MULTISPECIES: bifunctional aminoglycoside N-acetyltransferase AAC(6')-Ie/aminoglycoside O-phosphotransferase APH(2'')-Ia [Bacteria]
List of domain hits
Name | Accession | Description | Interval | E-value | ||||
APH_ChoK_like | cd05120 | Aminoglycoside 3'-phosphotransferase and Choline Kinase family; This family is composed of APH, ... |
203-415 | 3.95e-32 | ||||
Aminoglycoside 3'-phosphotransferase and Choline Kinase family; This family is composed of APH, ChoK, ethanolamine kinase (ETNK), macrolide 2'-phosphotransferase (MPH2'), an unusual homoserine kinase, and uncharacterized proteins with similarity to the N-terminal domain of acyl-CoA dehydrogenase 10 (ACAD10). The members of this family catalyze the transfer of the gamma-phosphoryl group from ATP (or CTP) to small molecule substrates such as aminoglycosides, macrolides, choline, ethanolamine, and homoserine. Phosphorylation of the antibiotics, aminoglycosides and macrolides, leads to their inactivation and to bacterial antibiotic resistance. Phosphorylation of choline, ethanolamine, and homoserine serves as precursors to the synthesis of important biological compounds, such as the major phospholipids, phosphatidylcholine and phosphatidylethanolamine and the amino acids, threonine, methionine, and isoleucine. The APH/ChoK family is part of a larger superfamily that includes the catalytic domains of other kinases, such as the typical serine/threonine/tyrosine protein kinases (PKs), RIO kinases, actin-fragmin kinase (AFK), and phosphoinositide 3-kinase (PI3K). : Pssm-ID: 270690 [Multi-domain] Cd Length: 158 Bit Score: 120.10 E-value: 3.95e-32
|
||||||||
RimL | COG1670 | Protein N-acetyltransferase, RimJ/RimL family [Translation, ribosomal structure and biogenesis, ... |
10-181 | 1.27e-19 | ||||
Protein N-acetyltransferase, RimJ/RimL family [Translation, ribosomal structure and biogenesis, Posttranslational modification, protein turnover, chaperones]; : Pssm-ID: 441276 [Multi-domain] Cd Length: 173 Bit Score: 85.82 E-value: 1.27e-19
|
||||||||
PKc_like super family | cl21453 | Protein Kinases, catalytic domain; The protein kinase superfamily is mainly composed of the ... |
302-441 | 7.26e-11 | ||||
Protein Kinases, catalytic domain; The protein kinase superfamily is mainly composed of the catalytic domains of serine/threonine-specific and tyrosine-specific protein kinases. It also includes RIO kinases, which are atypical serine protein kinases, aminoglycoside phosphotransferases, and choline kinases. These proteins catalyze the transfer of the gamma-phosphoryl group from ATP to hydroxyl groups in specific substrates such as serine, threonine, or tyrosine residues of proteins. The actual alignment was detected with superfamily member cd05150: Pssm-ID: 473864 [Multi-domain] Cd Length: 244 Bit Score: 62.21 E-value: 7.26e-11
|
||||||||
Name | Accession | Description | Interval | E-value | |||||
APH_ChoK_like | cd05120 | Aminoglycoside 3'-phosphotransferase and Choline Kinase family; This family is composed of APH, ... |
203-415 | 3.95e-32 | |||||
Aminoglycoside 3'-phosphotransferase and Choline Kinase family; This family is composed of APH, ChoK, ethanolamine kinase (ETNK), macrolide 2'-phosphotransferase (MPH2'), an unusual homoserine kinase, and uncharacterized proteins with similarity to the N-terminal domain of acyl-CoA dehydrogenase 10 (ACAD10). The members of this family catalyze the transfer of the gamma-phosphoryl group from ATP (or CTP) to small molecule substrates such as aminoglycosides, macrolides, choline, ethanolamine, and homoserine. Phosphorylation of the antibiotics, aminoglycosides and macrolides, leads to their inactivation and to bacterial antibiotic resistance. Phosphorylation of choline, ethanolamine, and homoserine serves as precursors to the synthesis of important biological compounds, such as the major phospholipids, phosphatidylcholine and phosphatidylethanolamine and the amino acids, threonine, methionine, and isoleucine. The APH/ChoK family is part of a larger superfamily that includes the catalytic domains of other kinases, such as the typical serine/threonine/tyrosine protein kinases (PKs), RIO kinases, actin-fragmin kinase (AFK), and phosphoinositide 3-kinase (PI3K). Pssm-ID: 270690 [Multi-domain] Cd Length: 158 Bit Score: 120.10 E-value: 3.95e-32
