phosphatidylethanolamine N-methyltransferase (PEMT) family domain-containing protein similar to Homo sapiens PEMT, which catalyzes the three sequential steps of the methylation pathway of phosphatidylcholine biosynthesis, the SAM-dependent methylation of phosphatidylethanolamine (PE) to phosphatidylmonomethylethanolamine (PMME), PMME to phosphatidyldimethylethanolamine (PDME), and PDME to phosphatidylcholine (PC)
Isoprenylcysteine carboxyl methyltransferase (ICMT) family; The isoprenylcysteine ...
73-418
9.35e-135
Isoprenylcysteine carboxyl methyltransferase (ICMT) family; The isoprenylcysteine o-methyltransferase (EC:2.1.1.100) family carry out carboxyl methylation of cleaved eukaryotic proteins that terminate in a CaaX motif. In Saccharomyces cerevisiae this methylation is carried out by Ste14p, an integral endoplasmic reticulum membrane protein. Ste14p is the founding member of the isoprenylcysteine carboxyl methyltransferase (ICMT) family, whose members share significant sequence homology.
The actual alignment was detected with superfamily member pfam01222:
Pssm-ID: 473892 Cd Length: 429 Bit Score: 393.34 E-value: 9.35e-135
cytochrome P450 family 75; The cytochrome P450 family 75 (CYP75) play important roles in the ...
263-367
9.88e-04
cytochrome P450 family 75; The cytochrome P450 family 75 (CYP75) play important roles in the biosynthesis of colored class of flavonoids, anthocyanins, which confer a diverse range of colors to flowers from orange to red to violet and blue. The number of hydroxyl groups on the B-ring of anthocyanidins, the chromophores and precursors of anthocyanins, impact the anthocyanin color - the more the bluer. The hydroxylation pattern is determined by CYP75 proteins: flavonoid 3'-hydroxylase (F3'H, EC 1.14.14.82) and and flavonoid 3',5'-hydroxylase (F3'5'H, EC 1.14.14.81), which belong to CYP75B and CYP75A subfamilies, respectively. Both enzymes have broad substrate specificity and catalyze the hydroxylation of flavanones, dihydroflavonols, flavonols and flavones. F3'H catalyzes the 3'-hydroxylation of the flavonoid B-ring to the 3',4'-hydroxylated state. F3'5'H catalysis leads to trihydroxylated delphinidin-based anthocyanins that tend to have violet/blue colours. CYP75 belongs to the large cytochrome P450 (P450, CYP) superfamily of heme-containing proteins that catalyze a variety of oxidative reactions of a large number of structurally different endogenous and exogenous compounds in organisms from all major domains of life. CYPs bind their diverse ligands in a buried, hydrophobic active site, which is accessed through a substrate access channel formed by two flexible helices and their connecting loop.
Pssm-ID: 410750 [Multi-domain] Cd Length: 438 Bit Score: 41.25 E-value: 9.88e-04
cytochrome P450 family 75; The cytochrome P450 family 75 (CYP75) play important roles in the ...
263-367
9.88e-04
cytochrome P450 family 75; The cytochrome P450 family 75 (CYP75) play important roles in the biosynthesis of colored class of flavonoids, anthocyanins, which confer a diverse range of colors to flowers from orange to red to violet and blue. The number of hydroxyl groups on the B-ring of anthocyanidins, the chromophores and precursors of anthocyanins, impact the anthocyanin color - the more the bluer. The hydroxylation pattern is determined by CYP75 proteins: flavonoid 3'-hydroxylase (F3'H, EC 1.14.14.82) and and flavonoid 3',5'-hydroxylase (F3'5'H, EC 1.14.14.81), which belong to CYP75B and CYP75A subfamilies, respectively. Both enzymes have broad substrate specificity and catalyze the hydroxylation of flavanones, dihydroflavonols, flavonols and flavones. F3'H catalyzes the 3'-hydroxylation of the flavonoid B-ring to the 3',4'-hydroxylated state. F3'5'H catalysis leads to trihydroxylated delphinidin-based anthocyanins that tend to have violet/blue colours. CYP75 belongs to the large cytochrome P450 (P450, CYP) superfamily of heme-containing proteins that catalyze a variety of oxidative reactions of a large number of structurally different endogenous and exogenous compounds in organisms from all major domains of life. CYPs bind their diverse ligands in a buried, hydrophobic active site, which is accessed through a substrate access channel formed by two flexible helices and their connecting loop.
