tRNA modification GTPase TrmE [Onchocerca flexuosa]
List of domain hits
Name | Accession | Description | Interval | E-value | ||||||||||||||||||
Med23 super family | cl18592 | Mediator complex subunit 23; Med23 is one of the subunits of the Tail portion of the Mediator ... |
63-1313 | 1.06e-168 | ||||||||||||||||||
Mediator complex subunit 23; Med23 is one of the subunits of the Tail portion of the Mediator complex that regulates RNA polymerase II activity. Med23 is required for heat-shock-specific gene expression, and has been shown to mediate transcriptional activation of E1A in mice. The actual alignment was detected with superfamily member pfam11573: Pssm-ID: 463299 Cd Length: 1301 Bit Score: 551.20 E-value: 1.06e-168
|
||||||||||||||||||||||
MnmE | COG0486 | tRNA U34 5-carboxymethylaminomethyl modifying GTPase MnmE/TrmE [Translation, ribosomal ... |
1518-1949 | 2.53e-135 | ||||||||||||||||||
tRNA U34 5-carboxymethylaminomethyl modifying GTPase MnmE/TrmE [Translation, ribosomal structure and biogenesis]; tRNA U34 5-carboxymethylaminomethyl modifying GTPase MnmE/TrmE is part of the Pathway/BioSystem: tRNA modification : Pssm-ID: 440253 [Multi-domain] Cd Length: 448 Bit Score: 430.25 E-value: 2.53e-135
|
||||||||||||||||||||||
SH2_SOCS7 | cd10388 | Src homology 2 (SH2) domain found in suppressor of cytokine signaling (SOCS) proteins; SH2 ... |
1341-1440 | 1.22e-47 | ||||||||||||||||||
Src homology 2 (SH2) domain found in suppressor of cytokine signaling (SOCS) proteins; SH2 domain found in SOCS proteins. SOCS was first recognized as a group of cytokine-inducible SH2 (CIS) domain proteins comprising eight family members in human (CIS and SOCS1-SOCS7). In addition to the SH2 domain, SOCS proteins have a variable N-terminal domain and a conserved SOCS box in the C-terminal domain. SOCS proteins bind to a substrate via their SH2 domain. The prototypical members, CIS and SOCS1-SOCS3, have been shown to regulate growth hormone signaling in vitro and in a classic negative feedback response compete for binding at phosphotyrosine sites in JAK kinase and receptor pathways to displace effector proteins and target bound receptors for proteasomal degradation. Loss of SOCS activity results in excessive cytokine signaling associated with a variety of hematopoietic, autoimmune, and inflammatory diseases and certain cancers. Members (SOCS4-SOCS7) were identified by their conserved SOCS box, an adapter motif of 3 helices that associates substrate binding domains, such as the SOCS SH2 domain, ankryin, and WD40 with ubiquitin ligase components. These show limited cytokine induction. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites. : Pssm-ID: 198251 Cd Length: 101 Bit Score: 165.60 E-value: 1.22e-47
|
||||||||||||||||||||||
SOCS | smart00253 | suppressors of cytokine signalling; suppressors of cytokine signalling |
1462-1501 | 1.27e-07 | ||||||||||||||||||
suppressors of cytokine signalling; suppressors of cytokine signalling : Pssm-ID: 128549 Cd Length: 43 Bit Score: 49.60 E-value: 1.27e-07
|
||||||||||||||||||||||
Name | Accession | Description | Interval | E-value | ||||||||||||||||||
Med23 | pfam11573 | Mediator complex subunit 23; Med23 is one of the subunits of the Tail portion of the Mediator ... |
63-1313 | 1.06e-168 | ||||||||||||||||||
Mediator complex subunit 23; Med23 is one of the subunits of the Tail portion of the Mediator complex that regulates RNA polymerase II activity. Med23 is required for heat-shock-specific gene expression, and has been shown to mediate transcriptional activation of E1A in mice. Pssm-ID: 463299 Cd Length: 1301 Bit Score: 551.20 E-value: 1.06e-168