|
|||||||||
APH | pfam01636 | Phosphotransferase enzyme family; This family consists of bacterial antibiotic resistance ... |
204-440 | 4.40e-31 | |||||
Phosphotransferase enzyme family; This family consists of bacterial antibiotic resistance proteins, which confer resistance to various aminoglycosides they include: aminoglycoside 3'-phosphotransferase or kanamycin kinase / neomycin-kanamycin phosphotransferase and streptomycin 3''-kinase or streptomycin 3''-phosphotransferase. The aminoglycoside phosphotransferases inactivate aminoglycoside antibiotics via phosphorylation. This family also includes homoserine kinase. This family is related to fructosamine kinase pfam03881. Pssm-ID: 426359 [Multi-domain] Cd Length: 239 Bit Score: 119.91 E-value: 4.40e-31
|
|||||||||
RimL | COG1670 | Protein N-acetyltransferase, RimJ/RimL family [Translation, ribosomal structure and biogenesis, ... |
10-181 | 1.27e-19 | |||||
Protein N-acetyltransferase, RimJ/RimL family [Translation, ribosomal structure and biogenesis, Posttranslational modification, protein turnover, chaperones]; Pssm-ID: 441276 [Multi-domain] Cd Length: 173 Bit Score: 85.82 E-value: 1.27e-19
|
|||||||||
Acetyltransf_8 | pfam13523 | Acetyltransferase (GNAT) domain; This domain catalyzes N-acetyltransferase reactions. |
14-164 | 4.59e-19 | |||||
Acetyltransferase (GNAT) domain; This domain catalyzes N-acetyltransferase reactions. Pssm-ID: 433280 Cd Length: 145 Bit Score: 83.72 E-value: 4.59e-19
|
|||||||||
YcbJ | COG3173 | Predicted kinase, aminoglycoside phosphotransferase (APT) family [General function prediction ... |
191-410 | 3.43e-12 | |||||
Predicted kinase, aminoglycoside phosphotransferase (APT) family [General function prediction only]; Pssm-ID: 442406 [Multi-domain] Cd Length: 284 Bit Score: 66.68 E-value: 3.43e-12
|
|||||||||
APH | cd05150 | Aminoglycoside 3'-phosphotransferase; APH catalyzes the transfer of the gamma-phosphoryl group ... |
302-441 | 7.26e-11 | |||||
Aminoglycoside 3'-phosphotransferase; APH catalyzes the transfer of the gamma-phosphoryl group from ATP to aminoglycoside antibiotics such as kanamycin, streptomycin, neomycin, and gentamicin, among others. The aminoglycoside antibiotics target the 30S ribosome and promote miscoding, leading to the production of defective proteins which insert into the bacterial membrane, resulting in membrane damage and the ultimate demise of the bacterium. Phosphorylation of the aminoglycoside antibiotics results in their inactivation, leading to bacterial antibiotic resistance. The APH gene is found on transposons and plasmids and is thought to have originated as a self-defense mechanism used by microorganisms that produce the antibiotics. The APH subfamily is part of a larger superfamily that includes the catalytic domains of other kinases, such as the typical serine/threonine/tyrosine protein kinases (PKs), RIO kinases, actin-fragmin kinase (AFK), and phosphoinositide 3-kinase (PI3K). Pssm-ID: 270699 [Multi-domain] Cd Length: 244 Bit Score: 62.21 E-value: 7.26e-11
|
|||||||||
CotS | COG0510 | Thiamine kinase or a related kinase [Coenzyme transport and metabolism]; |
329-430 | 4.63e-06 | |||||
Thiamine kinase or a related kinase [Coenzyme transport and metabolism]; Pssm-ID: 440276 [Multi-domain] Cd Length: 156 Bit Score: 46.70 E-value: 4.63e-06
