NUDIX domain-containing protein [Leptospira interrogans]
NUDIX hydrolase( domain architecture ID 19109204)
NUDIX hydrolase catalyzes the hydrolysis of nucleoside diphosphates linked to other moieties (X); it requires a divalent cation, such as Mg2+ or Mn2+ for its activity
List of domain hits
Name | Accession | Description | Interval | E-value | |||
NUDIX_Hydrolase | cd18882 | uncharacterized NUDIX hydrolase subfamily; NUDIX hydrolase is a superfamily of enzymes found ... |
7-141 | 2.06e-47 | |||
uncharacterized NUDIX hydrolase subfamily; NUDIX hydrolase is a superfamily of enzymes found in all three kingdoms of life, and it catalyzes the hydrolysis of NUcleoside DIphosphates linked to other moieties, X. Enzymes belonging to this superfamily require a divalent cation, such as Mg2+ or Mn2+ for their activity. Members of this family are recognized by a highly conserved 23-residue NUDIX motif (GX5EX7REUXEEXGU, where U = I, L or V), which forms a structural motif that functions as a metal binding and catalytic site. Substrates of NUDIX hydrolase include intact and oxidatively damaged nucleoside triphosphates, dinucleoside polyphosphates, nucleotide-sugars and dinucleotide enzymes. These substrates are metabolites or cell signaling molecules that require regulation during different stages of the cell cycle or during periods of stress. In general, the role of the NUDIX hydrolase is to sanitize the nucleotide pools and to maintain cell viability, thereby serving as surveillance and "house-cleaning" enzymes. Substrate specificity is used to define child families within the superfamily. Differences in substrate specificity are determined by the N-terminal extension or by residues in variable loop regions. Mechanistically, substrate hydrolysis occurs by a nucleophilic substitution reaction, with variation in the numbers and roles of divalent cations required. This superfamily consists of at least nine families: IPP (isopentenyl diphosphate) isomerase, ADP ribose pyrophosphatase, mutT pyrophosphohydrolase, coenzyme-A pyrophosphatase, MTH1-7,8-dihydro-8-oxoguanine-triphosphatase, diadenosine tetraphosphate hydrolase, NADH pyrophosphatase, GDP-mannose hydrolase and the c-terminal portion of the mutY adenine glycosylase. : Pssm-ID: 467593 [Multi-domain] Cd Length: 130 Bit Score: 149.33 E-value: 2.06e-47
|
|||||||
Name | Accession | Description | Interval | E-value | |||
NUDIX_Hydrolase | cd18882 | uncharacterized NUDIX hydrolase subfamily; NUDIX hydrolase is a superfamily of enzymes found ... |
7-141 | 2.06e-47 | |||
uncharacterized NUDIX hydrolase subfamily; NUDIX hydrolase is a superfamily of enzymes found in all three kingdoms of life, and it catalyzes the hydrolysis of NUcleoside DIphosphates linked to other moieties, X. Enzymes belonging to this superfamily require a divalent cation, such as Mg2+ or Mn2+ for their activity. Members of this family are recognized by a highly conserved 23-residue NUDIX motif (GX5EX7REUXEEXGU, where U = I, L or V), which forms a structural motif that functions as a metal binding and catalytic site. Substrates of NUDIX hydrolase include intact and oxidatively damaged nucleoside triphosphates, dinucleoside polyphosphates, nucleotide-sugars and dinucleotide enzymes. These substrates are metabolites or cell signaling molecules that require regulation during different stages of the cell cycle or during periods of stress. In general, the role of the NUDIX hydrolase is to sanitize the nucleotide pools and to maintain cell viability, thereby serving as surveillance and "house-cleaning" enzymes. Substrate specificity is used to define child families within the superfamily. Differences in substrate specificity are determined by the N-terminal extension or by residues in variable loop regions. Mechanistically, substrate hydrolysis occurs by a nucleophilic substitution reaction, with variation in the numbers and roles of divalent cations required. This superfamily consists of at least nine families: IPP (isopentenyl diphosphate) isomerase, ADP ribose pyrophosphatase, mutT pyrophosphohydrolase, coenzyme-A pyrophosphatase, MTH1-7,8-dihydro-8-oxoguanine-triphosphatase, diadenosine tetraphosphate hydrolase, NADH pyrophosphatase, GDP-mannose hydrolase and the c-terminal portion of the mutY adenine glycosylase. Pssm-ID: 467593 [Multi-domain] Cd Length: 130 Bit Score: 149.33 E-value: 2.06e-47
|
|||||||
YjhB | COG1051 | ADP-ribose pyrophosphatase YjhB, NUDIX family [Nucleotide transport and metabolism]; |
1-126 | 9.59e-23 | |||
ADP-ribose pyrophosphatase YjhB, NUDIX family [Nucleotide transport and metabolism]; Pssm-ID: 440671 [Multi-domain] Cd Length: 125 Bit Score: 86.57 E-value: 9.59e-23
|
|||||||
PRK08999 | PRK08999 | Nudix family hydrolase; |
7-63 | 2.49e-15 | |||
Nudix family hydrolase; Pssm-ID: 236361 [Multi-domain] Cd Length: 312 Bit Score: 70.67 E-value: 2.49e-15
|
|||||||
NUDIX | pfam00293 | NUDIX domain; |
8-116 | 1.15e-14 | |||
NUDIX domain; Pssm-ID: 395229 [Multi-domain] Cd Length: 132 Bit Score: 65.97 E-value: 1.15e-14
|
|||||||
Name | Accession | Description | Interval | E-value | |||
NUDIX_Hydrolase | cd18882 | uncharacterized NUDIX hydrolase subfamily; NUDIX hydrolase is a superfamily of enzymes found ... |
7-141 | 2.06e-47 | |||
uncharacterized NUDIX hydrolase subfamily; NUDIX hydrolase is a superfamily of enzymes found in all three kingdoms of life, and it catalyzes the hydrolysis of NUcleoside DIphosphates linked to other moieties, X. Enzymes belonging to this superfamily require a divalent cation, such as Mg2+ or Mn2+ for their activity. Members of this family are recognized by a highly conserved 23-residue NUDIX motif (GX5EX7REUXEEXGU, where U = I, L or V), which forms a structural motif that functions as a metal binding and catalytic site. Substrates of NUDIX hydrolase include intact and oxidatively damaged nucleoside triphosphates, dinucleoside polyphosphates, nucleotide-sugars and dinucleotide enzymes. These substrates are metabolites or cell signaling molecules that require regulation during different stages of the cell cycle or during periods of stress. In general, the role of the NUDIX hydrolase is to sanitize the nucleotide pools and to maintain cell viability, thereby serving as surveillance and "house-cleaning" enzymes. Substrate specificity is used to define child families within the superfamily. Differences in substrate specificity are determined by the N-terminal extension or by residues in variable loop regions. Mechanistically, substrate hydrolysis occurs by a nucleophilic substitution reaction, with variation in the numbers and roles of divalent cations required. This superfamily consists of at least nine families: IPP (isopentenyl diphosphate) isomerase, ADP ribose pyrophosphatase, mutT pyrophosphohydrolase, coenzyme-A pyrophosphatase, MTH1-7,8-dihydro-8-oxoguanine-triphosphatase, diadenosine tetraphosphate hydrolase, NADH pyrophosphatase, GDP-mannose hydrolase and the c-terminal portion of the mutY adenine glycosylase. Pssm-ID: 467593 [Multi-domain] Cd Length: 130 Bit Score: 149.33 E-value: 2.06e-47
|
|||||||
YjhB | COG1051 | ADP-ribose pyrophosphatase YjhB, NUDIX family [Nucleotide transport and metabolism]; |
1-126 | 9.59e-23 | |||
ADP-ribose pyrophosphatase YjhB, NUDIX family [Nucleotide transport and metabolism]; Pssm-ID: 440671 [Multi-domain] Cd Length: 125 Bit Score: 86.57 E-value: 9.59e-23
|
|||||||
NUDIX_Hydrolase | cd02883 | NUDIX hydrolase superfamily; NUDIX hydrolase is a superfamily of enzymes found in all three ... |
7-111 | 1.54e-19 | |||
NUDIX hydrolase superfamily; NUDIX hydrolase is a superfamily of enzymes found in all three kingdoms of life, and it catalyzes the hydrolysis of NUcleoside DIphosphates linked to other moieties, X. Enzymes belonging to this superfamily require a divalent cation, such as Mg2+ or Mn2+ for their activity. Members of this family are recognized by a highly conserved 23-residue NUDIX motif (GX5EX7REUXEEXGU, where U = I, L or V), which forms a structural motif that functions as a metal binding and catalytic site. Substrates of NUDIX hydrolase include intact and oxidatively damaged nucleoside triphosphates, dinucleoside polyphosphates, nucleotide-sugars and dinucleotide enzymes. These substrates are metabolites or cell signaling molecules that require regulation during different stages of the cell cycle or during periods of stress. In general, the role of the NUDIX hydrolase is to sanitize the nucleotide pools and to maintain cell viability, thereby serving as surveillance and "house-cleaning" enzymes. Substrate specificity is used to define child families within the superfamily. Differences in substrate specificity are determined by the N-terminal extension or by residues in variable loop regions. Mechanistically, substrate hydrolysis occurs by a nucleophilic substitution reaction, with variation in the numbers and roles of divalent cations required. This superfamily consists of at least nine families: IPP (isopentenyl diphosphate) isomerase, ADP ribose pyrophosphatase, mutT pyrophosphohydrolase, coenzyme-A pyrophosphatase, MTH1-7,8-dihydro-8-oxoguanine-triphosphatase, diadenosine tetraphosphate hydrolase, NADH pyrophosphatase, GDP-mannose hydrolase and the c-terminal portion of the mutY adenine glycosylase. Pssm-ID: 467528 [Multi-domain] Cd Length: 106 Bit Score: 77.83 E-value: 1.54e-19
|
|||||||
NUDIX_MutT_NudA_like | cd03425 | MutT pyrophosphohydrolase; The MutT pyrophosphohydrolase is a prototypical NUDIX hydrolase ... |
11-124 | 4.62e-17 | |||
MutT pyrophosphohydrolase; The MutT pyrophosphohydrolase is a prototypical NUDIX hydrolase that catalyzes the hydrolysis of nucleoside and deoxynucleoside triphosphates (NTPs and dNTPs) by substitution at a beta-phosphorus to yield a nucleotide monophosphate (NMP) and inorganic pyrophosphate (PPi). This enzyme requires two divalent cations for activity; one coordinates the phosphoryl groups of the NTP/dNTP substrate, and the other coordinates to the enzyme. It also contains the NUDIX motif, a highly conserved 23-residue block (GX5EX7REUXEEXGU, where U = I, L or V), that functions as metal binding and catalytic site. MutT pyrophosphohydrolase is important in preventing errors in DNA replication by hydrolyzing mutagenic nucleotides such as 8-oxo-dGTP (a product of oxidative damage), which can mispair with template adenine during DNA replication, to guanine nucleotides. Pssm-ID: 467531 [Multi-domain] Cd Length: 123 Bit Score: 71.71 E-value: 4.62e-17
|
|||||||
Idi | COG1443 | Isopentenyldiphosphate isomerase [Lipid transport and metabolism]; Isopentenyldiphosphate ... |
8-120 | 1.99e-16 | |||
Isopentenyldiphosphate isomerase [Lipid transport and metabolism]; Isopentenyldiphosphate isomerase is part of the Pathway/BioSystem: Isoprenoid biosynthesis Pssm-ID: 441052 [Multi-domain] Cd Length: 162 Bit Score: 71.38 E-value: 1.99e-16
|
|||||||
PRK08999 | PRK08999 | Nudix family hydrolase; |
7-63 | 2.49e-15 | |||
Nudix family hydrolase; Pssm-ID: 236361 [Multi-domain] Cd Length: 312 Bit Score: 70.67 E-value: 2.49e-15
|
|||||||
NUDIX | pfam00293 | NUDIX domain; |
8-116 | 1.15e-14 | |||
NUDIX domain; Pssm-ID: 395229 [Multi-domain] Cd Length: 132 Bit Score: 65.97 E-value: 1.15e-14
|
|||||||
MutT | COG0494 | 8-oxo-dGTP pyrophosphatase MutT and related house-cleaning NTP pyrophosphohydrolases, NUDIX ... |
5-120 | 4.66e-13 | |||
8-oxo-dGTP pyrophosphatase MutT and related house-cleaning NTP pyrophosphohydrolases, NUDIX family [Defense mechanisms]; Pssm-ID: 440260 [Multi-domain] Cd Length: 143 Bit Score: 61.97 E-value: 4.66e-13
|
|||||||
NUDIX_MutT_Nudt1 | cd04699 | MutT homolog-1 and similar proteins; MutT homolog-1 (MTH1), also known as NUDIX (nucleoside ... |
8-121 | 2.50e-12 | |||
MutT homolog-1 and similar proteins; MutT homolog-1 (MTH1), also known as NUDIX (nucleoside diphosphate-linked moiety X)) motif 1/Nudt1, is a member of the NUDIX hydrolase superfamily. MTH1, the mammalian counterpart of MutT, hydrolyzes oxidized purine nucleoside triphosphates, such as 8-oxo-dGTP and 2-hydroxy-ATP, to monophosphates, thereby preventing the incorporation of such oxygen radicals during replication. This is an important step in the repair mechanism in genomic and mitochondrial DNA. Like other members of the NUDIX family, it requires a divalent cation, such as Mg2+ or Mn2+, for activity, and contain the NUDIX motif, a highly conserved 23-residue block (GX5EX7REUXEEXGU, where U = I, L or V), that functions as a metal binding and catalytic site. MTH1 is predominantly localized in the cytoplasm and mitochondria. Structurally, this enzyme adopts a similar fold to MutT despite low sequence similarity outside the conserved NUDIX motif. The most distinctive structural difference between MutT and MTH1 is the presence of a beta-hairpin, which is absent in MutT. This results in a much deeper and narrower substrate binding pocket. Mechanistically, MTH1 contains dual specificity for nucleotides that contain 2-OH-adenine bases and those that contain 8-oxo-guanine bases. Pssm-ID: 467579 [Multi-domain] Cd Length: 118 Bit Score: 59.56 E-value: 2.50e-12
|
|||||||
PRK10546 | PRK10546 | pyrimidine (deoxy)nucleoside triphosphate diphosphatase; |
7-63 | 5.70e-12 | |||
pyrimidine (deoxy)nucleoside triphosphate diphosphatase; Pssm-ID: 182536 [Multi-domain] Cd Length: 135 Bit Score: 58.98 E-value: 5.70e-12
|
|||||||
NUDIX_ADPRase | cd04673 | ADP-ribose pyrophosphatase; ADP-ribose pyrophosphatase (ADPRase; EC 3.6.1.13) catalyzes the ... |