|
||||||||||||||||||||||
MnmE | COG0486 | tRNA U34 5-carboxymethylaminomethyl modifying GTPase MnmE/TrmE [Translation, ribosomal ... |
1518-1949 | 2.53e-135 | ||||||||||||||||||
tRNA U34 5-carboxymethylaminomethyl modifying GTPase MnmE/TrmE [Translation, ribosomal structure and biogenesis]; tRNA U34 5-carboxymethylaminomethyl modifying GTPase MnmE/TrmE is part of the Pathway/BioSystem: tRNA modification Pssm-ID: 440253 [Multi-domain] Cd Length: 448 Bit Score: 430.25 E-value: 2.53e-135
|
||||||||||||||||||||||
trmE | PRK05291 | tRNA uridine-5-carboxymethylaminomethyl(34) synthesis GTPase MnmE; |
1518-1949 | 1.23e-132 | ||||||||||||||||||
tRNA uridine-5-carboxymethylaminomethyl(34) synthesis GTPase MnmE; Pssm-ID: 235392 [Multi-domain] Cd Length: 449 Bit Score: 422.60 E-value: 1.23e-132
|
||||||||||||||||||||||
MnmE_helical | pfam12631 | MnmE helical domain; The tRNA modification GTPase MnmE consists of three domains. An ... |
1634-1946 | 1.06e-84 | ||||||||||||||||||
MnmE helical domain; The tRNA modification GTPase MnmE consists of three domains. An N-terminal domain, a helical domain and a GTPase domain which is nested within the helical domain. This family represents the helical domain. Pssm-ID: 463649 [Multi-domain] Cd Length: 326 Bit Score: 280.91 E-value: 1.06e-84
|
||||||||||||||||||||||
mnmE_trmE_thdF | TIGR00450 | tRNA modification GTPase TrmE; TrmE, also called MnmE and previously designated ThdF ... |
1529-1949 | 1.62e-72 | ||||||||||||||||||
tRNA modification GTPase TrmE; TrmE, also called MnmE and previously designated ThdF (thiophene and furan oxidation protein), is a GTPase involved in tRNA modification to create 5-methylaminomethyl-2-thiouridine in the wobble position of some tRNAs. This protein and GidA form an alpha2/beta2 heterotetramer. [Protein synthesis, tRNA and rRNA base modification] Pssm-ID: 273083 [Multi-domain] Cd Length: 442 Bit Score: 250.09 E-value: 1.62e-72
|
||||||||||||||||||||||
trmE | cd04164 | trmE is a tRNA modification GTPase; TrmE (MnmE, ThdF, MSS1) is a 3-domain protein found in ... |
1713-1877 | 2.08e-52 | ||||||||||||||||||
trmE is a tRNA modification GTPase; TrmE (MnmE, ThdF, MSS1) is a 3-domain protein found in bacteria and eukaryotes. It controls modification of the uridine at the wobble position (U34) of tRNAs that read codons ending with A or G in the mixed codon family boxes. TrmE contains a GTPase domain that forms a canonical Ras-like fold. It functions a molecular switch GTPase, and apparently uses a conformational change associated with GTP hydrolysis to promote the tRNA modification reaction, in which the conserved cysteine in the C-terminal domain is thought to function as a catalytic residue. In bacteria that are able to survive in extremely low pH conditions, TrmE regulates glutamate-dependent acid resistance. Pssm-ID: 206727 [Multi-domain] Cd Length: 159 Bit Score: 181.54 E-value: 2.08e-52
|
||||||||||||||||||||||
SH2_SOCS7 | cd10388 | Src homology 2 (SH2) domain found in suppressor of cytokine signaling (SOCS) proteins; SH2 ... |
1341-1440 | 1.22e-47 | ||||||||||||||||||
Src homology 2 (SH2) domain found in suppressor of cytokine signaling (SOCS) proteins; SH2 domain found in SOCS proteins. SOCS was first recognized as a group of cytokine-inducible SH2 (CIS) domain proteins comprising eight family members in human (CIS and SOCS1-SOCS7). In addition to the SH2 domain, SOCS proteins have a variable N-terminal domain and a conserved SOCS box in the C-terminal domain. SOCS proteins bind to a substrate via their SH2 domain. The prototypical members, CIS and SOCS1-SOCS3, have been shown to regulate growth hormone signaling