substrate-binding and VWA (von Willebrand factor type A) domain-containing protein with an N-terminal extracellular solute-binding protein (SBP) domain and a C-terminal VWA domain
Von Willebrand factor type A (vWA) domain was originally found in the blood coagulation ...
362-574
9.94e-37
Von Willebrand factor type A (vWA) domain was originally found in the blood coagulation protein von Willebrand factor (vWF). Typically, the vWA domain is made up of approximately 200 amino acid residues folded into a classic a/b para-rossmann type of fold. The vWA domain, since its discovery, has drawn great interest because of its widespread occurrence and its involvement in a wide variety of important cellular functions. These include basal membrane formation, cell migration, cell differentiation, adhesion, haemostasis, signaling, chromosomal stability, malignant transformation and in immune defenses In integrins these domains form heterodimers while in vWF it forms multimers. There are different interaction surfaces of this domain as seen by the various molecules it complexes with. Ligand binding in most cases is mediated by the presence of a metal ion dependent adhesion site termed as the MIDAS motif that is a characteristic feature of most, if not all A domains.
The actual alignment was detected with superfamily member cd01456:
Pssm-ID: 469594 [Multi-domain] Cd Length: 206 Bit Score: 135.63 E-value: 9.94e-37
VWA ywmD type:Von Willebrand factor type A (vWA) domain was originally found in the blood ...
362-574
9.94e-37
VWA ywmD type:Von Willebrand factor type A (vWA) domain was originally found in the blood coagulation protein von Willebrand factor (vWF). Typically, the vWA domain is made up of approximately 200 amino acid residues folded into a classic a/b para-rossmann type of fold. The vWA domain, since its discovery, has drawn great interest because of its widespread occurrence and its involvement in a wide variety of important cellular functions. These include basal membrane formation, cell migration, cell differentiation, adhesion, haemostasis, signaling, chromosomal stability, malignant transformation and in immune defenses In integrins these domains form heterodimers while in vWF it forms multimers. There are different interaction surfaces of this domain as seen by the various molecules it complexes with. Ligand binding in most cases is mediated by the presence of a metal ion dependent adhesion site termed as the MIDAS motif that is a characteristic feature of most, if not all A domains. Not much is known about the function of the members of this subgroup. All members of this subgroup however have a conserved MIDAS motif.
Pssm-ID: 238733 [Multi-domain] Cd Length: 206 Bit Score: 135.63 E-value: 9.94e-37
von Willebrand factor (vWF) type A domain; VWA domains in extracellular eukaryotic proteins ...
388-573
3.69e-13
von Willebrand factor (vWF) type A domain; VWA domains in extracellular eukaryotic proteins mediate adhesion via metal ion-dependent adhesion sites (MIDAS). Intracellular VWA domains and homologues in prokaryotes have recently been identified. The proposed VWA domains in integrin beta subunits have recently been substantiated using sequence-based methods.
Pssm-ID: 214621 [Multi-domain] Cd Length: 175 Bit Score: 67.86 E-value: 3.69e-13
calcium-activated chloride channel protein 1; found a row in 1A13.INFO that was not parsed out ...
388-578
9.68e-06
calcium-activated chloride channel protein 1; found a row in 1A13.INFO that was not parsed out AC found a row in 1A13.INFO that was not parsed out EC found a row in 1A13.INFO that was not parsed out GA found a row in 1A13.INFO that was not parsed out SO found a row in 1A13.INFO that was not parsed out RH found a row in 1A13.INFO that was not parsed out EN found a row in 1A13.INFO that was not parsed out GS found a row in 1A13.INFO that was not parsed out AL found a row in 1A13.INFO that was not parsed out The Epithelial Chloride Channel (E-ClC) Family (TC 1.A.13) found a row in 1A13.INFO that was not parsed out found a row in 1A13.INFO that was not parsed out Mammals have multiple isoforms of epithelial chloride channel proteins. The first member of this family to be characterized was a respiratory epithelium, Ca found a row in 1A13.INFO that was not parsed out 2+-regulated, chloride channel protein isolated from bovine tracheal apical membranes. It was biochemically characterized as a 140 kDa complex. The purified found a row in 1A13.INFO that was not parsed out complex when reconstituted in a planar lipid bilayer behaved as an anion-selective channel. It was regulated by Ca 2+ via a calmodulin kinase II-dependent found a row in 1A13.INFO that was not parsed out mechanism. When the cRNA was injected into Xenopus oocytes, an outward rectifying, DIDS-sensitive, anion conductance was measured. A related gene, found a row in 1A13.INFO that was not parsed out Lu-ECAM, was cloned from the bovine aortic endothelial cell line, BAEC. It is expressed in the lung and spleen but not in the trachea. Homologues are found in found a row in 1A13.INFO that was not parsed out several mammals, and at least three paralogues(hCaCC-1-3) are present in humans, each with different tissue distributions. found a row in 1A13.INFO that was not parsed out [Transport and binding proteins, Anions]
Pssm-ID: 129946 [Multi-domain] Cd Length: 863 Bit Score: 48.73 E-value: 9.68e-06
Substrate binding domain of an uncharacterized ferric iron transporter, a member of the type 2 ...