8-128 | 6.34e-12 | |||
ADP-ribose pyrophosphatase; ADP-ribose pyrophosphatase (ADPRase; EC 3.6.1.13) catalyzes the hydrolysis of ADP-ribose to AMP and ribose-5-P. Like other members of the NUDIX hydrolase superfamily of enzymes, it is thought to require a divalent cation, such as Mg2+, for its activity. It also contains a 23-residue NUDIX motif (GX5EX7REUXEEXGU, where U = I, L or V) which functions as a metal binding site/catalytic site. In addition to the NUDIX motif, there are additional conserved amino acid residues, distal from the signature sequence, that correlate with substrate specificity. In humans, there are four distinct ADPRase activities, three putative cytosolic (ADPRase-I, -II, and -Mn) and a single mitochondrial enzyme (ADPRase-m). ADPRase-m is also known as NUDT9. It can be distinugished from the cytosolic ADPRase by a N-terminal target sequence unique to mitochondrial ADPRase. NUDT9 functions as a monomer. Pssm-ID: 467557 [Multi-domain] Cd Length: 128 Bit Score: 58.68 E-value: 6.34e-12
|
|||||||
NUDIX_Nudt17 | cd04694 | nucleoside diphosphate-linked moiety X)) motif 17; Nucleoside diphosphate-linked moiety X)) ... |
5-63 | 5.48e-11 | |||
nucleoside diphosphate-linked moiety X)) motif 17; Nucleoside diphosphate-linked moiety X)) motif 17 (EC 3.6.1.-) encoded by the NUDT17 gene on chromosome 1q21.1 and encodes an enzyme thought to hydrolyse some nucleoside diphosphate derivatives. Members of the NUDIX hydrolase superfamily catalyze the hydrolysis of NUcleoside DIphosphates linked to other moieties, X. Enzymes belonging to this superfamily require a divalent cation, such as Mg2+ or Mn2+, for their activity and contain a highly conserved 23-residue NUDIX motif (GX5EX7REUXEEXGU, where U = I, L or V), which functions as a metal binding and catalytic site. Substrates of NUDIX hydrolases include intact and oxidatively damaged nucleoside triphosphates, dinucleoside polyphosphates, nucleotide-sugars and dinucleotide enzymes. These substrates are metabolites or cell signaling molecules that require regulation during different stages of the cell cycle or during periods of stress. In general, the role of the NUDIX hydrolase is to sanitize the nucleotide pools and to maintain cell viability, thereby serving as surveillance _ "house-cleaning" enzymes. Substrate specificity is used to define families within the superfamily. Differences in substrate specificity are determined by the N-terminal extension or by residues in variable loop regions. Mechanistically, substrate hydrolysis occurs by a nucleophilic substitution reaction, with variation in the numbers and roles of divalent cations required. Pssm-ID: 467576 [Multi-domain] Cd Length: 135 Bit Score: 56.53 E-value: 5.48e-11
|
|||||||
NUDIX_Hydrolase | cd04693 | uncharacterized NUDIX hydrolase subfamily; NUDIX hydrolase is a superfamily of enzymes found ... |
9-118 | 9.91e-10 | |||
uncharacterized NUDIX hydrolase subfamily; NUDIX hydrolase is a superfamily of enzymes found in all three kingdoms of life, and it catalyzes the hydrolysis of NUcleoside DIphosphates linked to other moieties, X. Enzymes belonging to this superfamily require a divalent cation, such as Mg2+ or Mn2+ for their activity. Members of this family are recognized by a highly conserved 23-residue NUDIX motif (GX5EX7REUXEEXGU, where U = I, L or V), which forms a structural motif that functions as a metal binding and catalytic site. Substrates of NUDIX hydrolase include intact and oxidatively damaged nucleoside triphosphates, dinucleoside polyphosphates, nucleotide-sugars and dinucleotide enzymes. These substrates are metabolites or cell signaling molecules that require regulation during different stages of the cell cycle or during periods of stress. In general, the role of the NUDIX hydrolase is to sanitize the nucleotide pools and to maintain cell viability, thereby serving as surveillance and "house-cleaning" enzymes. Substrate specificity is used to define child families within the superfamily. Differences in substrate specificity are determined by the N-terminal extension or by residues in variable loop regions. Mechanistically, substrate hydrolysis occurs by a nucleophilic substitution reaction, with variation in the numbers and roles of divalent cations required. This superfamily consists of at least nine families: IPP (isopentenyl diphosphate) isomerase, ADP ribose pyrophosphatase, mutT pyrophosphohydrolase, coenzyme-A pyrophosphatase, MTH1-7,8-dihydro-8-oxoguanine-triphosphatase, diadenosine tetraphosphate hydrolase, NADH pyrophosphatase, GDP-mannose hydrolase and the c-terminal portion of the mutY adenine glycosylase. Pssm-ID: 467575 [Multi-domain] Cd Length: 157 Bit Score: 53.68 E-value: 9.91e-10
|
|||||||
NUDIX_Hydrolase | cd18876 | uncharacterized NUDIX hydrolase subfamily; NUDIX hydrolase is a superfamily of enzymes found ... |
8-121 | 1.06e-09 | |||
uncharacterized NUDIX hydrolase subfamily; NUDIX hydrolase is a superfamily of enzymes found in all three kingdoms of life, and it catalyzes the hydrolysis of NUcleoside DIphosphates linked to other moieties, X. Enzymes belonging to this superfamily require a divalent cation, such as Mg2+ or Mn2+ for their activity. Members of this family are recognized by a highly conserved 23-residue NUDIX motif (GX5EX7REUXEEXGU, where U = I, L or V), which forms a structural motif that functions as a metal binding and catalytic site. Substrates of NUDIX hydrolase include intact and oxidatively damaged nucleoside triphosphates, dinucleoside polyphosphates, nucleotide-sugars and dinucleotide enzymes. These substrates are metabolites or cell signaling molecules that require regulation during different stages of the cell cycle or during periods of stress. In general, the role of the NUDIX hydrolase is to sanitize the nucleotide pools and to maintain cell viability, thereby serving as surveillance and "house-cleaning" enzymes. Substrate specificity is used to define child families within the superfamily. Differences in substrate specificity are determined by the N-terminal extension or by residues in variable loop regions. Mechanistically, substrate hydrolysis occurs by a nucleophilic substitution reaction, with variation in the numbers and roles of divalent cations required. This superfamily consists of at least nine families: IPP (isopentenyl diphosphate) isomerase, ADP ribose pyrophosphatase, mutT pyrophosphohydrolase, coenzyme-A pyrophosphatase, MTH1-7,8-dihydro-8-oxoguanine-triphosphatase, diadenosine tetraphosphate hydrolase, NADH pyrophosphatase, GDP-mannose hydrolase and the c-terminal portion of the mutY adenine glycosylase. Pssm-ID: 467588 [Multi-domain] Cd Length: 121 Bit Score: 52.59 E-value: 1.06e-09
|
|||||||
NUDIX_Hydrolase | cd04680 | uncharacterized NUDIX hydrolase subfamily; NUDIX hydrolase is a superfamily of enzymes found ... |
9-63 | 2.96e-09 | |||
uncharacterized NUDIX hydrolase subfamily; NUDIX hydrolase is a superfamily of enzymes found in all three kingdoms of life, and it catalyzes the hydrolysis of NUcleoside DIphosphates linked to other moieties, X. Enzymes belonging to this superfamily require a divalent cation, such as Mg2+ or Mn2+ for their activity. Members of this family are recognized by a highly conserved 23-residue NUDIX motif (GX5EX7REUXEEXGU, where U = I, L or V), which forms a structural motif that functions as a metal binding and catalytic site. Substrates of NUDIX hydrolase include intact and oxidatively damaged nucleoside triphosphates, dinucleoside polyphosphates, nucleotide-sugars and dinucleotide enzymes. These substrates are metabolites or cell signaling molecules that require regulation during different stages of the cell cycle or during periods of stress. In general, the role of the NUDIX hydrolase is to sanitize the nucleotide pools and to maintain cell viability, thereby serving as surveillance and "house-cleaning" enzymes. Substrate specificity is used to define child families within the superfamily. Differences in substrate specificity are determined by the N-terminal extension or by residues in variable loop regions. Mechanistically, substrate hydrolysis occurs by a nucleophilic substitution reaction, with variation in the numbers and roles of divalent cations required. This superfamily consists of at least nine families: IPP (isopentenyl diphosphate) isomerase, ADP ribose pyrophosphatase, mutT pyrophosphohydrolase, coenzyme-A pyrophosphatase, MTH1-7,8-dihydro-8-oxoguanine-triphosphatase, diadenosine tetraphosphate hydrolase, NADH pyrophosphatase, GDP-mannose hydrolase and the c-terminal portion of the mutY adenine glycosylase. Pssm-ID: 467563 [Multi-domain] Cd Length: 121 Bit Score: 51.48 E-value: 2.96e-09
|
|||||||
NUDIX_Hydrolase | cd04686 | uncharacterized NUDIX hydrolase subfamily; NUDIX hydrolase is a superfamily of enzymes found ... |
9-96 | 3.18e-09 | |||
uncharacterized NUDIX hydrolase subfamily; NUDIX hydrolase is a superfamily of enzymes found in all three kingdoms of life, and it catalyzes the hydrolysis of NUcleoside DIphosphates linked to other moieties, X. Enzymes belonging to this superfamily require a divalent cation, such as Mg2+ or Mn2+ for their activity. Members of this family are recognized by a highly conserved 23-residue NUDIX motif (GX5EX7REUXEEXGU, where U = I, L or V), which forms a structural motif that functions as a metal binding and catalytic site. Substrates of NUDIX hydrolase include intact and oxidatively damaged nucleoside triphosphates, dinucleoside polyphosphates, nucleotide-sugars and dinucleotide enzymes. These substrates are metabolites or cell signaling molecules that require regulation during different stages of the cell cycle or during periods of stress. In general, the role of the NUDIX hydrolase is to sanitize the nucleotide pools and to maintain cell viability, thereby serving as surveillance and "house-cleaning" enzymes. Substrate specificity is used to define child families within the superfamily. Differences in substrate specificity are determined by the N-terminal extension or by residues in variable loop regions. Mechanistically, substrate hydrolysis occurs by a nucleophilic substitution reaction, with variation in the numbers and roles of divalent cations required. This superfamily consists of at least nine families: IPP (isopentenyl diphosphate) isomerase, ADP ribose pyrophosphatase, mutT pyrophosphohydrolase, coenzyme-A pyrophosphatase, MTH1-7,8-dihydro-8-oxoguanine-triphosphatase, diadenosine tetraphosphate hydrolase, NADH pyrophosphatase, GDP-mannose hydrolase and the c-terminal portion of the mutY adenine glycosylase. Pssm-ID: 467569 [Multi-domain] Cd Length: 130 Bit Score: 51.52 E-value: 3.18e-09
|
|||||||
NUDIX_Hydrolase | cd04685 | uncharacterized NUDIX hydrolase subfamily; NUDIX hydrolase is a superfamily of enzymes found ... |
7-83 | 5.36e-09 | |||
uncharacterized NUDIX hydrolase subfamily; NUDIX hydrolase is a superfamily of enzymes found in all three kingdoms of life, and it catalyzes the hydrolysis of NUcleoside DIphosphates linked to other moieties, X. Enzymes belonging to this superfamily require a divalent cation, such as Mg2+ or Mn2+ for their activity. Members of this family are recognized by a highly conserved 23-residue NUDIX motif (GX5EX7REUXEEXGU, where U = I, L or V), which forms a structural motif that functions as a metal binding and catalytic site. Substrates of NUDIX hydrolase include intact and oxidatively damaged nucleoside triphosphates, dinucleoside polyphosphates, nucleotide-sugars and dinucleotide enzymes. These substrates are metabolites or cell signaling molecules that require regulation during different stages of the cell cycle or during periods of stress. In general, the role of the NUDIX hydrolase is to sanitize the nucleotide pools and to maintain cell viability, thereby serving as surveillance and "house-cleaning" enzymes. Substrate specificity is used to define child families within the superfamily. Differences in substrate specificity are determined by the N-terminal extension or by residues in variable loop regions. Mechanistically, substrate hydrolysis occurs by a nucleophilic substitution reaction, with variation in the numbers and roles of divalent cations required. This superfamily consists of at least nine families: IPP (isopentenyl diphosphate) isomerase, ADP ribose pyrophosphatase, mutT pyrophosphohydrolase, coenzyme-A pyrophosphatase, MTH1-7,8-dihydro-8-oxoguanine-triphosphatase, diadenosine tetraphosphate hydrolase, NADH pyrophosphatase, GDP-mannose hydrolase and the c-terminal portion of the mutY adenine glycosylase. Pssm-ID: 467568 [Multi-domain] Cd Length: 138 Bit Score: 51.03 E-value: 5.36e-09
|
|||||||
NUDIX_Hydrolase | cd04688 | uncharacterized NUDIX hydrolase subfamily; NUDIX hydrolase is a superfamily of enzymes found ... |
9-124 | 7.94e-09 | |||