in vitro and in a classic negative feedback response compete for binding at phosphotyrosine sites in JAK kinase and receptor pathways to displace effector proteins and target bound receptors for proteasomal degradation. Loss of SOCS activity results in excessive cytokine signaling associated with a variety of hematopoietic, autoimmune, and inflammatory diseases and certain cancers. Members (SOCS4-SOCS7) were identified by their conserved SOCS box, an adapter motif of 3 helices that associates substrate binding domains, such as the SOCS SH2 domain, ankryin, and WD40 with ubiquitin ligase components. These show limited cytokine induction. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites. Pssm-ID: 198251 Cd Length: 101 Bit Score: 165.60 E-value: 1.22e-47
|
||||||||||||||||||||||
SH2 | smart00252 | Src homology 2 domains; Src homology 2 domains bind phosphotyrosine-containing polypeptides ... |
1352-1427 | 1.61e-15 | ||||||||||||||||||
Src homology 2 domains; Src homology 2 domains bind phosphotyrosine-containing polypeptides via 2 surface pockets. Specificity is provided via interaction with residues that are distinct from the phosphotyrosine. Only a single occurrence of a SH2 domain has been found in S. cerevisiae. Pssm-ID: 214585 [Multi-domain] Cd Length: 84 Bit Score: 73.42 E-value: 1.61e-15
|
||||||||||||||||||||||
SH2 | pfam00017 | SH2 domain; |
1352-1427 | 1.41e-08 | ||||||||||||||||||
SH2 domain; Pssm-ID: 425423 [Multi-domain] Cd Length: 77 Bit Score: 53.37 E-value: 1.41e-08
|
||||||||||||||||||||||
SOCS | smart00253 | suppressors of cytokine signalling; suppressors of cytokine signalling |
1462-1501 | 1.27e-07 | ||||||||||||||||||
suppressors of cytokine signalling; suppressors of cytokine signalling Pssm-ID: 128549 Cd Length: 43 Bit Score: 49.60 E-value: 1.27e-07
|
||||||||||||||||||||||
SOCS_SOCS_like | cd03717 | SOCS (suppressors of cytokine signaling) box of SOCS-like proteins. The CIS/SOCS family of ... |
1467-1500 | 2.42e-07 | ||||||||||||||||||
SOCS (suppressors of cytokine signaling) box of SOCS-like proteins. The CIS/SOCS family of proteins is characterized by the presence of a C-terminal SOCS box and a central SH2 domain. These intracellular proteins regulate the responses of immune cells to cytokines. Identified as negative regulators of the cytokine-JAK-STAT pathway, they seem to play a role in many immunological and pathological processes. The function of the SOCS box is the recruitment of the ubiquitin-transferase system. Related SOCS boxes are also present in Rab40-like proteins and insect proteins of unknown function that also contain a NEUZ (domain in neuralized proteins) domain. Pssm-ID: 239687 Cd Length: 39 Bit Score: 48.75 E-value: 2.42e-07
|
||||||||||||||||||||||
SOCS_box | pfam07525 | SOCS box; The SOCS box acts as a bridge between specific substrate- binding domains and more ... |
1467-1500 | 1.29e-05 | ||||||||||||||||||
SOCS box; The SOCS box acts as a bridge between specific substrate- binding domains and more generic proteins that comprise a large family of E3 ubiquitin protein ligases. Pssm-ID: 462192 Cd Length: 39 Bit Score: 43.69 E-value: 1.29e-05
|
||||||||||||||||||||||
small_GTPase | smart00010 | Small GTPase of the Ras superfamily; ill-defined subfamily; SMART predicts Ras-like small ... |
1716-1840 | 8.77e-03 | ||||||||||||||||||
Small GTPase of the Ras superfamily; ill-defined subfamily; SMART predicts Ras-like small GTPases of the ARF, RAB, RAN, RAS, and SAR subfamilies. Others that could not be classified in this way are predicted to be members of the small GTPase superfamily without predictions of the subfamily. Pssm-ID: 197466 [Multi-domain] Cd Length: 166 Bit Score: 39.08 E-value: 8.77e-03
