
Flagellar hook-length control protein FliK; This is the C terminal domain of FliK. FliK ...
248-321
2.53e-18
Flagellar hook-length control protein FliK; This is the C terminal domain of FliK. FliK controls the length of the flagellar hook by directly measuring the hook length as a molecular ruler. This family also includes YscP of the Yersinia type III secretion system, and equivalent proteins in other pathogenic bacterial type III secretion systems.
Pssm-ID: 460451 [Multi-domain] Cd Length: 82 Bit Score: 78.80 E-value: 2.53e-18
C-terminal domain of flagellar hook-length control protein FliK and similar domains; The ...
239-321
2.49e-25
C-terminal domain of flagellar hook-length control protein FliK and similar domains; The flagellar hook-length control protein FliK is a soluble cytoplasmic protein that is secreted during flagellar formation. It controls hook elongation by two successive events: by determining hook length and by stopping the supply of hook protein. It contains an N-terminal domain that determines hook length and a C-terminal domain that is responsible for switching secretion from the hook protein to that of the filament protein, by interacting with FlhB, the switchable secretion gate.
Pssm-ID: 350657 [Multi-domain] Cd Length: 86 Bit Score: 97.93 E-value: 2.49e-25
Flagellar hook-length control protein FliK; This is the C terminal domain of FliK. FliK ...
248-321
2.53e-18
Flagellar hook-length control protein FliK; This is the C terminal domain of FliK. FliK controls the length of the flagellar hook by directly measuring the hook length as a molecular ruler. This family also includes YscP of the Yersinia type III secretion system, and equivalent proteins in other pathogenic bacterial type III secretion systems.
Pssm-ID: 460451 [Multi-domain] Cd Length: 82 Bit Score: 78.80 E-value: 2.53e-18
C-terminal domain of type III secretion proteins FliK, HrpP, YscP, and similar domains; Type ...
238-323
2.33e-16
C-terminal domain of type III secretion proteins FliK, HrpP, YscP, and similar domains; Type III secretion systems (T3SS) are essential components of two complex bacterial machineries: the flagellum, which drives cell motility, and the non-flagellar T3SS, which delivers effectors into eukaryotic cells. This model represents the C-terminal domain of T3SS proteins such as the flagellar hook-length control protein FliK, and non-flagellar Yop proteins translocation protein P (YscP) and HrpP. FliK is responsible for switching secretion from the hook protein to that of the filament protein, by interacting with FlhB, the switchable secretion gate. HrpP is a type III secretion system substrate specificity switch-domain protein that is required for the export of pathogenicity factors into plant cells by pathogens. YscP is a needle-length sensing protein that controls the needle length of the injectisome, which is used by pathogenic bacteria to inject effector proteins across eukaryotic cell membranes. FliK, YscP, and HrpP contain a C-terminal globular domain that is necessary for the hierarchical switching of substrates during T3SS assembly and subsequent virulence effector secretion and is also referred to as the substrate-switching (SS) domain or the type III secretion substrate specificity switch (T3S4) domain.
Pssm-ID: 350654 Cd Length: 87 Bit Score: 73.52 E-value: 2.33e-16
Database: CDSEARCH/cdd Low complexity filter: no Composition Based Adjustment: yes E-value threshold: 0.01
References:
Wang J et al. (2023), "The conserved domain database in 2023", Nucleic Acids Res.51(D)384-8.
Lu S et al. (2020), "The conserved domain database in 2020", Nucleic Acids Res.48(D)265-8.
Marchler-Bauer A et al. (2017), "CDD/SPARCLE: functional classification of proteins via subfamily domain architectures.", Nucleic Acids Res.45(D)200-3.
of the residues that compose this conserved feature have been mapped to the query sequence.
Click on the triangle to view details about the feature, including a multiple sequence alignment
of your query sequence and the protein sequences used to curate the domain model,
where hash marks (#) above the aligned sequences show the location of the conserved feature residues.
The thumbnail image, if present, provides an approximate view of the feature's location in 3 dimensions.
Click on the triangle for interactive 3D structure viewing options.
Functional characterization of the conserved domain architecture found on the query.
Click here to see more details.
This image shows a graphical summary of conserved domains identified on the query sequence.
The Show Concise/Full Display button at the top of the page can be used to select the desired level of detail: only top scoring hits
(labeled illustration) or all hits
(labeled illustration).
Domains are color coded according to superfamilies
to which they have been assigned. Hits with scores that pass a domain-specific threshold
(specific hits) are drawn in bright colors.
Others (non-specific hits) and
superfamily placeholders are drawn in pastel colors.
if a domain or superfamily has been annotated with functional sites (conserved features),
they are mapped to the query sequence and indicated through sets of triangles
with the same color and shade of the domain or superfamily that provides the annotation. Mouse over the colored bars or triangles to see descriptions of the domains and features.
click on the bars or triangles to view your query sequence embedded in a multiple sequence alignment of the proteins used to develop the corresponding domain model.
The table lists conserved domains identified on the query sequence. Click on the plus sign (+) on the left to display full descriptions, alignments, and scores.
Click on the domain model's accession number to view the multiple sequence alignment of the proteins used to develop the corresponding domain model.
To view your query sequence embedded in that multiple sequence alignment, click on the colored bars in the Graphical Summary portion of the search results page,
or click on the triangles, if present, that represent functional sites (conserved features)
mapped to the query sequence.
Concise Display shows only the best scoring domain model, in each hit category listed below except non-specific hits, for each region on the query sequence.
(labeled illustration) Standard Display shows only the best scoring domain model from each source, in each hit category listed below for each region on the query sequence.
(labeled illustration) Full Display shows all domain models, in each hit category below, that meet or exceed the RPS-BLAST threshold for statistical significance.
(labeled illustration) Four types of hits can be shown, as available,
for each region on the query sequence:
specific hits meet or exceed a domain-specific e-value threshold
(illustrated example)
and represent a very high confidence that the query sequence belongs to the same protein family as the sequences use to create the domain model
non-specific hits
meet or exceed the RPS-BLAST threshold for statistical significance (default E-value cutoff of 0.01, or an E-value selected by user via the
advanced search options)
the domain superfamily to which the specific and non-specific hits belong
multi-domain models that were computationally detected and are likely to contain multiple single domains
Retrieve proteins that contain one or more of the domains present in the query sequence, using the Conserved Domain Architecture Retrieval Tool
(CDART).
Modify your query to search against a different database and/or use advanced search options