171-335
1.25e-03
Substrate binding domain of an uncharacterized ferric iron transporter, a member of the type 2 periplasmic binding fold superfamily; The periplasmic iron binding protein plays an essential role in the iron uptake pathway of Gram-negative pathogenic bacteria from the Pasteurellaceae and Neisseriaceae families and is critical for survival of these pathogens within the host. This periplasmic domain (Fbp) has high affinity for ferric iron and serves as the primary receptor for transport. After binding iron with high affinity, Fbp interacts with a cognate membrane transport complex comprised of two integral membrane domains and two cytoplasmically located ATPase. This interaction triggers the ligand translocation across the cytoplasmic membrane energized by ATP hydrolysis. The ferric iron-binding proteins belong to the PBP2 superfamily of periplasmic binding proteins that differ in size and ligand specificity, but have similar tertiary structures consisting of two globular subdomains connected by a flexible hinge. They have been shown to bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap.
Pssm-ID: 270265 [Multi-domain] Cd Length: 259 Bit Score: 41.05 E-value: 1.25e-03
VWA ywmD type:Von Willebrand factor type A (vWA) domain was originally found in the blood ...
362-574
9.94e-37
VWA ywmD type:Von Willebrand factor type A (vWA) domain was originally found in the blood coagulation protein von Willebrand factor (vWF). Typically, the vWA domain is made up of approximately 200 amino acid residues folded into a classic a/b para-rossmann type of fold. The vWA domain, since its discovery, has drawn great interest because of its widespread occurrence and its involvement in a wide variety of important cellular functions. These include basal membrane formation, cell migration, cell differentiation, adhesion, haemostasis, signaling, chromosomal stability, malignant transformation and in immune defenses In integrins these domains form heterodimers while in vWF it forms multimers. There are different interaction surfaces of this domain as seen by the various molecules it complexes with. Ligand binding in most cases is mediated by the presence of a metal ion dependent adhesion site termed as the MIDAS motif that is a characteristic feature of most, if not all A domains. Not much is known about the function of the members of this subgroup. All members of this subgroup however have a conserved MIDAS motif.
Pssm-ID: 238733 [Multi-domain] Cd Length: 206 Bit Score: 135.63 E-value: 9.94e-37
von Willebrand factor (vWF) type A domain; VWA domains in extracellular eukaryotic proteins ...
388-573
3.69e-13
von Willebrand factor (vWF) type A domain; VWA domains in extracellular eukaryotic proteins mediate adhesion via metal ion-dependent adhesion sites (MIDAS). Intracellular VWA domains and homologues in prokaryotes have recently been identified. The proposed VWA domains in integrin beta subunits have recently been substantiated using sequence-based methods.
Pssm-ID: 214621 [Multi-domain] Cd Length: 175 Bit Score: 67.86 E-value: 3.69e-13
Von Willebrand factor type A (vWA) domain was originally found in the blood coagulation ...
388-565
4.10e-10
Von Willebrand factor type A (vWA) domain was originally found in the blood coagulation protein von Willebrand factor (vWF). Typically, the vWA domain is made up of approximately 200 amino acid residues folded into a classic a/b para-rossmann type of fold. The vWA domain, since its discovery, has drawn great interest because of its widespread occurrence and its involvement in a wide variety of important cellular functions. These include basal membrane formation, cell migration, cell differentiation, adhesion, haemostasis, signaling, chromosomal stability, malignant transformation and in immune defenses In integrins these domains form heterodimers while in vWF it forms multimers. There are different interaction surfaces of this domain as seen by the various molecules it complexes with. Ligand binding in most cases is mediated by the presence of a metal ion dependent adhesion site termed as the MIDAS motif that is a characteristic feature of most, if not all A domains.
Pssm-ID: 238119 [Multi-domain] Cd Length: 161 Bit Score: 58.73 E-value: 4.10e-10
calcium-activated chloride channel protein 1; found a row in 1A13.INFO that was not parsed out ...