|
||||||||||||||||||||||
Name | Accession | Description | Interval | E-value | ||||||||||||||||||
Med23 | pfam11573 | Mediator complex subunit 23; Med23 is one of the subunits of the Tail portion of the Mediator ... |
63-1313 | 1.06e-168 | ||||||||||||||||||
Mediator complex subunit 23; Med23 is one of the subunits of the Tail portion of the Mediator complex that regulates RNA polymerase II activity. Med23 is required for heat-shock-specific gene expression, and has been shown to mediate transcriptional activation of E1A in mice. Pssm-ID: 463299 Cd Length: 1301 Bit Score: 551.20 E-value: 1.06e-168
|
||||||||||||||||||||||
MnmE | COG0486 | tRNA U34 5-carboxymethylaminomethyl modifying GTPase MnmE/TrmE [Translation, ribosomal ... |
1518-1949 | 2.53e-135 | ||||||||||||||||||
tRNA U34 5-carboxymethylaminomethyl modifying GTPase MnmE/TrmE [Translation, ribosomal structure and biogenesis]; tRNA U34 5-carboxymethylaminomethyl modifying GTPase MnmE/TrmE is part of the Pathway/BioSystem: tRNA modification Pssm-ID: 440253 [Multi-domain] Cd Length: 448 Bit Score: 430.25 E-value: 2.53e-135
|
||||||||||||||||||||||
trmE | PRK05291 | tRNA uridine-5-carboxymethylaminomethyl(34) synthesis GTPase MnmE; |
1518-1949 | 1.23e-132 | ||||||||||||||||||
tRNA uridine-5-carboxymethylaminomethyl(34) synthesis GTPase MnmE; Pssm-ID: 235392 [Multi-domain] Cd Length: 449 Bit Score: 422.60 E-value: 1.23e-132
|
||||||||||||||||||||||
MnmE_helical | pfam12631 | MnmE helical domain; The tRNA modification GTPase MnmE consists of three domains. An ... |
1634-1946 | 1.06e-84 | ||||||||||||||||||
MnmE helical domain; The tRNA modification GTPase MnmE consists of three domains. An N-terminal domain, a helical domain and a GTPase domain which is nested within the helical domain. This family represents the helical domain. Pssm-ID: 463649 [Multi-domain] Cd Length: 326 Bit Score: 280.91 E-value: 1.06e-84
|
||||||||||||||||||||||
mnmE_trmE_thdF | TIGR00450 | tRNA modification GTPase TrmE; TrmE, also called MnmE and previously designated ThdF ... |
1529-1949 | 1.62e-72 | ||||||||||||||||||
tRNA modification GTPase TrmE; TrmE, also called MnmE and previously designated ThdF (thiophene and furan oxidation protein), is a GTPase involved in tRNA modification to create 5-methylaminomethyl-2-thiouridine in the wobble position of some tRNAs. This protein and GidA form an alpha2/beta2 heterotetramer. [Protein synthesis, tRNA and rRNA base modification] Pssm-ID: 273083 [Multi-domain] Cd Length: 442 Bit Score: 250.09 E-value: 1.62e-72
|
||||||||||||||||||||||
trmE | cd04164 | trmE is a tRNA modification GTPase; TrmE (MnmE, ThdF, MSS1) is a 3-domain protein found in ... |
1713-1877 | 2.08e-52 | ||||||||||||||||||
trmE is a tRNA modification GTPase; TrmE (MnmE, ThdF, MSS1) is a 3-domain protein found in bacteria and eukaryotes. It controls modification of the uridine at the wobble position (U34) of tRNAs that read codons ending with A or G in the mixed codon family boxes. TrmE contains a GTPase domain that forms a canonical Ras-like fold. It functions a molecular switch GTPase, and apparently uses a conformational change associated with GTP hydrolysis to promote the tRNA modification reaction, in which the conserved cysteine in the C-terminal domain is thought to function as a catalytic residue. In bacteria that are able to survive in extremely low pH conditions, TrmE regulates glutamate-dependent acid resistance. Pssm-ID: 206727 [Multi-domain] Cd Length: 159 Bit Score: 181.54 E-value: 2.08e-52
|
||||||||||||||||||||||