uncharacterized NUDIX hydrolase subfamily; NUDIX hydrolase is a superfamily of enzymes found in all three kingdoms of life, and it catalyzes the hydrolysis of NUcleoside DIphosphates linked to other moieties, X. Enzymes belonging to this superfamily require a divalent cation, such as Mg2+ or Mn2+ for their activity. Members of this family are recognized by a highly conserved 23-residue NUDIX motif (GX5EX7REUXEEXGU, where U = I, L or V), which forms a structural motif that functions as a metal binding and catalytic site. Substrates of NUDIX hydrolase include intact and oxidatively damaged nucleoside triphosphates, dinucleoside polyphosphates, nucleotide-sugars and dinucleotide enzymes. These substrates are metabolites or cell signaling molecules that require regulation during different stages of the cell cycle or during periods of stress. In general, the role of the NUDIX hydrolase is to sanitize the nucleotide pools and to maintain cell viability, thereby serving as surveillance and "house-cleaning" enzymes. Substrate specificity is used to define child families within the superfamily. Differences in substrate specificity are determined by the N-terminal extension or by residues in variable loop regions. Mechanistically, substrate hydrolysis occurs by a nucleophilic substitution reaction, with variation in the numbers and roles of divalent cations required. This superfamily consists of at least nine families: IPP (isopentenyl diphosphate) isomerase, ADP ribose pyrophosphatase, mutT pyrophosphohydrolase, coenzyme-A pyrophosphatase, MTH1-7,8-dihydro-8-oxoguanine-triphosphatase, diadenosine tetraphosphate hydrolase, NADH pyrophosphatase, GDP-mannose hydrolase and the c-terminal portion of the mutY adenine glycosylase. Pssm-ID: 467570 [Multi-domain] Cd Length: 130 Bit Score: 50.63 E-value: 7.94e-09
|
|||||||
NUDIX_NadM_like | cd18873 | bifunctional NMN adenylyltransferase/ADP-ribose pyrophosphatase and similar proteins; ... |
5-121 | 1.52e-08 | |||
bifunctional NMN adenylyltransferase/ADP-ribose pyrophosphatase and similar proteins; Bacterial NadM-Nudix is a bifunctional enzyme containing a nicotinamide mononucleotide (NMN) adenylyltransferase (NMNAT) and an ADP-ribose pyrophosphatase (ADPRase) domain. NMNAT was initially identified as an NAD+ synthase that catalyzes the reversible conversion of NMN to NAD+ in the final step of both the de novo biosynthesis and salvage pathways in most organisms across all three kingdoms of life ADPRase is a member of the NUDIX family proteins, catalyzes the metal-induced and concerted general acid-base hydrolysis of ADP ribose (ADPR) into AMP and ribose-5'-phosphate (R5P). Additional members in this cd include bacterial transcriptional regulator, NrtR, which represses the transcription of NAD biosynthetic genes in vitro and adenosine diphosphate ribose (ADPR), as well as NadQ, a NUDIX-like ATP-responsive regulator of NAD biosynthesis. Members of the NUDIX hydrolase superfamily catalyze the hydrolysis of NUcleoside DIphosphates linked to other moieties, X. Enzymes belong to this superfamily requires a divalent cation, such as Mg2+ or Mn2+ for their activity and contain a highly conserved 23-residue NUDIX motif (GX5EX7REUXEEXGU, U=I, L or V) which functions as metal binding and catalytic site. Substrates of NUDIX hydrolase include intact and oxidatively damaged nucleoside triphosphates, dinucleoside polyphosphates, nucleotide-sugars and dinucleotide enzymes. These substrates are metabolites or cell signaling molecules that require regulation during different stages of the cell cycle or during periods of stress. In general, the role of the NUDIX hydrolase is to sanitize the nucleotide pools and to maintain cell viability, thereby serving as surveillance _ "house-cleaning" enzymes. Substrate specificity is used to define families within the superfamily. Differences in substrate specificity are determined by the N-terminal extension or by residues in variable loop regions. Mechanistically, substrate hydrolysis occurs by a nucleophilic substitution reaction, with variation in the numbers and roles of divalent cations required. Pssm-ID: 467585 [Multi-domain] Cd Length: 132 Bit Score: 49.85 E-value: 1.52e-08
|
|||||||
NUDIX_ADPRase | cd04691 | ADP-ribose pyrophosphatase and similar proteins; ADP-ribose pyrophosphatase (ADPRase; EC 3.6.1. ... |
16-64 | 2.07e-08 | |||
ADP-ribose pyrophosphatase and similar proteins; ADP-ribose pyrophosphatase (ADPRase; EC 3.6.1.13) catalyzes the hydrolysis of ADP-ribose to AMP and ribose-5-P. Like other members of the NUDIX hydrolase superfamily of enzymes, it is thought to require a divalent cation, such as Mg2+, for its activity. It also contains a 23-residue NUDIX motif (GX5EX7REUXEEXGU, where U = I, L or V) which functions as a metal binding site/catalytic site. In addition to the NUDIX motif, there are additional conserved amino acid residues, distal from the signature sequence, that correlate with substrate specificity. In humans, there are four distinct ADPRase activities, three putative cytosolic (ADPRase-I, -II, and -Mn) and a single mitochondrial enzyme (ADPRase-m). ADPRase-m is also known as NUDT9. It can be distinugished from the cytosolic ADPRase by a N-terminal target sequence unique to mitochondrial ADPRase. NUDT9 functions as a monomer. Pssm-ID: 467573 [Multi-domain] Cd Length: 122 Bit Score: 49.22 E-value: 2.07e-08
|
|||||||
NUDIX_Hydrolase | cd04681 | uncharacterized NUDIX hydrolase subfamily; NUDIX hydrolase is a superfamily of enzymes found ... |
8-63 | 2.08e-08 | |||
uncharacterized NUDIX hydrolase subfamily; NUDIX hydrolase is a superfamily of enzymes found in all three kingdoms of life, and it catalyzes the hydrolysis of NUcleoside DIphosphates linked to other moieties, X. Enzymes belonging to this superfamily require a divalent cation, such as Mg2+ or Mn2+ for their activity. Members of this family are recognized by a highly conserved 23-residue NUDIX motif (GX5EX7REUXEEXGU, where U = I, L or V), which forms a structural motif that functions as a metal binding and catalytic site. Substrates of NUDIX hydrolase include intact and oxidatively damaged nucleoside triphosphates, dinucleoside polyphosphates, nucleotide-sugars and dinucleotide enzymes. These substrates are metabolites or cell signaling molecules that require regulation during different stages of the cell cycle or during periods of stress. In general, the role of the NUDIX hydrolase is to sanitize the nucleotide pools and to maintain cell viability, thereby serving as surveillance and "house-cleaning" enzymes. Substrate specificity is used to define child families within the superfamily. Differences in substrate specificity are determined by the N-terminal extension or by residues in variable loop regions. Mechanistically, substrate hydrolysis occurs by a nucleophilic substitution reaction, with variation in the numbers and roles of divalent cations required. This superfamily consists of at least nine families: IPP (isopentenyl diphosphate) isomerase, ADP ribose pyrophosphatase, mutT pyrophosphohydrolase, coenzyme-A pyrophosphatase, MTH1-7,8-dihydro-8-oxoguanine-triphosphatase, diadenosine tetraphosphate hydrolase, NADH pyrophosphatase, GDP-mannose hydrolase and the c-terminal portion of the mutY adenine glycosylase. Pssm-ID: 467564 [Multi-domain] Cd Length: 135 Bit Score: 49.49 E-value: 2.08e-08
|
|||||||
NUDIX_ADPRase | cd18880 | ADP-ribose pyrophosphatase and similar proteins; ADP-ribose pyrophosphatase (ADPRase; EC 3.6.1. ... |
8-124 | 2.63e-08 | |||
ADP-ribose pyrophosphatase and similar proteins; ADP-ribose pyrophosphatase (ADPRase; EC 3.6.1.13) catalyzes the hydrolysis of ADP-ribose to AMP and ribose-5-P. Like other members of the NUDIX hydrolase superfamily of enzymes, it is thought to require a divalent cation, such as Mg2+, for its activity. It also contains a 23-residue NUDIX motif (GX5EX7REUXEEXGU, where U = I, L or V) which functions as a metal binding site/catalytic site. In addition to the NUDIX motif, there are additional conserved amino acid residues, distal from the signature sequence, that correlate with substrate specificity. In humans, there are four distinct ADPRase activities, three putative cytosolic (ADPRase-I, -II, and -Mn) and a single mitochondrial enzyme (ADPRase-m). ADPRase-m is also known as NUDT9. It can be distinugished from the cytosolic ADPRase by a N-terminal target sequence unique to mitochondrial ADPRase. NUDT9 functions as a monomer. Pssm-ID: 467591 [Multi-domain] Cd Length: 126 Bit Score: 49.06 E-value: 2.63e-08
|
|||||||
NUDIX_Hydrolase | cd18879 | uncharacterized NUDIX hydrolase subfamily; NUDIX hydrolase is a superfamily of enzymes found ... |
4-63 | 2.86e-08 | |||
uncharacterized NUDIX hydrolase subfamily; NUDIX hydrolase is a superfamily of enzymes found in all three kingdoms of life, and it catalyzes the hydrolysis of NUcleoside DIphosphates linked to other moieties, X. Enzymes belonging to this superfamily require a divalent cation, such as Mg2+ or Mn2+ for their activity. Members of this family are recognized by a highly conserved 23-residue NUDIX motif (GX5EX7REUXEEXGU, where U = I, L or V), which forms a structural motif that functions as a metal binding and catalytic site. Substrates of NUDIX hydrolase include intact and oxidatively damaged nucleoside triphosphates, dinucleoside polyphosphates, nucleotide-sugars and dinucleotide enzymes. These substrates are metabolites or cell signaling molecules that require regulation during different stages of the cell cycle or during periods of stress. In general, the role of the NUDIX hydrolase is to sanitize the nucleotide pools and to maintain cell viability, thereby serving as surveillance and "house-cleaning" enzymes. Substrate specificity is used to define child families within the superfamily. Differences in substrate specificity are determined by the N-terminal extension or by residues in variable loop regions. Mechanistically, substrate hydrolysis occurs by a nucleophilic substitution reaction, with variation in the numbers and roles of divalent cations required. This superfamily consists of at least nine families: IPP (isopentenyl diphosphate) isomerase, ADP ribose pyrophosphatase, mutT pyrophosphohydrolase, coenzyme-A pyrophosphatase, MTH1-7,8-dihydro-8-oxoguanine-triphosphatase, diadenosine tetraphosphate hydrolase, NADH pyrophosphatase, GDP-mannose hydrolase and the c-terminal portion of the mutY adenine glycosylase. Pssm-ID: 467590 [Multi-domain] Cd Length: 142 Bit Score: 49.51 E-value: 2.86e-08
|
|||||||
NUDIX_Hydrolase | cd04667 | uncharacterized NUDIX hydrolase subfamily; NUDIX hydrolase is a superfamily of enzymes found ... |
13-63 | 3.42e-08 | |||
uncharacterized NUDIX hydrolase subfamily; NUDIX hydrolase is a superfamily of enzymes found in all three kingdoms of life, and it catalyzes the hydrolysis of NUcleoside DIphosphates linked to other moieties, X. Enzymes belonging to this superfamily require a divalent cation, such as Mg2+ or Mn2+ for their activity. Members of this family are recognized by a highly conserved 23-residue NUDIX motif (GX5EX7REUXEEXGU, where U = I, L or V), which forms a structural motif that functions as a metal binding and catalytic site. Substrates of NUDIX hydrolase include intact and oxidatively damaged nucleoside triphosphates, dinucleoside polyphosphates, nucleotide-sugars and dinucleotide enzymes. These substrates are metabolites or cell signaling molecules that require regulation during different stages of the cell cycle or during periods of stress. In general, the role of the NUDIX hydrolase is to sanitize the nucleotide pools and to maintain cell viability, thereby serving as surveillance and "house-cleaning" enzymes. Substrate specificity is used to define child families within the superfamily. Differences in substrate specificity are determined by the N-terminal extension or by residues in variable loop regions. Mechanistically, substrate hydrolysis occurs by a nucleophilic substitution reaction, with variation in the numbers and roles of divalent cations required. This superfamily consists of at least nine families: IPP (isopentenyl diphosphate) isomerase, ADP ribose pyrophosphatase, mutT pyrophosphohydrolase, coenzyme-A pyrophosphatase, MTH1-7,8-dihydro-8-oxoguanine-triphosphatase, diadenosine tetraphosphate hydrolase, NADH pyrophosphatase, GDP-mannose hydrolase and the c-terminal portion of the mutY adenine glycosylase. Pssm-ID: 467552 [Multi-domain] Cd Length: 117 Bit Score: 48.82 E-value: 3.42e-08
|
|||||||
NUDIX_Hydrolase | cd04690 | uncharacterized NUDIX hydrolase subfamily; NUDIX hydrolase is a superfamily of enzymes found ... |
11-77 | 4.77e-08 | |||
uncharacterized NUDIX hydrolase subfamily; NUDIX hydrolase is a superfamily of enzymes found in all three kingdoms of life, and it catalyzes the hydrolysis of NUcleoside DIphosphates linked to other moieties, X. Enzymes belonging to this superfamily require a divalent cation, such as Mg2+ or Mn2+ for their activity. Members of this family are recognized by a highly conserved 23-residue NUDIX motif (GX5EX7REUXEEXGU, where U = I, L or V), which forms a structural motif that functions as a metal binding and catalytic site. Substrates of NUDIX hydrolase include intact and oxidatively damaged nucleoside triphosphates, dinucleoside polyphosphates, nucleotide-sugars and dinucleotide enzymes. These substrates are metabolites or cell signaling molecules that require regulation during different stages of the cell cycle or during periods of stress. In general, the role of the NUDIX hydrolase is to sanitize the nucleotide pools and to maintain cell viability, thereby serving as surveillance and "house-cleaning" enzymes. Substrate specificity is used to define child families within the superfamily. Differences in substrate specificity are determined by the N-terminal extension or by residues in variable loop regions. Mechanistically, substrate hydrolysis occurs by a nucleophilic substitution reaction, with variation in the numbers and roles of divalent cations required. This superfamily consists of at least nine families: IPP (isopentenyl diphosphate) isomerase, ADP ribose pyrophosphatase, mutT pyrophosphohydrolase, coenzyme-A pyrophosphatase, MTH1-7,8-dihydro-8-oxoguanine-triphosphatase, diadenosine tetraphosphate hydrolase, NADH pyrophosphatase, GDP-mannose hydrolase and the c-terminal portion of the mutY adenine glycosylase. Pssm-ID: 467572 [Multi-domain] Cd Length: 123 Bit Score: 48.30 E-value: 4.77e-08