388-578
9.68e-06
calcium-activated chloride channel protein 1; found a row in 1A13.INFO that was not parsed out AC found a row in 1A13.INFO that was not parsed out EC found a row in 1A13.INFO that was not parsed out GA found a row in 1A13.INFO that was not parsed out SO found a row in 1A13.INFO that was not parsed out RH found a row in 1A13.INFO that was not parsed out EN found a row in 1A13.INFO that was not parsed out GS found a row in 1A13.INFO that was not parsed out AL found a row in 1A13.INFO that was not parsed out The Epithelial Chloride Channel (E-ClC) Family (TC 1.A.13) found a row in 1A13.INFO that was not parsed out found a row in 1A13.INFO that was not parsed out Mammals have multiple isoforms of epithelial chloride channel proteins. The first member of this family to be characterized was a respiratory epithelium, Ca found a row in 1A13.INFO that was not parsed out 2+-regulated, chloride channel protein isolated from bovine tracheal apical membranes. It was biochemically characterized as a 140 kDa complex. The purified found a row in 1A13.INFO that was not parsed out complex when reconstituted in a planar lipid bilayer behaved as an anion-selective channel. It was regulated by Ca 2+ via a calmodulin kinase II-dependent found a row in 1A13.INFO that was not parsed out mechanism. When the cRNA was injected into Xenopus oocytes, an outward rectifying, DIDS-sensitive, anion conductance was measured. A related gene, found a row in 1A13.INFO that was not parsed out Lu-ECAM, was cloned from the bovine aortic endothelial cell line, BAEC. It is expressed in the lung and spleen but not in the trachea. Homologues are found in found a row in 1A13.INFO that was not parsed out several mammals, and at least three paralogues(hCaCC-1-3) are present in humans, each with different tissue distributions. found a row in 1A13.INFO that was not parsed out [Transport and binding proteins, Anions]
Pssm-ID: 129946 [Multi-domain] Cd Length: 863 Bit Score: 48.73 E-value: 9.68e-06
VWA subgroup: Von Willebrand factor type A (vWA) domain was originally found in the blood ...
385-574
9.75e-06
VWA subgroup: Von Willebrand factor type A (vWA) domain was originally found in the blood coagulation protein von Willebrand factor (vWF). Typically, the vWA domain is made up of approximately 200 amino acid residues folded into a classic a/b para-rossmann type of fold. The vWA domain, since its discovery, has drawn great interest because of its widespread occurrence and its involvement in a wide variety of important cellular functions. These include basal membrane formation, cell migration, cell differentiation, adhesion, haemostasis, signaling, chromosomal stability, malignant transformation and in immune defenses In integrins these domains form heterodimers while in vWF it forms multimers. There are different interaction surfaces of this domain as seen by the various molecules it complexes with. Ligand binding in most cases is mediated by the presence of a metal ion dependent adhesion site termed as the MIDAS motif that is a characteristic feature of most, if not all A domains. Not much is known about the function of the VWA domain in these proteins. The members do have a conserved MIDAS motif. The biochemical function however is not known.
Pssm-ID: 238742 [Multi-domain] Cd Length: 170 Bit Score: 46.11 E-value: 9.75e-06
VWA C3HC4-type: Von Willebrand factor type A (vWA) domain was originally found in the blood ...
385-568
2.97e-04
VWA C3HC4-type: Von Willebrand factor type A (vWA) domain was originally found in the blood coagulation protein von Willebrand factor (vWF). Typically, the vWA domain is made up of approximately 200 amino acid residues folded into a classic a/b para-rossmann type of fold. The vWA domain, since its discovery, has drawn great interest because of its widespread occurrence and its involvement in a wide variety of important cellular functions. These include basal membrane formation, cell migration, cell differentiation, adhesion, haemostasis, signaling, chromosomal stability, malignant transformation and in immune defenses In integrins these domains form heterodimers while in vWF it forms multimers. There are different interaction surfaces of this domain as seen by the various molecules it complexes with. Ligand binding in most cases is mediated by the presence of a metal ion dependent adhesion site termed as the MIDAS motif that is a characteristic feature of most, if not all A domains. Membes of this subgroup belong to Zinc-finger family as they are found fused to RING finger domains. The MIDAS motif is not conserved in all the members of this family. The function of vWA domains however is not known.
Pssm-ID: 238743 [Multi-domain] Cd Length: 155 Bit Score: 41.61 E-value: 2.97e-04
Substrate binding domain of an uncharacterized ferric iron transporter, a member of the type 2 ...
171-335
1.25e-03
Substrate binding domain of an uncharacterized ferric iron transporter, a member of the type 2 periplasmic binding fold superfamily; The periplasmic iron binding protein plays an essential role in the iron uptake pathway of Gram-negative pathogenic bacteria from the Pasteurellaceae and Neisseriaceae families and is critical for survival of these pathogens within the host. This periplasmic domain (Fbp) has high affinity for ferric iron and serves as the primary receptor for transport. After binding iron with high affinity, Fbp interacts with a cognate membrane transport complex comprised of two integral membrane domains and two cytoplasmically located ATPase. This interaction triggers the ligand translocation across the cytoplasmic membrane energized by ATP hydrolysis. The ferric iron-binding proteins belong to the PBP2 superfamily of periplasmic binding proteins that differ in size and ligand specificity, but have similar tertiary structures consisting of two globular subdomains connected by a flexible hinge. They have been shown to bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap.