Pssm-ID: 410750 [Multi-domain] Cd Length: 438 Bit Score: 41.25 E-value: 9.88e-04
Database: CDSEARCH/cdd Low complexity filter: no Composition Based Adjustment: yes E-value threshold: 0.01
References:
Wang J et al. (2023), "The conserved domain database in 2023", Nucleic Acids Res.51(D)384-8.
Lu S et al. (2020), "The conserved domain database in 2020", Nucleic Acids Res.48(D)265-8.
Marchler-Bauer A et al. (2017), "CDD/SPARCLE: functional classification of proteins via subfamily domain architectures.", Nucleic Acids Res.45(D)200-3.
of the residues that compose this conserved feature have been mapped to the query sequence.
Click on the triangle to view details about the feature, including a multiple sequence alignment
of your query sequence and the protein sequences used to curate the domain model,
where hash marks (#) above the aligned sequences show the location of the conserved feature residues.
The thumbnail image, if present, provides an approximate view of the feature's location in 3 dimensions.
Click on the triangle for interactive 3D structure viewing options.
Functional characterization of the conserved domain architecture found on the query.
Click here to see more details.
This image shows a graphical summary of conserved domains identified on the query sequence.
The Show Concise/Full Display button at the top of the page can be used to select the desired level of detail: only top scoring hits
(labeled illustration) or all hits
(labeled illustration).
Domains are color coded according to superfamilies
to which they have been assigned. Hits with scores that pass a domain-specific threshold
(specific hits) are drawn in bright colors.
Others (non-specific hits) and
superfamily placeholders are drawn in pastel colors.
if a domain or superfamily has been annotated with functional sites (conserved features),
they are mapped to the query sequence and indicated through sets of triangles
with the same color and shade of the domain or superfamily that provides the annotation. Mouse over the colored bars or triangles to see descriptions of the domains and features.
click on the bars or triangles to view your query sequence embedded in a multiple sequence alignment of the proteins used to develop the corresponding domain model.
The table lists conserved domains identified on the query sequence. Click on the plus sign (+) on the left to display full descriptions, alignments, and scores.
Click on the domain model's accession number to view the multiple sequence alignment of the proteins used to develop the corresponding domain model.
To view your query sequence embedded in that multiple sequence alignment, click on the colored bars in the Graphical Summary portion of the search results page,
or click on the triangles, if present, that represent functional sites (conserved features)
mapped to the query sequence.
Concise Display shows only the best scoring domain model, in each hit category listed below except non-specific hits, for each region on the query sequence.
(labeled illustration) Standard Display shows only the best scoring domain model from each source, in each hit category listed below for each region on the query sequence.
(labeled illustration) Full Display shows all domain models, in each hit category below, that meet or exceed the RPS-BLAST threshold for statistical significance.
(labeled illustration) Four types of hits can be shown, as available,
for each region on the query sequence:
specific hits meet or exceed a domain-specific e-value threshold
(illustrated example)
and represent a very high confidence that the query sequence belongs to the same protein family as the sequences use to create the domain model
non-specific hits
meet or exceed the RPS-BLAST threshold for statistical significance (default E-value cutoff of 0.01, or an E-value selected by user via the
advanced search options)
the domain superfamily to which the specific and non-specific hits belong
multi-domain models that were computationally detected and are likely to contain multiple single domains
Retrieve proteins that contain one or more of the domains present in the query sequence, using the Conserved Domain Architecture Retrieval Tool
(CDART).
Modify your query to search against a different database and/or use advanced search options