|
|||||||
NUDIX_U8_SnoRNA_DE_Nudt16 | cd18869 | nucleoside diphosphate-linked moiety X)) motif 16; U8 SnoRNA-decapping enzyme, also known as ... |
7-108 | 9.83e-08 | |||
nucleoside diphosphate-linked moiety X)) motif 16; U8 SnoRNA-decapping enzyme, also known as NUDIX (nucleoside diphosphate-linked moiety X)) motif 16/Nudt16, is encoded by the human NUDT16 gene and a RNA-binding and decapping enzyme that catalyzes the cleavage of the cap structure of snoRNAs and mRNAs in a metal-dependent manner. Members of the NUDIX hydrolase superfamily catalyze the hydrolysis of NUcleoside DIphosphates linked to other moieties, X. Enzymes belonging to this superfamily require a divalent cation, such as Mg2+ or Mn2+, for their activity and contain a highly conserved 23-residue NUDIX motif (GX5EX7REUXEEXGU, where U = I, L or V), which functions as a metal binding and catalytic site. Substrates of NUDIX hydrolases include intact and oxidatively damaged nucleoside triphosphates, dinucleoside polyphosphates, nucleotide-sugars and dinucleotide enzymes. These substrates are metabolites or cell signaling molecules that require regulation during different stages of the cell cycle or during periods of stress. In general, the role of the NUDIX hydrolase is to sanitize the nucleotide pools and to maintain cell viability, thereby serving as surveillance _ "house-cleaning" enzymes. Substrate specificity is used to define families within the superfamily. Differences in substrate specificity are determined by the N-terminal extension or by residues in variable loop regions. Mechanistically, substrate hydrolysis occurs by a nucleophilic substitution reaction, with variation in the numbers and roles of divalent cations required. Pssm-ID: 467581 Cd Length: 175 Bit Score: 48.51 E-value: 9.83e-08
|
|||||||
NUDIX_Hydrolase | cd18875 | uncharacterized NUDIX hydrolase subfamily; NUDIX hydrolase is a superfamily of enzymes found ... |
12-63 | 1.06e-07 | |||
uncharacterized NUDIX hydrolase subfamily; NUDIX hydrolase is a superfamily of enzymes found in all three kingdoms of life, and it catalyzes the hydrolysis of NUcleoside DIphosphates linked to other moieties, X. Enzymes belonging to this superfamily require a divalent cation, such as Mg2+ or Mn2+ for their activity. Members of this family are recognized by a highly conserved 23-residue NUDIX motif (GX5EX7REUXEEXGU, where U = I, L or V), which forms a structural motif that functions as a metal binding and catalytic site. Substrates of NUDIX hydrolase include intact and oxidatively damaged nucleoside triphosphates, dinucleoside polyphosphates, nucleotide-sugars and dinucleotide enzymes. These substrates are metabolites or cell signaling molecules that require regulation during different stages of the cell cycle or during periods of stress. In general, the role of the NUDIX hydrolase is to sanitize the nucleotide pools and to maintain cell viability, thereby serving as surveillance and "house-cleaning" enzymes. Substrate specificity is used to define child families within the superfamily. Differences in substrate specificity are determined by the N-terminal extension or by residues in variable loop regions. Mechanistically, substrate hydrolysis occurs by a nucleophilic substitution reaction, with variation in the numbers and roles of divalent cations required. This superfamily consists of at least nine families: IPP (isopentenyl diphosphate) isomerase, ADP ribose pyrophosphatase, mutT pyrophosphohydrolase, coenzyme-A pyrophosphatase, MTH1-7,8-dihydro-8-oxoguanine-triphosphatase, diadenosine tetraphosphate hydrolase, NADH pyrophosphatase, GDP-mannose hydrolase and the c-terminal portion of the mutY adenine glycosylase. Pssm-ID: 467587 [Multi-domain] Cd Length: 144 Bit Score: 47.95 E-value: 1.06e-07
|
|||||||
NUDIX_Hydrolase | cd04677 | uncharacterized NUDIX hydrolase subfamily; NUDIX hydrolase is a superfamily of enzymes found ... |
12-75 | 1.74e-07 | |||
uncharacterized NUDIX hydrolase subfamily; NUDIX hydrolase is a superfamily of enzymes found in all three kingdoms of life, and it catalyzes the hydrolysis of NUcleoside DIphosphates linked to other moieties, X. Enzymes belonging to this superfamily require a divalent cation, such as Mg2+ or Mn2+ for their activity. Members of this family are recognized by a highly conserved 23-residue NUDIX motif (GX5EX7REUXEEXGU, where U = I, L or V), which forms a structural motif that functions as a metal binding and catalytic site. Substrates of NUDIX hydrolase include intact and oxidatively damaged nucleoside triphosphates, dinucleoside polyphosphates, nucleotide-sugars and dinucleotide enzymes. These substrates are metabolites or cell signaling molecules that require regulation during different stages of the cell cycle or during periods of stress. In general, the role of the NUDIX hydrolase is to sanitize the nucleotide pools and to maintain cell viability, thereby serving as surveillance and "house-cleaning" enzymes. Substrate specificity is used to define child families within the superfamily. Differences in substrate specificity are determined by the N-terminal extension or by residues in variable loop regions. Mechanistically, substrate hydrolysis occurs by a nucleophilic substitution reaction, with variation in the numbers and roles of divalent cations required. This superfamily consists of at least nine families: IPP (isopentenyl diphosphate) isomerase, ADP ribose pyrophosphatase, mutT pyrophosphohydrolase, coenzyme-A pyrophosphatase, MTH1-7,8-dihydro-8-oxoguanine-triphosphatase, diadenosine tetraphosphate hydrolase, NADH pyrophosphatase, GDP-mannose hydrolase and the c-terminal portion of the mutY adenine glycosylase. Pssm-ID: 467560 [Multi-domain] Cd Length: 137 Bit Score: 47.12 E-value: 1.74e-07
|
|||||||
NUDIX_Ap4A_Nudt2 | cd03428 | diadenosine tetraphosphate; Diadenosine tetraphosphate (Ap4A; EC 3.6.1.17), also called NUDIX ... |
11-120 | 1.87e-07 | |||
diadenosine tetraphosphate; Diadenosine tetraphosphate (Ap4A; EC 3.6.1.17), also called NUDIX (nucleoside diphosphate-linked moiety X)) motif 2/Nudt2, is a member of the NUDIX hydrolase superfamily. Ap4A hydrolases are well represented in a variety of prokaryotic and eukaryotic organisms. Phylogenetic analysis reveals two distinct subgroups where plant enzymes fall into one subfamily and fungi/animals/archaea enzymes, represented by this subfamily, fall into another. Bacterial enzymes are found in both subfamilies. Ap4A is a potential by-product of aminoacyl tRNA synthesis, and accumulation of Ap4A has been implicated in a range of biological events, such as DNA replication, cellular differentiation, heat shock, metabolic stress, and apoptosis. Ap4A hydrolase cleaves Ap4A asymmetrically into ATP and AMP. It is important in the invasive properties of bacteria and thus presents a potential target for inhibition of such invasive bacteria. Besides the signature NUDIX motif (G[X5]E[X7]REUXEEXGU, where U is Ile, Leu, or Val) that functions as a metal binding and catalytic site, and a required divalent cation, Ap4A hydrolase is structurally similar to the other members of the NUDIX hydrolase superfamily with some degree of variation. Several regions in the sequences are poorly defined and substrate and metal binding sites are only predicted based on kinetic studies. Pssm-ID: 467534 [Multi-domain] Cd Length: 132 Bit Score: 47.16 E-value: 1.87e-07
|
|||||||
NUDIX_4 | pfam14815 | NUDIX domain; |
11-118 | 3.30e-07 | |||
NUDIX domain; Pssm-ID: 464330 [Multi-domain] Cd Length: 114 Bit Score: 46.15 E-value: 3.30e-07
|
|||||||
NUDIX_Hydrolase | cd04682 | uncharacterized NUDIX hydrolase subfamily; NUDIX hydrolase is a superfamily of enzymes found ... |
9-93 | 3.95e-07 | |||
uncharacterized NUDIX hydrolase subfamily; NUDIX hydrolase is a superfamily of enzymes found in all three kingdoms of life, and it catalyzes the hydrolysis of NUcleoside DIphosphates linked to other moieties, X. Enzymes belonging to this superfamily require a divalent cation, such as Mg2+ or Mn2+ for their activity. Members of this family are recognized by a highly conserved 23-residue NUDIX motif (GX5EX7REUXEEXGU, where U = I, L or V), which forms a structural motif that functions as a metal binding and catalytic site. Substrates of NUDIX hydrolase include intact and oxidatively damaged nucleoside triphosphates, dinucleoside polyphosphates, nucleotide-sugars and dinucleotide enzymes. These substrates are metabolites or cell signaling molecules that require regulation during different stages of the cell cycle or during periods of stress. In general, the role of the NUDIX hydrolase is to sanitize the nucleotide pools and to maintain cell viability, thereby serving as surveillance and "house-cleaning" enzymes. Substrate specificity is used to define child families within the superfamily. Differences in substrate specificity are determined by the N-terminal extension or by residues in variable loop regions. Mechanistically, substrate hydrolysis occurs by a nucleophilic substitution reaction, with variation in the numbers and roles of divalent cations required. This superfamily consists of at least nine families: IPP (isopentenyl diphosphate) isomerase, ADP ribose pyrophosphatase, mutT pyrophosphohydrolase, coenzyme-A pyrophosphatase, MTH1-7,8-dihydro-8-oxoguanine-triphosphatase, diadenosine tetraphosphate hydrolase, NADH pyrophosphatase, GDP-mannose hydrolase and the c-terminal portion of the mutY adenine glycosylase. Pssm-ID: 467565 [Multi-domain] Cd Length: 123 Bit Score: 46.13 E-value: 3.95e-07
|
|||||||
NUDIX_Hydrolase | cd04683 | uncharacterized NUDIX hydrolase subfamily; NUDIX hydrolase is a superfamily of enzymes found ... |
12-63 | 7.68e-07 | |||
uncharacterized NUDIX hydrolase subfamily; NUDIX hydrolase is a superfamily of enzymes found in all three kingdoms of life, and it catalyzes the hydrolysis of NUcleoside DIphosphates linked to other moieties, X. Enzymes belonging to this superfamily require a divalent cation, such as Mg2+ or Mn2+ for their activity. Members of this family are recognized by a highly conserved 23-residue NUDIX motif (GX5EX7REUXEEXGU, where U = I, L or V), which forms a structural motif that functions as a metal binding and catalytic site. Substrates of NUDIX hydrolase include intact and oxidatively damaged nucleoside triphosphates, dinucleoside polyphosphates, nucleotide-sugars and dinucleotide enzymes. These substrates are metabolites or cell signaling molecules that require regulation during different stages of the cell cycle or during periods of stress. In general, the role of the NUDIX hydrolase is to sanitize the nucleotide pools and to maintain cell viability, thereby serving as surveillance and "house-cleaning" enzymes. Substrate specificity is used to define child families within the superfamily. Differences in substrate specificity are determined by the N-terminal extension or by residues in variable loop regions. Mechanistically, substrate hydrolysis occurs by a nucleophilic substitution reaction, with variation in the numbers and roles of divalent cations required. This superfamily consists of at least nine families: IPP (isopentenyl diphosphate) isomerase, ADP ribose pyrophosphatase, mutT pyrophosphohydrolase, coenzyme-A pyrophosphatase, MTH1-7,8-dihydro-8-oxoguanine-triphosphatase, diadenosine tetraphosphate hydrolase, NADH pyrophosphatase, GDP-mannose hydrolase and the c-terminal portion of the mutY adenine glycosylase. Pssm-ID: 467566 [Multi-domain] Cd Length: 137 Bit Score: 45.29 E-value: 7.68e-07
|
|||||||
NUDIX_NADH_pyrophosphatase_Nudt13 | cd03429 | NADH pyrophosphatase; NADH pyrophosphatase, also known as NUDIX (nucleoside diphosphate linked ... |
8-63 | 1.10e-06 | |||
NADH pyrophosphatase; NADH pyrophosphatase, also known as NUDIX (nucleoside diphosphate linked moiety X)) motif 13/Nudt13, is thought to have NADH pyrophosphatase activity, be involved in NADH metabolic process and NADP catabolic process, catalyzing the cleavage of NADH into reduced nicotinamide mononucleotide (NMNH) and AMP, and located in mitochondrion. Like other members of the NUDIX family, it requires a divalent cation, such as Mg2+ or Mn2+, for activity. Members of this family are also recognized by the NUDIX motif, a highly conserved 23-residue block (GX5EX7REUXEEXGU, where U = I, L or V), that functions as a metal binding and catalytic site. A block of 8 conserved amino acids downstream of the NUDIX motif is thought to give NADH pyrophosphatase its specificity for NADH. NADH pyrophosphatase forms a dimer. Pssm-ID: 467535 [Multi-domain] Cd Length: 126 Bit Score: 44.79 E-value: 1.10e-06
|
|||||||
NUDIX_MutT_Nudt1 | cd04679 | MutT homolog-1 and similar proteins; MutT homolog-1 (MTH1), also known as NUDIX (nucleoside ... |
15-63 | 1.25e-06 | |||