|
|||||||||
PRK10562 | PRK10562 | putative acetyltransferase; Provisional |
99-157 | 2.16e-03 | |||||
putative acetyltransferase; Provisional Pssm-ID: 236715 [Multi-domain] Cd Length: 145 Bit Score: 38.51 E-value: 2.16e-03
|
|||||||||
Name | Accession | Description | Interval | E-value | |||||
APH_ChoK_like | cd05120 | Aminoglycoside 3'-phosphotransferase and Choline Kinase family; This family is composed of APH, ... |
203-415 | 3.95e-32 | |||||
Aminoglycoside 3'-phosphotransferase and Choline Kinase family; This family is composed of APH, ChoK, ethanolamine kinase (ETNK), macrolide 2'-phosphotransferase (MPH2'), an unusual homoserine kinase, and uncharacterized proteins with similarity to the N-terminal domain of acyl-CoA dehydrogenase 10 (ACAD10). The members of this family catalyze the transfer of the gamma-phosphoryl group from ATP (or CTP) to small molecule substrates such as aminoglycosides, macrolides, choline, ethanolamine, and homoserine. Phosphorylation of the antibiotics, aminoglycosides and macrolides, leads to their inactivation and to bacterial antibiotic resistance. Phosphorylation of choline, ethanolamine, and homoserine serves as precursors to the synthesis of important biological compounds, such as the major phospholipids, phosphatidylcholine and phosphatidylethanolamine and the amino acids, threonine, methionine, and isoleucine. The APH/ChoK family is part of a larger superfamily that includes the catalytic domains of other kinases, such as the typical serine/threonine/tyrosine protein kinases (PKs), RIO kinases, actin-fragmin kinase (AFK), and phosphoinositide 3-kinase (PI3K). Pssm-ID: 270690 [Multi-domain] Cd Length: 158 Bit Score: 120.10 E-value: 3.95e-32
|
|||||||||
APH | pfam01636 | Phosphotransferase enzyme family; This family consists of bacterial antibiotic resistance ... |
204-440 | 4.40e-31 | |||||
Phosphotransferase enzyme family; This family consists of bacterial antibiotic resistance proteins, which confer resistance to various aminoglycosides they include: aminoglycoside 3'-phosphotransferase or kanamycin kinase / neomycin-kanamycin phosphotransferase and streptomycin 3''-kinase or streptomycin 3''-phosphotransferase. The aminoglycoside phosphotransferases inactivate aminoglycoside antibiotics via phosphorylation. This family also includes homoserine kinase. This family is related to fructosamine kinase pfam03881. Pssm-ID: 426359 [Multi-domain] Cd Length: 239 Bit Score: 119.91 E-value: 4.40e-31
|
|||||||||
RimL | COG1670 | Protein N-acetyltransferase, RimJ/RimL family [Translation, ribosomal structure and biogenesis, ... |
10-181 | 1.27e-19 | |||||
Protein N-acetyltransferase, RimJ/RimL family [Translation, ribosomal structure and biogenesis, Posttranslational modification, protein turnover, chaperones]; Pssm-ID: 441276 [Multi-domain] Cd Length: 173 Bit Score: 85.82 E-value: 1.27e-19
|
|||||||||
Acetyltransf_8 | pfam13523 | Acetyltransferase (GNAT) domain; This domain catalyzes N-acetyltransferase reactions. |
14-164 | 4.59e-19 | |||||
Acetyltransferase (GNAT) domain; This domain catalyzes N-acetyltransferase reactions. Pssm-ID: 433280 Cd Length: 145 Bit Score: 83.72 E-value: 4.59e-19
|
|||||||||
YcbJ | COG3173 | Predicted kinase, aminoglycoside phosphotransferase (APT) family [General function prediction ... |
191-410 | 3.43e-12 | |||||
Predicted kinase, aminoglycoside phosphotransferase (APT) family [General function prediction only]; Pssm-ID: 442406 [Multi-domain] Cd Length: 284 Bit Score: 66.68 E-value: 3.43e-12
|
|||||||||
Acetyltransf_3 | pfam13302 | Acetyltransferase (GNAT) domain; This domain catalyzes N-acetyltransferase reactions. |
8-154 | 1.08e-11 | |||||
