cation:proton antiporter similar to Escherichia coli inner membrane protein YbaL and Yersinia RosB, which mediates resistance to cationic antimicrobial peptides
Sodium/hydrogen exchanger family; Na/H antiporters are key transporters in maintaining the pH ...
11-387
1.80e-48
Sodium/hydrogen exchanger family; Na/H antiporters are key transporters in maintaining the pH of actively metabolising cells. The molecular mechanisms of antiport are unclear. These antiporters contain 10-12 transmembrane regions (M) at the amino-terminus and a large cytoplasmic region at the carboxyl terminus. The transmembrane regions M3-M12 share identity with other members of the family. The M6 and M7 regions are highly conserved. Thus, this is thought to be the region that is involved in the transport of sodium and hydrogen ions. The cytoplasmic region has little similarity throughout the family.
Pssm-ID: 425982 [Multi-domain] Cd Length: 377 Bit Score: 172.44 E-value: 1.80e-48
NmrA (a transcriptional regulator) and triphenylmethane reductase (TMR) like proteins, ...
426-531
2.61e-04
NmrA (a transcriptional regulator) and triphenylmethane reductase (TMR) like proteins, subgroup 1, atypical (a) SDRs; Atypical SDRs related to NMRa, TMR, and HSCARG (an NADPH sensor). This subgroup resembles the SDRs and has a partially conserved characteristic [ST]GXXGXXG NAD-binding motif, but lacks the conserved active site residues. NmrA is a negative transcriptional regulator of various fungi, involved in the post-translational modulation of the GATA-type transcription factor AreA. NmrA lacks the canonical GXXGXXG NAD-binding motif and has altered residues at the catalytic triad, including a Met instead of the critical Tyr residue. NmrA may bind nucleotides but appears to lack any dehydrogenase activity. HSCARG has been identified as a putative NADP-sensing molecule, and redistributes and restructures in response to NADPH/NADP ratios. Like NmrA, it lacks most of the active site residues of the SDR family, but has an NAD(P)-binding motif similar to the extended SDR family, GXXGXXG. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold, an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Sequence identity between different SDR enzymes is typically in the 15-30% range; they catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Atypical SDRs are distinct from classical SDRs. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase numbering). In addition to the Tyr and Lys, there is often an upstream Ser and/or an Asn, contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. In addition to the Rossmann fold core region typical of all SDRs, extended SDRs have a less conserved C-terminal extension of approximately 100 amino acids, and typically have a TGXXGXXG cofactor binding motif. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid synthase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type ketoacyl reductases have a TGXXXGX(1-2)G NAD(P)-binding motif.
Pssm-ID: 187542 [Multi-domain] Cd Length: 259 Bit Score: 43.08 E-value: 2.61e-04
Sodium/hydrogen exchanger family; Na/H antiporters are key transporters in maintaining the pH ...
11-387
1.80e-48
Sodium/hydrogen exchanger family; Na/H antiporters are key transporters in maintaining the pH of actively metabolising cells. The molecular mechanisms of antiport are unclear. These antiporters contain 10-12 transmembrane regions (M) at the amino-terminus and a large cytoplasmic region at the carboxyl terminus. The transmembrane regions M3-M12 share identity with other members of the family. The M6 and M7 regions are highly conserved. Thus, this is thought to be the region that is involved in the transport of sodium and hydrogen ions. The cytoplasmic region has little similarity throughout the family.
Pssm-ID: 425982 [Multi-domain] Cd Length: 377 Bit Score: 172.44 E-value: 1.80e-48
TrkA-N domain; This domain is found in a wide variety of proteins. These proteins include ...
421-534
2.99e-26
TrkA-N domain; This domain is found in a wide variety of proteins. These proteins include potassium channels, phosphoesterases, and various other transporters. This domain binds to NAD.
Pssm-ID: 426679 [Multi-domain] Cd Length: 115 Bit Score: 103.37 E-value: 2.99e-26
NmrA (a transcriptional regulator) and triphenylmethane reductase (TMR) like proteins, ...