MutT homolog-1 and similar proteins; MutT homolog-1 (MTH1), also known as NUDIX (nucleoside diphosphate-linked moiety X)) motif 1/Nudt1, is a member of the NUDIX hydrolase superfamily. MTH1, the mammalian counterpart of MutT, hydrolyzes oxidized purine nucleoside triphosphates, such as 8-oxo-dGTP and 2-hydroxy-ATP, to monophosphates, thereby preventing the incorporation of such oxygen radicals during replication. This is an important step in the repair mechanism in genomic and mitochondrial DNA. Like other members of the NUDIX family, it requires a divalent cation, such as Mg2+ or Mn2+, for activity, and contain the NUDIX motif, a highly conserved 23-residue block (GX5EX7REUXEEXGU, where U = I, L or V), that functions as a metal binding and catalytic site. MTH1 is predominantly localized in the cytoplasm and mitochondria. Structurally, this enzyme adopts a similar fold to MutT despite low sequence similarity outside the conserved NUDIX motif. The most distinctive structural difference between MutT and MTH1 is the presence of a beta-hairpin, which is absent in MutT. This results in a much deeper and narrower substrate binding pocket. Mechanistically, MTH1 contains dual specificity for nucleotides that contain 2-OH-adenine bases and those that contain 8-oxo-guanine bases. Pssm-ID: 467562 [Multi-domain] Cd Length: 126 Bit Score: 44.61 E-value: 1.25e-06
|
|||||||
NUDIX_IPP_Isomerase | cd02885 | Isopentenyl diphosphate isomerase; Isopentenyl diphosphate (IPP) isomerase, a member of the ... |
8-124 | 1.51e-06 | |||
Isopentenyl diphosphate isomerase; Isopentenyl diphosphate (IPP) isomerase, a member of the NUDIX hydrolase superfamily, is a key enzyme in the isoprenoid biosynthetic pathway. Isoprenoids comprise a large family of natural products including sterols, carotenoids, dolichols and prenylated proteins. These compounds are synthesized from two precursors: isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP). IPP isomerase catalyzes the interconversion of IPP and DMAPP by a stereoselective antarafacial transposition of hydrogen. The enzyme requires one Mn2+ or Mg2+ ion in its active site to fold into an active conformation and also contains the NUDIX motif, a highly conserved 23-residue block (GX5EX7REUXEEXGU, where U = I, L or V), that functions as a metal binding and catalytic site. The metal binding site is present within the active site and plays structural and catalytical roles. IPP isomerase is well represented in several bacteria, archaebacteria and eukaryotes, including fungi, mammals and plants. Despite sequence variations (mainly at the N-terminus), the core structure is highly conserved. Pssm-ID: 467529 [Multi-domain] Cd Length: 162 Bit Score: 45.18 E-value: 1.51e-06
|
|||||||
nudB | PRK09438 | dihydroneopterin triphosphate pyrophosphatase; Provisional |
1-115 | 2.23e-06 | |||
dihydroneopterin triphosphate pyrophosphatase; Provisional Pssm-ID: 236516 [Multi-domain] Cd Length: 148 Bit Score: 44.50 E-value: 2.23e-06
|
|||||||
NUDIX_DHNTPase_like | cd04664 | dihydroneopterin hydrolase; DHNTP pyrophosphatase (DHNTPase) catalyzes the hydrolysis of ... |
7-121 | 2.25e-06 | |||
dihydroneopterin hydrolase; DHNTP pyrophosphatase (DHNTPase) catalyzes the hydrolysis of dihydroneopterin triphosphate (DHNTP) to dihydroneopterin monophosphate (DHNMP) and pyrophosphate,the second step in the pterin branch of the folate synthesis pathway in bacteria. Members of the NUDIX hydrolase superfamily catalyze the hydrolysis of NUcleoside DIphosphates linked to other moieties, X. Enzymes belonging to this superfamily require a divalent cation, such as Mg2+ or Mn2+, for their activity and contain a highly conserved 23-residue NUDIX motif (GX5EX7REUXEEXGU, where U = I, L or V), which functions as a metal binding and catalytic site. Substrates of NUDIX hydrolases include intact and oxidatively damaged nucleoside triphosphates, dinucleoside polyphosphates, nucleotide-sugars and dinucleotide enzymes. These substrates are metabolites or cell signaling molecules that require regulation during different stages of the cell cycle or during periods of stress. In general, the role of the NUDIX hydrolase is to sanitize the nucleotide pools and to maintain cell viability, thereby serving as surveillance _ "house-cleaning" enzymes. Substrate specificity is used to define families within the superfamily. Differences in substrate specificity are determined by the N-terminal extension or by residues in variable loop regions. Mechanistically, substrate hydrolysis occurs by a nucleophilic substitution reaction, with variation in the numbers and roles of divalent cations required. Pssm-ID: 467549 [Multi-domain] Cd Length: 132 Bit Score: 44.16 E-value: 2.25e-06
|
|||||||
NUDIX_Hydrolase | cd04676 | uncharacterized NUDIX hydrolase subfamily; NUDIX hydrolase is a superfamily of enzymes found ... |
1-65 | 2.93e-06 | |||
uncharacterized NUDIX hydrolase subfamily; NUDIX hydrolase is a superfamily of enzymes found in all three kingdoms of life, and it catalyzes the hydrolysis of NUcleoside DIphosphates linked to other moieties, X. Enzymes belonging to this superfamily require a divalent cation, such as Mg2+ or Mn2+ for their activity. Members of this family are recognized by a highly conserved 23-residue NUDIX motif (GX5EX7REUXEEXGU, where U = I, L or V), which forms a structural motif that functions as a metal binding and catalytic site. Substrates of NUDIX hydrolase include intact and oxidatively damaged nucleoside triphosphates, dinucleoside polyphosphates, nucleotide-sugars and dinucleotide enzymes. These substrates are metabolites or cell signaling molecules that require regulation during different stages of the cell cycle or during periods of stress. In general, the role of the NUDIX hydrolase is to sanitize the nucleotide pools and to maintain cell viability, thereby serving as surveillance and "house-cleaning" enzymes. Substrate specificity is used to define child families within the superfamily. Differences in substrate specificity are determined by the N-terminal extension or by residues in variable loop regions. Mechanistically, substrate hydrolysis occurs by a nucleophilic substitution reaction, with variation in the numbers and roles of divalent cations required. This superfamily consists of at least nine families: IPP (isopentenyl diphosphate) isomerase, ADP ribose pyrophosphatase, mutT pyrophosphohydrolase, coenzyme-A pyrophosphatase, MTH1-7,8-dihydro-8-oxoguanine-triphosphatase, diadenosine tetraphosphate hydrolase, NADH pyrophosphatase, GDP-mannose hydrolase and the c-terminal portion of the mutY adenine glycosylase. Pssm-ID: 467559 [Multi-domain] Cd Length: 144 Bit Score: 43.93 E-value: 2.93e-06
|
|||||||
NUDIX_MTH1_Nudt1 | cd03427 | MutT homolog-1 (MTH1); MutT homolog-1 (MTH1; EC 3.6.1.- ), also called nucleoside ... |
11-63 | 7.55e-06 | |||
MutT homolog-1 (MTH1); MutT homolog-1 (MTH1; EC 3.6.1.- ), also called nucleoside diphosphate-linked moiety X)) motif 1 (Nudt1), is a member of the NUDIX hydrolase superfamily. MTH1, the mammalian counterpart of MutT, hydrolyzes oxidized purine nucleoside triphosphates, such as 8-oxo-dGTP and 2-hydroxy-ATP, to monophosphates, thereby preventing the incorporation of such oxygen radicals during replication. This is an important step in the repair mechanism in genomic and mitochondrial DNA. Like other members of the NUDIX family, it requires a divalent cation, such as Mg2+ or Mn2+, for activity, and contain the NUDIX motif, a highly conserved 23-residue block (GX5EX7REUXEEXGU, where U = I, L or V), that functions as a metal binding and catalytic site. MTH1 is predominantly localized in the cytoplasm and mitochondria. Structurally, this enzyme adopts a similar fold to MutT despite low sequence similarity outside the conserved NUDIX motif. The most distinctive structural difference between MutT and MTH1 is the presence of a beta-hairpin, which is absent in MutT. This results in a much deeper and narrower substrate binding pocket. Mechanistically, MTH1 contains dual specificity for nucleotides that contain 2-OH-adenine bases and those that contain 8-oxo-guanine bases. Pssm-ID: 467533 [Multi-domain] Cd Length: 136 Bit Score: 42.90 E-value: 7.55e-06
|
|||||||
NUDIX_GDPMH_NudD | cd03430 | GDP-mannose glycosyl hydrolase; GDP-mannose glycosyl hydrolase, also known as GDP-mannose ... |
12-64 | 8.26e-06 | |||
GDP-mannose glycosyl hydrolase; GDP-mannose glycosyl hydrolase, also known as GDP-mannose mannosyl hydrolase/GDPMH, is a member of the NUDIX hydrolase superfamily. This class of enzymes is unique from other members of the superfamily in two aspects. First, it contains a modified NUDIX signature sequence. The slight changes to the conserved sequence motif, GX5EX7REUXEEXGU, where U = I, L or V), are believed to contribute to the removal of all magnesium binding sites but one, retaining only the metal site that coordinates the pyrophosphate of the substrate. Secondly, it is not a pyrophosphatase that substitutes at a phosphorus; instead, it hydrolyzes nucleotide sugars such as GDP-mannose to GDP and mannose, cleaving the phosphoglycosyl bond by substituting at a carbon position. GDP-mannose provides mannosyl components for cell wall synthesis and is required for the synthesis of other glycosyl donors (such as GDP-fucose and colitose) for the cell wall. The importance of GDP-sugar hydrolase activities is thus closely related to the regulation of cell wall biosynthesis. Enzymes in this family are believed to regulate the concentration of GDP-mannose and GDP-glucose in the bacterial cell wall. Pssm-ID: 467536 [Multi-domain] Cd Length: 146 Bit Score: 42.61 E-value: 8.26e-06
|
|||||||
NUDIX_Hydrolase | cd04697 | uncharacterized NUDIX hydrolase subfamily; NUDIX hydrolase is a superfamily of enzymes found ... |
5-63 | 8.42e-06 | |||
uncharacterized NUDIX hydrolase subfamily; NUDIX hydrolase is a superfamily of enzymes found in all three kingdoms of life, and it catalyzes the hydrolysis of NUcleoside DIphosphates linked to other moieties, X. Enzymes belonging to this superfamily require a divalent cation, such as Mg2+ or Mn2+ for their activity. Members of this family are recognized by a highly conserved 23-residue NUDIX motif (GX5EX7REUXEEXGU, where U = I, L or V), which forms a structural motif that functions as a metal binding and catalytic site. Substrates of NUDIX hydrolase include intact and oxidatively damaged nucleoside triphosphates, dinucleoside polyphosphates, nucleotide-sugars and dinucleotide enzymes. These substrates are metabolites or cell signaling molecules that require regulation during different stages of the cell cycle or during periods of stress. In general, the role of the NUDIX hydrolase is to sanitize the nucleotide pools and to maintain cell viability, thereby serving as surveillance and "house-cleaning" enzymes. Substrate specificity is used to define child families within the superfamily. Differences in substrate specificity are determined by the N-terminal extension or by residues in variable loop regions. Mechanistically, substrate hydrolysis occurs by a nucleophilic substitution reaction, with variation in the numbers and roles of divalent cations required. This superfamily consists of at least nine families: IPP (isopentenyl diphosphate) isomerase, ADP ribose pyrophosphatase, mutT pyrophosphohydrolase, coenzyme-A pyrophosphatase, MTH1-7,8-dihydro-8-oxoguanine-triphosphatase, diadenosine tetraphosphate hydrolase, NADH pyrophosphatase, GDP-mannose hydrolase and the c-terminal portion of the mutY adenine glycosylase. Pssm-ID: 467578 [Multi-domain] Cd Length: 157 Bit Score: 42.99 E-value: 8.42e-06
|
|||||||
PRK15472 | PRK15472 | nucleoside triphosphatase NudI; Provisional |
32-63 | 1.36e-05 | |||
nucleoside triphosphatase NudI; Provisional Pssm-ID: 185369 [Multi-domain] Cd Length: 141 Bit Score: 42.04 E-value: 1.36e-05
|
|||||||
NUDIX_Hydrolase | cd18874 | uncharacterized NUDIX hydrolase subfamily; NUDIX hydrolase is a superfamily of enzymes found ... |
9-63 | 1.65e-05 | |||
uncharacterized NUDIX hydrolase subfamily; NUDIX hydrolase is a superfamily of enzymes found in all three kingdoms of life, and it catalyzes the hydrolysis of NUcleoside DIphosphates linked to other moieties, X. Enzymes belonging to this superfamily require a divalent cation, such as Mg2+ or Mn2+ for their activity. Members of this family are recognized by a highly conserved 23-residue NUDIX motif (GX5EX7REUXEEXGU, where U = I, L or V), which forms a structural motif that functions as a metal binding and catalytic site. Substrates of NUDIX hydrolase include intact and oxidatively damaged nucleoside triphosphates, dinucleoside polyphosphates, nucleotide-sugars and dinucleotide enzymes. These substrates are metabolites or cell signaling molecules that require regulation during different stages of the cell cycle or during periods of stress. In general, the role of the NUDIX hydrolase is to sanitize the nucleotide pools and to maintain cell viability, thereby serving as surveillance and "house-cleaning" enzymes. Substrate specificity is used to define child families within the superfamily. Differences in substrate specificity are determined by the N-terminal extension or by residues in variable loop regions. Mechanistically, substrate hydrolysis occurs by a nucleophilic substitution reaction, with variation in the numbers and roles of divalent cations required. This superfamily consists of at least nine families: IPP (isopentenyl diphosphate) isomerase, ADP ribose pyrophosphatase, mutT pyrophosphohydrolase, coenzyme-A pyrophosphatase, MTH1-7,8-dihydro-8-oxoguanine-triphosphatase, diadenosine tetraphosphate hydrolase, NADH pyrophosphatase, GDP-mannose hydrolase and the c-terminal portion of the mutY adenine glycosylase. Pssm-ID: 467586 [Multi-domain] Cd Length: 125 Bit Score: 41.50 E-value: 1.65e-05