Acetyltransferase (GNAT) domain; This domain catalyzes N-acetyltransferase reactions. Pssm-ID: 379112 [Multi-domain] Cd Length: 139 Bit Score: 62.36 E-value: 1.08e-11
|
|||||||||
APH | cd05150 | Aminoglycoside 3'-phosphotransferase; APH catalyzes the transfer of the gamma-phosphoryl group ... |
302-441 | 7.26e-11 | |||||
Aminoglycoside 3'-phosphotransferase; APH catalyzes the transfer of the gamma-phosphoryl group from ATP to aminoglycoside antibiotics such as kanamycin, streptomycin, neomycin, and gentamicin, among others. The aminoglycoside antibiotics target the 30S ribosome and promote miscoding, leading to the production of defective proteins which insert into the bacterial membrane, resulting in membrane damage and the ultimate demise of the bacterium. Phosphorylation of the aminoglycoside antibiotics results in their inactivation, leading to bacterial antibiotic resistance. The APH gene is found on transposons and plasmids and is thought to have originated as a self-defense mechanism used by microorganisms that produce the antibiotics. The APH subfamily is part of a larger superfamily that includes the catalytic domains of other kinases, such as the typical serine/threonine/tyrosine protein kinases (PKs), RIO kinases, actin-fragmin kinase (AFK), and phosphoinositide 3-kinase (PI3K). Pssm-ID: 270699 [Multi-domain] Cd Length: 244 Bit Score: 62.21 E-value: 7.26e-11
|
|||||||||
Acetyltransf_1 | pfam00583 | Acetyltransferase (GNAT) family; This family contains proteins with N-acetyltransferase ... |
41-153 | 1.41e-10 | |||||
Acetyltransferase (GNAT) family; This family contains proteins with N-acetyltransferase functions such as Elp3-related proteins. Pssm-ID: 395465 [Multi-domain] Cd Length: 116 Bit Score: 58.68 E-value: 1.41e-10
|
|||||||||
MnaT | COG1247 | L-amino acid N-acyltransferase MnaT [Amino acid transport and metabolism]; |
10-178 | 9.06e-10 | |||||
L-amino acid N-acyltransferase MnaT [Amino acid transport and metabolism]; Pssm-ID: 440860 [Multi-domain] Cd Length: 163 Bit Score: 57.31 E-value: 9.06e-10
|
|||||||||
PhnO | COG0454 | N-acetyltransferase, GNAT superfamily (includes histone acetyltransferase HPA2) [Transcription, ... |
51-170 | 1.36e-09 | |||||
N-acetyltransferase, GNAT superfamily (includes histone acetyltransferase HPA2) [Transcription, General function prediction only]; Pssm-ID: 440222 [Multi-domain] Cd Length: 136 Bit Score: 56.22 E-value: 1.36e-09
|
|||||||||
RimI | COG0456 | Ribosomal protein S18 acetylase RimI and related acetyltransferases [Translation, ribosomal ... |
105-178 | 4.51e-08 | |||||
Ribosomal protein S18 acetylase RimI and related acetyltransferases [Translation, ribosomal structure and biogenesis]; Pssm-ID: 440224 [Multi-domain] Cd Length: 92 Bit Score: 50.42 E-value: 4.51e-08
|
|||||||||
CotS | COG0510 | Thiamine kinase or a related kinase [Coenzyme transport and metabolism]; |
329-430 | 4.63e-06 | |||||
Thiamine kinase or a related kinase [Coenzyme transport and metabolism]; Pssm-ID: 440276 [Multi-domain] Cd Length: 156 Bit Score: 46.70 E-value: 4.63e-06
|
|||||||||
COG3393 | COG3393 | Predicted acetyltransferase, GNAT family [General function prediction only]; |
105-166 | 1.70e-05 | |||||
Predicted acetyltransferase, GNAT family [General function prediction only]; Pssm-ID: 442620 [Multi-domain] Cd Length: 86 Bit Score: 42.97 E-value: 1.70e-05
|
|||||||||
yhbS | COG3153 | Predicted N-acetyltransferase YhbS [General function prediction only]; |
10-162 | 4.81e-05 | |||||
Predicted N-acetyltransferase YhbS [General function prediction only]; Pssm-ID: 442387 [Multi-domain] Cd Length: 142 Bit Score: 43.15 E-value: 4.81e-05
|
|||||||||
APH_ChoK_like_1 | cd05155 | Uncharacterized bacterial proteins with similarity to Aminoglycoside 3'-phosphotransferase and ... |
293-407 | 8.18e-04 | |||||