426-531
2.61e-04
NmrA (a transcriptional regulator) and triphenylmethane reductase (TMR) like proteins, subgroup 1, atypical (a) SDRs; Atypical SDRs related to NMRa, TMR, and HSCARG (an NADPH sensor). This subgroup resembles the SDRs and has a partially conserved characteristic [ST]GXXGXXG NAD-binding motif, but lacks the conserved active site residues. NmrA is a negative transcriptional regulator of various fungi, involved in the post-translational modulation of the GATA-type transcription factor AreA. NmrA lacks the canonical GXXGXXG NAD-binding motif and has altered residues at the catalytic triad, including a Met instead of the critical Tyr residue. NmrA may bind nucleotides but appears to lack any dehydrogenase activity. HSCARG has been identified as a putative NADP-sensing molecule, and redistributes and restructures in response to NADPH/NADP ratios. Like NmrA, it lacks most of the active site residues of the SDR family, but has an NAD(P)-binding motif similar to the extended SDR family, GXXGXXG. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold, an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Sequence identity between different SDR enzymes is typically in the 15-30% range; they catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Atypical SDRs are distinct from classical SDRs. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase numbering). In addition to the Tyr and Lys, there is often an upstream Ser and/or an Asn, contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. In addition to the Rossmann fold core region typical of all SDRs, extended SDRs have a less conserved C-terminal extension of approximately 100 amino acids, and typically have a TGXXGXXG cofactor binding motif. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid synthase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type ketoacyl reductases have a TGXXXGX(1-2)G NAD(P)-binding motif.
Pssm-ID: 187542 [Multi-domain] Cd Length: 259 Bit Score: 43.08 E-value: 2.61e-04
Database: CDSEARCH/cdd Low complexity filter: no Composition Based Adjustment: yes E-value threshold: 0.01
References:
Wang J et al. (2023), "The conserved domain database in 2023", Nucleic Acids Res.51(D)384-8.
Lu S et al. (2020), "The conserved domain database in 2020", Nucleic Acids Res.48(D)265-8.
Marchler-Bauer A et al. (2017), "CDD/SPARCLE: functional classification of proteins via subfamily domain architectures.", Nucleic Acids Res.45(D)200-3.
of the residues that compose this conserved feature have been mapped to the query sequence.
Click on the triangle to view details about the feature, including a multiple sequence alignment
of your query sequence and the protein sequences used to curate the domain model,
where hash marks (#) above the aligned sequences show the location of the conserved feature residues.
The thumbnail image, if present, provides an approximate view of the feature's location in 3 dimensions.
Click on the triangle for interactive 3D structure viewing options.
Functional characterization of the conserved domain architecture found on the query.
Click here to see more details.
This image shows a graphical summary of conserved domains identified on the query sequence.
The Show Concise/Full Display button at the top of the page can be used to select the desired level of detail: only top scoring hits
(labeled illustration) or all hits
(labeled illustration).
Domains are color coded according to superfamilies
to which they have been assigned. Hits with scores that pass a domain-specific threshold
(specific hits) are drawn in bright colors.
Others (non-specific hits) and
superfamily placeholders are drawn in pastel colors.
if a domain or superfamily has been annotated with functional sites (conserved features),
they are mapped to the query sequence and indicated through sets of triangles
with the same color and shade of the domain or superfamily that provides the annotation. Mouse over the colored bars or triangles to see descriptions of the domains and features.
click on the bars or triangles to view your query sequence embedded in a multiple sequence alignment of the proteins used to develop the corresponding domain model.
The table lists conserved domains identified on the query sequence. Click on the plus sign (+) on the left to display full descriptions, alignments, and scores.
Click on the domain model's accession number to view the multiple sequence alignment of the proteins used to develop the corresponding domain model.
To view your query sequence embedded in that multiple sequence alignment, click on the colored bars in the Graphical Summary portion of the search results page,
or click on the triangles, if present, that represent functional sites (conserved features)
mapped to the query sequence.
Concise Display shows only the best scoring domain model, in each hit category listed below except non-specific hits, for each region on the query sequence.
(labeled illustration) Standard Display shows only the best scoring domain model from each source, in each hit category listed below for each region on the query sequence.
(labeled illustration) Full Display shows all domain models, in each hit category below, that meet or exceed the RPS-BLAST threshold for statistical significance.
(labeled illustration) Four types of hits can be shown, as available,
for each region on the query sequence:
specific hits meet or exceed a domain-specific e-value threshold
(illustrated example)
and represent a very high confidence that the query sequence belongs to the same protein family as the sequences use to create the domain model
non-specific hits
meet or exceed the RPS-BLAST threshold for statistical significance (default E-value cutoff of 0.01, or an E-value selected by user via the
advanced search options)
the domain superfamily to which the specific and non-specific hits belong
multi-domain models that were computationally detected and are likely to contain multiple single domains
Retrieve proteins that contain one or more of the domains present in the query sequence, using the Conserved Domain Architecture Retrieval Tool
(CDART).
Modify your query to search against a different database and/or use advanced search options