|
|||||||
NUDIX_Hydrolase | cd04692 | uncharacterized NUDIX hydrolase subfamily; NUDIX hydrolase is a superfamily of enzymes found ... |
12-63 | 1.82e-05 | |||
uncharacterized NUDIX hydrolase subfamily; NUDIX hydrolase is a superfamily of enzymes found in all three kingdoms of life, and it catalyzes the hydrolysis of NUcleoside DIphosphates linked to other moieties, X. Enzymes belonging to this superfamily require a divalent cation, such as Mg2+ or Mn2+ for their activity. Members of this family are recognized by a highly conserved 23-residue NUDIX motif (GX5EX7REUXEEXGU, where U = I, L or V), which forms a structural motif that functions as a metal binding and catalytic site. Substrates of NUDIX hydrolase include intact and oxidatively damaged nucleoside triphosphates, dinucleoside polyphosphates, nucleotide-sugars and dinucleotide enzymes. These substrates are metabolites or cell signaling molecules that require regulation during different stages of the cell cycle or during periods of stress. In general, the role of the NUDIX hydrolase is to sanitize the nucleotide pools and to maintain cell viability, thereby serving as surveillance and "house-cleaning" enzymes. Substrate specificity is used to define child families within the superfamily. Differences in substrate specificity are determined by the N-terminal extension or by residues in variable loop regions. Mechanistically, substrate hydrolysis occurs by a nucleophilic substitution reaction, with variation in the numbers and roles of divalent cations required. This superfamily consists of at least nine families: IPP (isopentenyl diphosphate) isomerase, ADP ribose pyrophosphatase, mutT pyrophosphohydrolase, coenzyme-A pyrophosphatase, MTH1-7,8-dihydro-8-oxoguanine-triphosphatase, diadenosine tetraphosphate hydrolase, NADH pyrophosphatase, GDP-mannose hydrolase and the c-terminal portion of the mutY adenine glycosylase. Pssm-ID: 467574 [Multi-domain] Cd Length: 142 Bit Score: 41.78 E-value: 1.82e-05
|
|||||||
NUDIX_Hydrolase | cd04669 | uncharacterized NUDIX hydrolase subfamily; NUDIX hydrolase is a superfamily of enzymes found ... |
11-63 | 1.82e-05 | |||
uncharacterized NUDIX hydrolase subfamily; NUDIX hydrolase is a superfamily of enzymes found in all three kingdoms of life, and it catalyzes the hydrolysis of NUcleoside DIphosphates linked to other moieties, X. Enzymes belonging to this superfamily require a divalent cation, such as Mg2+ or Mn2+ for their activity. Members of this family are recognized by a highly conserved 23-residue NUDIX motif (GX5EX7REUXEEXGU, where U = I, L or V), which forms a structural motif that functions as a metal binding and catalytic site. Substrates of NUDIX hydrolase include intact and oxidatively damaged nucleoside triphosphates, dinucleoside polyphosphates, nucleotide-sugars and dinucleotide enzymes. These substrates are metabolites or cell signaling molecules that require regulation during different stages of the cell cycle or during periods of stress. In general, the role of the NUDIX hydrolase is to sanitize the nucleotide pools and to maintain cell viability, thereby serving as surveillance and "house-cleaning" enzymes. Substrate specificity is used to define child families within the superfamily. Differences in substrate specificity are determined by the N-terminal extension or by residues in variable loop regions. Mechanistically, substrate hydrolysis occurs by a nucleophilic substitution reaction, with variation in the numbers and roles of divalent cations required. This superfamily consists of at least nine families: IPP (isopentenyl diphosphate) isomerase, ADP ribose pyrophosphatase, mutT pyrophosphohydrolase, coenzyme-A pyrophosphatase, MTH1-7,8-dihydro-8-oxoguanine-triphosphatase, diadenosine tetraphosphate hydrolase, NADH pyrophosphatase, GDP-mannose hydrolase and the c-terminal portion of the mutY adenine glycosylase. Pssm-ID: 467553 [Multi-domain] Cd Length: 120 Bit Score: 41.57 E-value: 1.82e-05
|
|||||||
NUDIX_ASFGF2_Nudt6 | cd04670 | Antisense Basic Fibroblast Growth Factor; Antisense Basic Fibroblast Growth Factor (ASFGF2; EC ... |
9-63 | 2.13e-05 | |||
Antisense Basic Fibroblast Growth Factor; Antisense Basic Fibroblast Growth Factor (ASFGF2; EC 3.6.1.-), also known as nucleoside diphosphate-linked moiety X)) motif 6/Nudt6, and similar proteins including peroxisomal coenzyme A diphosphatase/Nudt7 and mitochondrial coenzyme A diphosphatase/Nudt8. The Nudt6 gene overlaps and lies on the opposite strand from FGF2 gene, and is thought to be the FGF2 antisense gene. The two genes are independently transcribed, and their expression shows an inverse relationship, suggesting that this antisense transcript may regulate FGF2 expression. This gene has also been shown to have hormone-regulatory and antiproliferative actions in the pituitary that are independent of FGF2 expression. Alternatively spliced transcript variants encoding different isoforms have been found for this gene. Members of the NUDIX hydrolase superfamily catalyze the hydrolysis of NUcleoside DIphosphates linked to other moieties, X. Enzymes belonging to this superfamily require a divalent cation, such as Mg2+ or Mn2+, for their activity and contain a highly conserved 23-residue NUDIX motif (GX5EX7REUXEEXGU, where U = I, L or V), which functions as a metal binding and catalytic site. Substrates of NUDIX hydrolases include intact and oxidatively damaged nucleoside triphosphates, dinucleoside polyphosphates, nucleotide-sugars and dinucleotide enzymes. These substrates are metabolites or cell signaling molecules that require regulation during different stages of the cell cycle or during periods of stress. In general, the role of the NUDIX hydrolase is to sanitize the nucleotide pools and to maintain cell viability, thereby serving as surveillance _ "house-cleaning" enzymes. Substrate specificity is used to define families within the superfamily. Differences in substrate specificity are determined by the N-terminal extension or by residues in variable loop regions. Mechanistically, substrate hydrolysis occurs by a nucleophilic substitution reaction, with variation in the numbers and roles of divalent cations required. Pssm-ID: 467554 [Multi-domain] Cd Length: 131 Bit Score: 41.37 E-value: 2.13e-05
|
|||||||
NUDIX_NudI | cd04696 | NUDIX hydrolase subfamily; Nucleoside triphosphatase NudI catalyzes the hydrolysis of ... |
32-63 | 2.64e-05 | |||
NUDIX hydrolase subfamily; Nucleoside triphosphatase NudI catalyzes the hydrolysis of nucleoside triphosphates, with a preference for pyrimidine deoxynucleoside triphosphates (dUTP, dTTP and dCTP). It is a members of the NUDIX hydrolase superfamily which catalyze the hydrolysis of NUcleoside DIphosphates linked to other moieties, X. Enzymes belonging to this superfamily require a divalent cation, such as Mg2+ or Mn2+, for their activity and contain a highly conserved 23-residue NUDIX motif (GX5EX7REUXEEXGU, where U = I, L or V), which functions as a metal binding and catalytic site. Substrates of NUDIX hydrolases include intact and oxidatively damaged nucleoside triphosphates, dinucleoside polyphosphates, nucleotide-sugars and dinucleotide enzymes. These substrates are metabolites or cell signaling molecules that require regulation during different stages of the cell cycle or during periods of stress. In general, the role of the NUDIX hydrolase is to sanitize the nucleotide pools and to maintain cell viability, thereby serving as surveillance _ "house-cleaning" enzymes. Substrate specificity is used to define families within the superfamily. Differences in substrate specificity are determined by the N-terminal extension or by residues in variable loop regions. Mechanistically, substrate hydrolysis occurs by a nucleophilic substitution reaction, with variation in the numbers and roles of divalent cations required. Pssm-ID: 467577 [Multi-domain] Cd Length: 134 Bit Score: 41.46 E-value: 2.64e-05
|
|||||||
NUDIX_Hydrolase | cd03674 | uncharacterized NUDIX hydrolase subfamily; NUDIX hydrolase is a superfamily of enzymes found ... |
37-118 | 2.99e-05 | |||
uncharacterized NUDIX hydrolase subfamily; NUDIX hydrolase is a superfamily of enzymes found in all three kingdoms of life, and it catalyzes the hydrolysis of NUcleoside DIphosphates linked to other moieties, X. Enzymes belonging to this superfamily require a divalent cation, such as Mg2+ or Mn2+ for their activity. Members of this family are recognized by a highly conserved 23-residue NUDIX motif (GX5EX7REUXEEXGU, where U = I, L or V), which forms a structural motif that functions as a metal binding and catalytic site. Substrates of NUDIX hydrolase include intact and oxidatively damaged nucleoside triphosphates, dinucleoside polyphosphates, nucleotide-sugars and dinucleotide enzymes. These substrates are metabolites or cell signaling molecules that require regulation during different stages of the cell cycle or during periods of stress. In general, the role of the NUDIX hydrolase is to sanitize the nucleotide pools and to maintain cell viability, thereby serving as surveillance and "house-cleaning" enzymes. Substrate specificity is used to define child families within the superfamily. Differences in substrate specificity are determined by the N-terminal extension or by residues in variable loop regions. Mechanistically, substrate hydrolysis occurs by a nucleophilic substitution reaction, with variation in the numbers and roles of divalent cations required. This superfamily consists of at least nine families: IPP (isopentenyl diphosphate) isomerase, ADP ribose pyrophosphatase, mutT pyrophosphohydrolase, coenzyme-A pyrophosphatase, MTH1-7,8-dihydro-8-oxoguanine-triphosphatase, diadenosine tetraphosphate hydrolase, NADH pyrophosphatase, GDP-mannose hydrolase and the c-terminal portion of the mutY adenine glycosylase. Pssm-ID: 467542 [Multi-domain] Cd Length: 130 Bit Score: 41.09 E-value: 2.99e-05
|
|||||||
PRK10776 | PRK10776 | 8-oxo-dGTP diphosphatase MutT; |
35-63 | 3.32e-05 | |||
8-oxo-dGTP diphosphatase MutT; Pssm-ID: 182721 [Multi-domain] Cd Length: 129 Bit Score: 40.74 E-value: 3.32e-05
|
|||||||
NUDIX_Hydrolase | cd04684 | uncharacterized NUDIX hydrolase subfamily; Contains a crystal structure of the NUDIX hydrolase ... |
8-73 | 5.67e-05 | |||
uncharacterized NUDIX hydrolase subfamily; Contains a crystal structure of the NUDIX hydrolase from Enterococcus faecalis, which has an unknown function. NUDIX hydrolase is a superfamily of enzymes found in all three kingdoms of life, and it catalyzes the hydrolysis of NUcleoside DIphosphates linked to other moieties, X. Enzymes belonging to this superfamily require a divalent cation, such as Mg2+ or Mn2+ for their activity. Members of this family are recognized by a highly conserved 23-residue NUDIX motif (GX5EX7REUXEEXGU, where U = I, L or V), which forms a structural motif that functions as a metal binding and catalytic site. Substrates of NUDIX hydrolase include intact and oxidatively damaged nucleoside triphosphates, dinucleoside polyphosphates, nucleotide-sugars and dinucleotide enzymes. These substrates are metabolites or cell signaling molecules that require regulation during different stages of the cell cycle or during periods of stress. In general, the role of the NUDIX hydrolase is to sanitize the nucleotide pools and to maintain cell viability, thereby serving as surveillance and "house-cleaning" enzymes. Substrate specificity is used to define child families within the superfamily. Differences in substrate specificity are determined by the N-terminal extension or by residues in variable loop regions. Mechanistically, substrate hydrolysis occurs by a nucleophilic substitution reaction, with variation in the numbers and roles of divalent cations required. This superfamily consists of at least nine families: IPP (isopentenyl diphosphate) isomerase, ADP ribose pyrophosphatase, mutT pyrophosphohydrolase, coenzyme-A pyrophosphatase, MTH1-7,8-dihydro-8-oxoguanine-triphosphatase, diadenosine tetraphosphate hydrolase, NADH pyrophosphatase, GDP-mannose hydrolase and the c-terminal portion of the mutY adenine glycosylase. Pssm-ID: 467567 [Multi-domain] Cd Length: 140 Bit Score: 40.30 E-value: 5.67e-05
|
|||||||
PRK05379 | PRK05379 | bifunctional nicotinamide-nucleotide adenylyltransferase/Nudix hydroxylase; |
9-137 | 9.28e-05 | |||
bifunctional nicotinamide-nucleotide adenylyltransferase/Nudix hydroxylase; Pssm-ID: 235436 [Multi-domain] Cd Length: 340 Bit Score: 40.76 E-value: 9.28e-05
|
|||||||
NUDIX_MTH2_Nudt15 | cd04678 | MutT homolog 2; MutT Homolog 2 (MTH2; EC 3.6.1.9), also known as NUDIX (nucleoside ... |
9-63 | 1.37e-04 | |||