Uncharacterized bacterial proteins with similarity to Aminoglycoside 3'-phosphotransferase and Choline kinase; This subfamily is composed of uncharacterized bacterial proteins with similarity to APH and ChoK. Other APH/ChoK-like proteins include ethanolamine kinase (ETNK), macrolide 2'-phosphotransferase (MPH2'), an unusual homoserine kinase, and uncharacterized proteins with similarity to the N-terminal domain of acyl-CoA dehydrogenase 10 (ACAD10). These proteins catalyze the transfer of the gamma-phosphoryl group from ATP (or CTP) to small molecule substrates, such as aminoglycosides, macrolides, choline, ethanolamine, and homoserine. Phosphorylation of the antibiotics, aminoglycosides, and macrolides leads to their inactivation and to bacterial antibiotic resistance. Phosphorylation of choline, ethanolamine, and homoserine serves as precursors to the synthesis of important biological compounds, such as the major phospholipids, phosphatidylcholine and phosphatidylethanolamine and the amino acids, threonine, methionine, and isoleucine. The APH/ChoK-like subfamily is part of a larger superfamily that includes the catalytic domains of other kinases, such as the typical serine/threonine/tyrosine protein kinases (PKs), RIO kinases, actin-fragmin kinase (AFK), and phosphoinositide 3-kinase (PI3K). Pssm-ID: 270704 [Multi-domain] Cd Length: 234 Bit Score: 41.07 E-value: 8.18e-04
|
|||||||||
ArgA | COG1246 | N-acetylglutamate synthase or related acetyltransferase, GNAT family [Amino acid transport and ... |
61-180 | 1.91e-03 | |||||
N-acetylglutamate synthase or related acetyltransferase, GNAT family [Amino acid transport and metabolism]; N-acetylglutamate synthase or related acetyltransferase, GNAT family is part of the Pathway/BioSystem: Arginine biosynthesis Pssm-ID: 440859 [Multi-domain] Cd Length: 132 Bit Score: 38.43 E-value: 1.91e-03
|
|||||||||
PRK10562 | PRK10562 | putative acetyltransferase; Provisional |
99-157 | 2.16e-03 | |||||
putative acetyltransferase; Provisional Pssm-ID: 236715 [Multi-domain] Cd Length: 145 Bit Score: 38.51 E-value: 2.16e-03
|
|||||||||
ACAD10_11_N-like | cd05154 | N-terminal domain of Acyl-CoA dehydrogenase (ACAD) 10 and 11, and similar proteins; This ... |
280-393 | 3.45e-03 | |||||
N-terminal domain of Acyl-CoA dehydrogenase (ACAD) 10 and 11, and similar proteins; This subfamily is composed of the N-terminal domains of vertebrate ACAD10 and ACAD11, and similar uncharacterized bacterial and eukaryotic proteins. ACADs are a family of flavoproteins that are involved in the beta-oxidation of fatty acyl-CoA derivatives. ACAD deficiency can cause metabolic disorders including muscle fatigue, hypoglycemia, and hepatic lipidosis. There are at least 11 distinct ACADs, some of which show distinct substrate specificities to either straight-chain or branched-chain fatty acids. ACAD10 is widely expressed in human tissues and highly expressed in liver, kidney, pancreas, and spleen. ACAD10 and ACAD11 are both significantly expressed in human brain tissues. They contain a long N-terminal domain with similarity to phosphotransferases with a Protein Kinase fold, which is absent in other ACADs. They may exhibit multiple functions in acyl-CoA oxidation pathways. ACAD11 utilizes substrates with carbon chain lengths of 20 to 26, with optimal activity towards C22CoA. ACAD10 may be associated with an increased risk in type II diabetes. The ACAD10/11-like subfamily is part of a larger superfamily that includes the catalytic domains of other kinases, such as the typical serine/threonine/tyrosine protein kinases (PKs), RIO kinases, actin-fragmin kinase (AFK), and phosphoinositide 3-kinase (PI3K). Pssm-ID: 270703 [Multi-domain] Cd Length: 254 Bit Score: 39.14 E-value: 3.45e-03
|
|||||||||
Blast search parameters | ||||
|