Pssm-ID: 270265 [Multi-domain] Cd Length: 259 Bit Score: 41.05 E-value: 1.25e-03
VWA Voltage gated Calcium channel like: Voltage-gated calcium channels are a complex of five ...
389-570
3.91e-03
VWA Voltage gated Calcium channel like: Voltage-gated calcium channels are a complex of five proteins: alpha 1, beta 1, gamma, alpha 2 and delta. The alpha 2 and delta subunits result from proteolytic processing of a single gene product and carries at its N-terminus the VWA and cache domains, The alpha 2 delta gene family has orthologues in D. melanogaster and C. elegans but none have been detected in aither A. thaliana or yeast. The exact biochemical function of the VWA domain is not known but the alpha 2 delta complex has been shown to regulate various functional properties of the channel complex.
Pssm-ID: 238740 [Multi-domain] Cd Length: 190 Bit Score: 38.91 E-value: 3.91e-03
Database: CDSEARCH/cdd Low complexity filter: no Composition Based Adjustment: yes E-value threshold: 0.01
References:
Wang J et al. (2023), "The conserved domain database in 2023", Nucleic Acids Res.51(D)384-8.
Lu S et al. (2020), "The conserved domain database in 2020", Nucleic Acids Res.48(D)265-8.
Marchler-Bauer A et al. (2017), "CDD/SPARCLE: functional classification of proteins via subfamily domain architectures.", Nucleic Acids Res.45(D)200-3.
of the residues that compose this conserved feature have been mapped to the query sequence.
Click on the triangle to view details about the feature, including a multiple sequence alignment
of your query sequence and the protein sequences used to curate the domain model,
where hash marks (#) above the aligned sequences show the location of the conserved feature residues.
The thumbnail image, if present, provides an approximate view of the feature's location in 3 dimensions.
Click on the triangle for interactive 3D structure viewing options.
Functional characterization of the conserved domain architecture found on the query.
Click here to see more details.
This image shows a graphical summary of conserved domains identified on the query sequence.
The Show Concise/Full Display button at the top of the page can be used to select the desired level of detail: only top scoring hits
(labeled illustration) or all hits
(labeled illustration).
Domains are color coded according to superfamilies
to which they have been assigned. Hits with scores that pass a domain-specific threshold
(specific hits) are drawn in bright colors.
Others (non-specific hits) and
superfamily placeholders are drawn in pastel colors.
if a domain or superfamily has been annotated with functional sites (conserved features),
they are mapped to the query sequence and indicated through sets of triangles
with the same color and shade of the domain or superfamily that provides the annotation. Mouse over the colored bars or triangles to see descriptions of the domains and features.
click on the bars or triangles to view your query sequence embedded in a multiple sequence alignment of the proteins used to develop the corresponding domain model.
The table lists conserved domains identified on the query sequence. Click on the plus sign (+) on the left to display full descriptions, alignments, and scores.
Click on the domain model's accession number to view the multiple sequence alignment of the proteins used to develop the corresponding domain model.
To view your query sequence embedded in that multiple sequence alignment, click on the colored bars in the Graphical Summary portion of the search results page,
or click on the triangles, if present, that represent functional sites (conserved features)
mapped to the query sequence.
Concise Display shows only the best scoring domain model, in each hit category listed below except non-specific hits, for each region on the query sequence.
(labeled illustration) Standard Display shows only the best scoring domain model from each source, in each hit category listed below for each region on the query sequence.
(labeled illustration) Full Display shows all domain models, in each hit category below, that meet or exceed the RPS-BLAST threshold for statistical significance.
(labeled illustration) Four types of hits can be shown, as available,
for each region on the query sequence:
specific hits meet or exceed a domain-specific e-value threshold
(illustrated example)
and represent a very high confidence that the query sequence belongs to the same protein family as the sequences use to create the domain model
non-specific hits
meet or exceed the RPS-BLAST threshold for statistical significance (default E-value cutoff of 0.01, or an E-value selected by user via the
advanced search options)
the domain superfamily to which the specific and non-specific hits belong
multi-domain models that were computationally detected and are likely to contain multiple single domains
Retrieve proteins that contain one or more of the domains present in the query sequence, using the Conserved Domain Architecture Retrieval Tool
(CDART).
Modify your query to search against a different database and/or use advanced search options