MutT homolog 2; MutT Homolog 2 (MTH2; EC 3.6.1.9), also known as NUDIX (nucleoside diphosphate-linked moiety X)) motif 15/Nudt15, may catalyze the hydrolysis of nucleoside diphosphates, triphosphates including dGTP, dTTP, dCTP, their oxidized forms like 8-oxo-dGTP, and prodrug thiopurine derivatives 6-thio-dGTP and 6-thio-GTP. MTH2 may also play a role in DNA synthesis and cell cycle progression by stabilizing PCNA. Members of the NUDIX hydrolase superfamily catalyze the hydrolysis of NUcleoside DIphosphates linked to other moieties, X. Enzymes belonging to this superfamily require a divalent cation, such as Mg2+ or Mn2+, for their activity and contain a highly conserved 23-residue NUDIX motif (GX5EX7REUXEEXGU, where U = I, L or V), which functions as a metal binding and catalytic site. Substrates of NUDIX hydrolases include intact and oxidatively damaged nucleoside triphosphates, dinucleoside polyphosphates, nucleotide-sugars and dinucleotide enzymes. These substrates are metabolites or cell signaling molecules that require regulation during different stages of the cell cycle or during periods of stress. In general, the role of the NUDIX hydrolase is to sanitize the nucleotide pools and to maintain cell viability, thereby serving as surveillance _ "house-cleaning" enzymes. Substrate specificity is used to define families within the superfamily. Differences in substrate specificity are determined by the N-terminal extension or by residues in variable loop regions. Mechanistically, substrate hydrolysis occurs by a nucleophilic substitution reaction, with variation in the numbers and roles of divalent cations required. Pssm-ID: 467561 [Multi-domain] Cd Length: 128 Bit Score: 39.08 E-value: 1.37e-04
|
|||||||
NUDIX_DNA_Glycosylase_C-MutY | cd03431 | C-terminal domain of DNA glycosylase; DNA glycosylase (MutY in bacteria and hMYH in humans) is ... |
11-122 | 1.79e-04 | |||
C-terminal domain of DNA glycosylase; DNA glycosylase (MutY in bacteria and hMYH in humans) is responsible for repairing misread A*oxoG residues to C*G by removing the inappropriately paired adenine base from the DNA backbone. It belongs to the NUDIX hydrolase superfamily and is important for the repair of various genotoxic lesions. Enzymes belonging to this superfamily requires a divalent cation, such as Mg2+ or Mn2+ for their activity. They are also recognized by a highly conserved 23-residue NUDIX motif (GX5EX7REUXEEXGU, where U = I, L or V). However, DNA glycosylase does not seem to contain this signature motif. DNA glycosylase consists of 2 domains: the N-terminal domain contains the catalytic properties of the enzyme and the C-terminal domain affects substrate (oxoG) binding and enzymatic turnover. The C-terminal domain is highly similar to MutT, based on secondary structure and topology, despite low sequence identity. MutT sanitizes the nucleotide precursor pool by hydrolyzing oxo-dGTP to oxo-dGMO and inorganic pyrophosphate. The similarity strongly suggests that the two proteins share a common evolutionary origin. Pssm-ID: 467537 [Multi-domain] Cd Length: 118 Bit Score: 38.82 E-value: 1.79e-04
|
|||||||
PRK15393 | PRK15393 | NUDIX hydrolase YfcD; Provisional |
19-63 | 2.48e-04 | |||
NUDIX hydrolase YfcD; Provisional Pssm-ID: 185291 [Multi-domain] Cd Length: 180 Bit Score: 39.01 E-value: 2.48e-04
|
|||||||
NUDIX_Hydrolase | cd04663 | uncharacterized NUDIX hydrolase subfamily; NUDIX hydrolase is a superfamily of enzymes found ... |
41-83 | 3.91e-04 | |||
uncharacterized NUDIX hydrolase subfamily; NUDIX hydrolase is a superfamily of enzymes found in all three kingdoms of life, and it catalyzes the hydrolysis of NUcleoside DIphosphates linked to other moieties, X. Enzymes belonging to this superfamily require a divalent cation, such as Mg2+ or Mn2+ for their activity. Members of this family are recognized by a highly conserved 23-residue NUDIX motif (GX5EX7REUXEEXGU, where U = I, L or V), which forms a structural motif that functions as a metal binding and catalytic site. Substrates of NUDIX hydrolase include intact and oxidatively damaged nucleoside triphosphates, dinucleoside polyphosphates, nucleotide-sugars and dinucleotide enzymes. These substrates are metabolites or cell signaling molecules that require regulation during different stages of the cell cycle or during periods of stress. In general, the role of the NUDIX hydrolase is to sanitize the nucleotide pools and to maintain cell viability, thereby serving as surveillance and "house-cleaning" enzymes. Substrate specificity is used to define child families within the superfamily. Differences in substrate specificity are determined by the N-terminal extension or by residues in variable loop regions. Mechanistically, substrate hydrolysis occurs by a nucleophilic substitution reaction, with variation in the numbers and roles of divalent cations required. This superfamily consists of at least nine families: IPP (isopentenyl diphosphate) isomerase, ADP ribose pyrophosphatase, mutT pyrophosphohydrolase, coenzyme-A pyrophosphatase, MTH1-7,8-dihydro-8-oxoguanine-triphosphatase, diadenosine tetraphosphate hydrolase, NADH pyrophosphatase, GDP-mannose hydrolase and the c-terminal portion of the mutY adenine glycosylase. Pssm-ID: 467548 [Multi-domain] Cd Length: 132 Bit Score: 38.04 E-value: 3.91e-04
|
|||||||
PRK15434 | PRK15434 | GDP-mannose mannosyl hydrolase; |
20-79 | 4.56e-04 | |||
GDP-mannose mannosyl hydrolase; Pssm-ID: 237966 [Multi-domain] Cd Length: 159 Bit Score: 38.20 E-value: 4.56e-04
|
|||||||
NUDIX_Hydrolase | cd04674 | uncharacterized NUDIX hydrolase subfamily; NUDIX hydrolase is a superfamily of enzymes found ... |
17-75 | 6.81e-04 | |||
uncharacterized NUDIX hydrolase subfamily; NUDIX hydrolase is a superfamily of enzymes found in all three kingdoms of life, and it catalyzes the hydrolysis of NUcleoside DIphosphates linked to other moieties, X. Enzymes belonging to this superfamily require a divalent cation, such as Mg2+ or Mn2+ for their activity. Members of this family are recognized by a highly conserved 23-residue NUDIX motif (GX5EX7REUXEEXGU, where U = I, L or V), which forms a structural motif that functions as a metal binding and catalytic site. Substrates of NUDIX hydrolase include intact and oxidatively damaged nucleoside triphosphates, dinucleoside polyphosphates, nucleotide-sugars and dinucleotide enzymes. These substrates are metabolites or cell signaling molecules that require regulation during different stages of the cell cycle or during periods of stress. In general, the role of the NUDIX hydrolase is to sanitize the nucleotide pools and to maintain cell viability, thereby serving as surveillance and "house-cleaning" enzymes. Substrate specificity is used to define child families within the superfamily. Differences in substrate specificity are determined by the N-terminal extension or by residues in variable loop regions. Mechanistically, substrate hydrolysis occurs by a nucleophilic substitution reaction, with variation in the numbers and roles of divalent cations required. This superfamily consists of at least nine families: IPP (isopentenyl diphosphate) isomerase, ADP ribose pyrophosphatase, mutT pyrophosphohydrolase, coenzyme-A pyrophosphatase, MTH1-7,8-dihydro-8-oxoguanine-triphosphatase, diadenosine tetraphosphate hydrolase, NADH pyrophosphatase, GDP-mannose hydrolase and the c-terminal portion of the mutY adenine glycosylase. Pssm-ID: 467558 [Multi-domain] Cd Length: 118 Bit Score: 37.06 E-value: 6.81e-04
|
|||||||
NUDIX_MutT_Nudt1 | cd18886 | MutT homolog-1 and similar proteins; MutT homolog-1 (MTH1), also known as NUDIX (nucleoside ... |
12-63 | 1.11e-03 | |||
MutT homolog-1 and similar proteins; MutT homolog-1 (MTH1), also known as NUDIX (nucleoside diphosphate-linked moiety X)) motif 1/Nudt1, is a member of the NUDIX hydrolase superfamily. MTH1, the mammalian counterpart of MutT, hydrolyzes oxidized purine nucleoside triphosphates, such as 8-oxo-dGTP and 2-hydroxy-ATP, to monophosphates, thereby preventing the incorporation of such oxygen radicals during replication. This is an important step in the repair mechanism in genomic and mitochondrial DNA. Like other members of the NUDIX family, it requires a divalent cation, such as Mg2+ or Mn2+, for activity, and contain the NUDIX motif, a highly conserved 23-residue block (GX5EX7REUXEEXGU, where U = I, L or V), that functions as a metal binding and catalytic site. MTH1 is predominantly localized in the cytoplasm and mitochondria. Structurally, this enzyme adopts a similar fold to MutT despite low sequence similarity outside the conserved NUDIX motif. The most distinctive structural difference between MutT and MTH1 is the presence of a beta-hairpin, which is absent in MutT. This results in a much deeper and narrower substrate binding pocket. Mechanistically, MTH1 contains dual specificity for nucleotides that contain 2-OH-adenine bases and those that contain 8-oxo-guanine bases. Pssm-ID: 467596 [Multi-domain] Cd Length: 147 Bit Score: 36.83 E-value: 1.11e-03
|
|||||||
NUDIX_RppH | cd04665 | RNA pyrophosphohydrolase; The initiation of mRNA degradation often requires deprotection of ... |
37-69 | 1.13e-03 | |||
RNA pyrophosphohydrolase; The initiation of mRNA degradation often requires deprotection of its 5' end. In eukaryotes, the 5'-methylguanosine (cap) structure is principally removed by the NUDIX family decapping enzyme Dcp2, yielding a 5'-monophosphorylated RNA that is a substrate for 5' exoribonucleases. In bacteria, the 5'-triphosphate group of primary transcripts is also converted to a 5' monophosphate by a NUDIX protein called RNA pyrophosphohydrolase (RppH), allowing access to both endo- and 5' exoribonucleases. NUDIX hydrolase is a superfamily of enzymes found in all three kingdoms of life, and it catalyzes the hydrolysis of NUcleoside DIphosphates linked to other moieties, X. Enzymes belonging to this superfamily require a divalent cation, such as Mg2+ or Mn2+ for their activity. Members of this family are recognized by a highly conserved 23-residue NUDIX motif (GX5EX7REUXEEXGU, where U = I, L or V), which forms a structural motif that functions as a metal binding and catalytic site. Substrates of NUDIX hydrolase include intact and oxidatively damaged nucleoside triphosphates, dinucleoside polyphosphates, nucleotide-sugars and dinucleotide enzymes. These substrates are metabolites or cell signaling molecules that require regulation during different stages of the cell cycle or during periods of stress. In general, the role of the NUDIX hydrolase is to sanitize the nucleotide pools and to maintain cell viability, thereby serving as surveillance and "house-cleaning" enzymes. Substrate specificity is used to define child families within the superfamily. Differences in substrate specificity are determined by the N-terminal extension or by residues in variable loop regions. Mechanistically, substrate hydrolysis occurs by a nucleophilic substitution reaction, with variation in the numbers and roles of divalent cations required. This superfamily consists of at least nine families: IPP (isopentenyl diphosphate) isomerase, ADP ribose pyrophosphatase, mutT pyrophosphohydrolase, coenzyme-A pyrophosphatase, MTH1-7,8-dihydro-8-oxoguanine-triphosphatase, diadenosine tetraphosphate hydrolase, NADH pyrophosphatase, GDP-mannose hydrolase and the c-terminal portion of the mutY adenine glycosylase. Pssm-ID: 467550 [Multi-domain] Cd Length: 121 Bit Score: 36.46 E-value: 1.13e-03
|
|||||||
NUDIX_DR0079 | cd24154 | NUDIX domain family found in Deinococcus radiodurans, and similar proteins; Deinococcus ... |
41-63 | 1.32e-03 | |||
NUDIX domain family found in Deinococcus radiodurans, and similar proteins; Deinococcus radiodurans protein DR_0079 is one of 21 NUDIX hydrolases that it encodes, and it has been observed to have a marked preference for cytosine ribonucleoside 5'-diphosphate (CDP) and cytosine ribonucleoside 5'-triphosphate (CTP), and for their corresponding deoxyribose nucleotides, dCDP and dCTP, to a lesser degree. Members of the NUDIX hydrolase superfamily catalyze the hydrolysis of NUcleoside DIphosphates linked to other moieties, X. Enzymes belonging to this superfamily require a divalent cation, such as Mg2+ or Mn2+, for their activity and contain a highly conserved 23-residue NUDIX motif (GX5EX7REUXEEXGU, where U = I, L or V), which functions as a metal binding and catalytic site. Substrates of NUDIX hydrolases include intact and oxidatively damaged nucleoside triphosphates, dinucleoside polyphosphates, nucleotide-sugars and dinucleotide enzymes. These substrates are metabolites or cell signaling molecules that require regulation during different stages of the cell cycle or during periods of stress. In general, the role of the NUDIX hydrolase is to sanitize the nucleotide pools and to maintain cell viability, thereby serving as surveillance _ "house-cleaning" enzymes. Substrate specificity is used to define families within the superfamily. Differences in substrate specificity are determined by the N-terminal extension or by residues in variable loop regions. Mechanistically, substrate hydrolysis occurs by a nucleophilic substitution reaction, with variation in the numbers and roles of divalent cations required. Pssm-ID: 467602 [Multi-domain] Cd Length: 121 Bit Score: 36.42 E-value: 1.32e-03
|
|||||||
NUDIX_Ap4A_hydrolase_plant_like | cd03671 | plant diadenosine tetraphosphate (Ap4A) hydrolase and similar proteins; Diadenosine ... |
9-63 | 2.35e-03 | |||
plant diadenosine tetraphosphate (Ap4A) hydrolase and similar proteins; Diadenosine tetraphosphate (Ap4A) hydrolase is a member of the NUDIX hydrolase superfamily. Members of this family are well represented in a variety of prokaryotic and eukaryotic organisms. Phylogenetic analysis reveals two distinct subgroups where plant enzymes fall into one group (represented by this subfamily) and fungi/animals/archaea enzymes fall into another. Bacterial enzymes are found in both subfamilies. Ap4A is a potential by-product of aminoacyl tRNA synthesis, and accumulation of Ap4A has been implicated in a range of biological events, such as DNA replication, cellular differentiation, heat shock, metabolic stress, and apoptosis. Ap4A hydrolase cleaves Ap4A asymmetrically into ATP and AMP. It is important in the invasive properties of bacteria and thus presents a potential target for the inhibition of such invasive bacteria. Besides the signature NUDIX motif (G[X5]E[X7]REUXEEXGU where U is Ile, Leu, or Val), Ap4A hydrolase is structurally similar to the other members of the NUDIX hydrolase superfamily with some degree of variations. Several regions in the sequences are poorly defined and substrate and metal binding sites are only predicted based on kinetic studies. Pssm-ID: 467539 [Multi-domain] Cd Length: 147 Bit Score: 36.00 E-value: 2.35e-03
|
|||||||
NUDIX_DR1025_like | cd04700 | DR1025 and similar proteins; DR1025 from Deinococcus radiodurans, a member of the NUDIX ... |
8-63 | 2.74e-03 | |||
DR1025 and similar proteins; DR1025 from Deinococcus radiodurans, a member of the NUDIX hydrolase superfamily, show nucleoside triphosphatase and dinucleoside polyphosphate pyrophosphatase activities. Like other enzymes belonging to this superfamily, it requires a divalent cation, in this case Mg2+, for its activity. It also contains a highly conserved 23-residue NUDIX motif (GX5EX7REUXEEXGU, where U = I, L or V), which functions as a metal binding and catalytic site. In general, substrates of NUDIX hydrolases include intact and oxidatively damaged nucleoside triphosphates, dinucleoside polyphosphates, nucleotide-sugars and dinucleotide enzymes. These substrates are metabolites or cell signaling molecules that require regulation during different stages of the cell cycle or during periods of stress. In general, the role of the NUDIX hydrolase is to sanitize the nucleotide pools and to maintain cell viability, thereby serving as surveillance _ "house-cleaning" enzymes. Substrate specificity is used to define families within the superfamily. Differences in substrate specificity are determined by the N-terminal extension or by residues in variable loop regions. Mechanistically, substrate hydrolysis occurs by a nucleophilic substitution reaction, with variation in the numbers and roles of divalent cations required. Pssm-ID: 467580 [Multi-domain] Cd Length: 147 Bit Score: 36.04 E-value: 2.74e-03
|
|||||||
NUDIX_Hydrolase | cd04689 | uncharacterized NUDIX hydrolase subfamily; NUDIX hydrolase is a superfamily of enzymes found ... |
41-63 | 2.88e-03 | |||
uncharacterized NUDIX hydrolase subfamily; NUDIX hydrolase is a superfamily of enzymes found in all three kingdoms of life, and it catalyzes the hydrolysis of NUcleoside DIphosphates linked to other moieties, X. Enzymes belonging to this superfamily require a divalent cation, such as Mg2+ or Mn2+ for their activity. Members of this family are recognized by a highly conserved 23-residue NUDIX motif (GX5EX7REUXEEXGU, where U = I, L or V), which forms a structural motif that functions as a metal binding and catalytic site. Substrates of NUDIX hydrolase include intact and oxidatively damaged nucleoside triphosphates, dinucleoside polyphosphates, nucleotide-sugars and dinucleotide enzymes. These substrates are metabolites or cell signaling molecules that require regulation during different stages of the cell cycle or during periods of stress. In general, the role of the NUDIX hydrolase is to sanitize the nucleotide pools and to maintain cell viability, thereby serving as surveillance and "house-cleaning" enzymes. Substrate specificity is used to define child families within the superfamily. Differences in substrate specificity are determined by the N-terminal extension or by residues in variable loop regions. Mechanistically, substrate hydrolysis occurs by a nucleophilic substitution reaction, with variation in the numbers and roles of divalent cations required. This superfamily consists of at least nine families: IPP (isopentenyl diphosphate) isomerase, ADP ribose pyrophosphatase, mutT pyrophosphohydrolase, coenzyme-A pyrophosphatase, MTH1-7,8-dihydro-8-oxoguanine-triphosphatase, diadenosine tetraphosphate hydrolase, NADH pyrophosphatase, GDP-mannose hydrolase and the c-terminal portion of the mutY adenine glycosylase. Pssm-ID: 467571 Cd Length: 145 Bit Score: 35.92 E-value: 2.88e-03
|
|||||||
NUDIX_ADPRase_Nudt5_UGPPase_Nudt14 | cd03424 | ADP-ribose pyrophosphatase, UDP-glucose pyrophosphatase, and similar proteins; ADP-ribose ... |
6-63 | 3.36e-03 | |||
ADP-ribose pyrophosphatase, UDP-glucose pyrophosphatase, and similar proteins; ADP-ribose pyrophosphatase (ADPRase) ( NUDIX (Nucleoside diphosphate-linked moiety X)) motif 5; Nudt5) catalyzes the hydrolysis of ADP-ribose and a variety of additional ADP-sugar conjugates to AMP and ribose-5-phosphate. In humans, there are four distinct ADPRase activities, three putative cytosolic enzymes (ADPRase-I, -II, and -Mn) and a single mitochondrial enzyme (ADPRase-m). Human ADPRase-II is also referred to as NUDT5. It lacks the N-terminal target sequence unique to mitochondrial ADPRase. The different cytosolic types are distinguished by their specificities for substrate and specific requirement for metal ions. NUDT5 forms a homodimer. It also contains a highly conserved 23-residue NUDIX motif (GX5EX7REUXEEXGU, where U = I, L or V) which functions as a metal binding site/catalytic site. In addition to the NUDIX motif, there are additional conserved amino acid residues, distal from the signature sequence, that correlate with substrate specificity. UDP-glucose pyrophosphatase (UGPPase) (EC 3.6.1.45; also known as nucleoside diphosphate-linked moiety X)) motif 14; Nudt14) hydrolyzes the pyrophosphate of the nucleoside diphosphate sugar to generate glucose-1-P and UMP. In mammals, UDP-glucose is the glucosyl donor for the synthesis of the storage polysaccharide glycogen. UGPPase, as a regulator of UDP-glucose, could play a regulatory role, but it has been shown to prefer ADP-ribose over UDP-glucose. Like other members of the NUDIX hydrolase superfamily, it requires a divalent cation, such as Mg2+, for its activity. It also contains a highly conserved 23-residue NUDIX motif (GX5EX7REUXEEXGU, where U = I, L or V) which functions as a metal binding site/catalytic site. Pssm-ID: 467530 [Multi-domain] Cd Length: 134 Bit Score: 35.56 E-value: 3.36e-03
|
|||||||
NUDIX_Hydrolase | cd18884 | uncharacterized NUDIX hydrolase subfamily; NUDIX hydrolase is a superfamily of enzymes found ... |
9-107 | 3.96e-03 | |||
uncharacterized NUDIX hydrolase subfamily; NUDIX hydrolase is a superfamily of enzymes found in all three kingdoms of life, and it catalyzes the hydrolysis of NUcleoside DIphosphates linked to other moieties, X. Enzymes belonging to this superfamily require a divalent cation, such as Mg2+ or Mn2+ for their activity. Members of this family are recognized by a highly conserved 23-residue NUDIX motif (GX5EX7REUXEEXGU, where U = I, L or V), which forms a structural motif that functions as a metal binding and catalytic site. Substrates of NUDIX hydrolase include intact and oxidatively damaged nucleoside triphosphates, dinucleoside polyphosphates, nucleotide-sugars and dinucleotide enzymes. These substrates are metabolites or cell signaling molecules that require regulation during different stages of the cell cycle or during periods of stress. In general, the role of the NUDIX hydrolase is to sanitize the nucleotide pools and to maintain cell viability, thereby serving as surveillance and "house-cleaning" enzymes. Substrate specificity is used to define child families within the superfamily. Differences in substrate specificity are determined by the N-terminal extension or by residues in variable loop regions. Mechanistically, substrate hydrolysis occurs by a nucleophilic substitution reaction, with variation in the numbers and roles of divalent cations required. This superfamily consists of at least nine families: IPP (isopentenyl diphosphate) isomerase, ADP ribose pyrophosphatase, mutT pyrophosphohydrolase, coenzyme-A pyrophosphatase, MTH1-7,8-dihydro-8-oxoguanine-triphosphatase, diadenosine tetraphosphate hydrolase, NADH pyrophosphatase, GDP-mannose hydrolase and the c-terminal portion of the mutY adenine glycosylase. Pssm-ID: 467595 [Multi-domain] Cd Length: 125 Bit Score: 35.08 E-value: 3.96e-03
|
|||||||
NUDIX_8DGDPP_Nudt18 | cd04671 | 8-oxo-DGDP phosphatase; 8-oxo-DGDP phosphatase (8DGDPP; EC 3.6.1.55), also known as NUDIX ... |
9-63 | 5.49e-03 | |||
8-oxo-DGDP phosphatase; 8-oxo-DGDP phosphatase (8DGDPP; EC 3.6.1.55), also known as NUDIX (nucleoside diphosphate-linked moiety X)) motif 18/Nudt18; 2-hydroxy-DADP phosphatase; 7,8-dihydro-8-oxoguanine phosphatase, hydrolyzes 8-oxo-7,8-dihydroguanine (8-oxo-Gua)-containing deoxyribo- and ribonucleoside diphosphates to the monophosphates. Members of the NUDIX hydrolase superfamily catalyze the hydrolysis of NUcleoside DIphosphates linked to other moieties, X. Enzymes belonging to this superfamily require a divalent cation, such as Mg2+ or Mn2+, for their activity and contain a highly conserved 23-residue NUDIX motif (GX5EX7REUXEEXGU, where U = I, L or V), which functions as a metal binding and catalytic site. Substrates of NUDIX hydrolases include intact and oxidatively damaged nucleoside triphosphates, dinucleoside polyphosphates, nucleotide-sugars and dinucleotide enzymes. These substrates are metabolites or cell signaling molecules that require regulation during different stages of the cell cycle or during periods of stress. In general, the role of the NUDIX hydrolase is to sanitize the nucleotide pools and to maintain cell viability, thereby serving as surveillance _ "house-cleaning" enzymes. Substrate specificity is used to define families within the superfamily. Differences in substrate specificity are determined by the N-terminal extension or by residues in variable loop regions. Mechanistically, substrate hydrolysis occurs by a nucleophilic substitution reaction, with variation in the numbers and roles of divalent cations required. Pssm-ID: 467555 [Multi-domain] Cd Length: 130 Bit Score: 34.98 E-value: 5.49e-03
|
|||||||
NUDIX_Hydrolase | cd18877 | uncharacterized NUDIX hydrolase subfamily; NUDIX hydrolase is a superfamily of enzymes found ... |
20-125 | 6.27e-03 | |||
uncharacterized NUDIX hydrolase subfamily; NUDIX hydrolase is a superfamily of enzymes found in all three kingdoms of life, and it catalyzes the hydrolysis of NUcleoside DIphosphates linked to other moieties, X. Enzymes belonging to this superfamily require a divalent cation, such as Mg2+ or Mn2+ for their activity. Members of this family are recognized by a highly conserved 23-residue NUDIX motif (GX5EX7REUXEEXGU, where U = I, L or V), which forms a structural motif that functions as a metal binding and catalytic site. Substrates of NUDIX hydrolase include intact and oxidatively damaged nucleoside triphosphates, dinucleoside polyphosphates, nucleotide-sugars and dinucleotide enzymes. These substrates are metabolites or cell signaling molecules that require regulation during different stages of the cell cycle or during periods of stress. In general, the role of the NUDIX hydrolase is to sanitize the nucleotide pools and to maintain cell viability, thereby serving as surveillance and "house-cleaning" enzymes. Substrate specificity is used to define child families within the superfamily. Differences in substrate specificity are determined by the N-terminal extension or by residues in variable loop regions. Mechanistically, substrate hydrolysis occurs by a nucleophilic substitution reaction, with variation in the numbers and roles of divalent cations required. This superfamily consists of at least nine families: IPP (isopentenyl diphosphate) isomerase, ADP ribose pyrophosphatase, mutT pyrophosphohydrolase, coenzyme-A pyrophosphatase, MTH1-7,8-dihydro-8-oxoguanine-triphosphatase, diadenosine tetraphosphate hydrolase, NADH pyrophosphatase, GDP-mannose hydrolase and the c-terminal portion of the mutY adenine glycosylase. Pssm-ID: 467589 [Multi-domain] Cd Length: 141 Bit Score: 34.64 E-value: 6.27e-03
|
|||||||
PRK00714 | PRK00714 | RNA pyrophosphohydrolase; Reviewed |
36-66 | 9.08e-03 | |||
RNA pyrophosphohydrolase; Reviewed Pssm-ID: 234820 [Multi-domain] Cd Length: 156 Bit Score: 34.36 E-value: 9.08e-03
|
|||||||
NUDIX_MRP_L46 | cd04661 | Mitochondrial ribosomal protein L46; Mitochondrial ribosomal protein L46 (MRP L46) is a ... |
34-63 | 9.50e-03 | |||
Mitochondrial ribosomal protein L46; Mitochondrial ribosomal protein L46 (MRP L46) is a component of the large subunit (39S) of the mammalian mitochondrial ribosome and a member of the NUDIX hydrolase superfamily. MRPs are thought to be involved in the maintenance of the mitochondrial DNA. In general, members of the NUDIX hydrolase superfamily require a divalent cation, such as Mg2+ or Mn2+, for activity and contain the NUDIX motif, a highly conserved 23-residue block (GX5EX7REUXEEXGU, where U = I, L or V), which functions as a metal binding and catalytic site. MRP L46 appears to contain a modified NUDIX motif. Pssm-ID: 467546 Cd Length: 142 Bit Score: 34.12 E-value: 9.50e-03
|
|||||||
Blast search parameters | ||||
|