SH2_SOCS7 | cd10388 | Src homology 2 (SH2) domain found in suppressor of cytokine signaling (SOCS) proteins; SH2 ... |
1341-1440 | 1.22e-47 | ||||||||||||||||||
Src homology 2 (SH2) domain found in suppressor of cytokine signaling (SOCS) proteins; SH2 domain found in SOCS proteins. SOCS was first recognized as a group of cytokine-inducible SH2 (CIS) domain proteins comprising eight family members in human (CIS and SOCS1-SOCS7). In addition to the SH2 domain, SOCS proteins have a variable N-terminal domain and a conserved SOCS box in the C-terminal domain. SOCS proteins bind to a substrate via their SH2 domain. The prototypical members, CIS and SOCS1-SOCS3, have been shown to regulate growth hormone signaling in vitro and in a classic negative feedback response compete for binding at phosphotyrosine sites in JAK kinase and receptor pathways to displace effector proteins and target bound receptors for proteasomal degradation. Loss of SOCS activity results in excessive cytokine signaling associated with a variety of hematopoietic, autoimmune, and inflammatory diseases and certain cancers. Members (SOCS4-SOCS7) were identified by their conserved SOCS box, an adapter motif of 3 helices that associates substrate binding domains, such as the SOCS SH2 domain, ankryin, and WD40 with ubiquitin ligase components. These show limited cytokine induction. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites. Pssm-ID: 198251 Cd Length: 101 Bit Score: 165.60 E-value: 1.22e-47
|
||||||||||||||||||||||
TrmE_N | cd14858 | N-terminal domain of TrmE, a tRNA modification GTPase; This family contains the N-terminal ... |
1518-1630 | 4.52e-41 | ||||||||||||||||||
N-terminal domain of TrmE, a tRNA modification GTPase; This family contains the N-terminal domain of TrmE (also known as MnmE, ThdF, MSS1), a guanine nucleotide-binding protein conserved in all three kingdoms of life. It is involved in the modification of uridine bases (U34) at the first anticodon (wobble) position of tRNAs decoding two-family box triplets. TrmE is a three-domain protein comprising an N-terminal alpha/beta domain, a helical domain, and the GTPase domain which is nested within the helical domain. The N-terminal domain induces dimerization for self-assembly and is topologically homologous to the tetrahydrofolate (THF)-binding domain of N,N-dimethylglycine oxidase (DMGO). However, the THF-binding site in DMGO is encoded on a single polypeptide, while homodimerization would be required to create a similar THF-binding site in TrmE. Dimerization also creates a second, symmetry-related THF-binding site. Biochemical and structural studies show that TrmE indeed binds formyl-THF. A cysteine residue, necessary for modification of U34, is located close to the C1-group donor 5-formyl-tetrahydrofolate, suggesting a direct role of TrmE in the modification analogous to DNA modification enzymes. Pssm-ID: 410986 [Multi-domain] Cd Length: 117 Bit Score: 147.50 E-value: 4.52e-41
|
||||||||||||||||||||||
TrmE_N | pfam10396 | GTP-binding protein TrmE N-terminus; This family represents the shorter, B, chain of the ... |
1518-1631 | 1.06e-36 | ||||||||||||||||||
GTP-binding protein TrmE N-terminus; This family represents the shorter, B, chain of the homo-dimeric structure which is a guanine nucleotide-binding protein that binds and hydrolyses GTP. TrmE is homologous to the tetrahydrofolate-binding domain of N,N-dimethylglycine oxidase and indeed binds formyl-tetrahydrofolate. TrmE actively participates in the formylation reaction of uridine and regulates the ensuing hydrogenation reaction of a Schiff's base intermediate. This B chain is the N-terminal portion of the protein consisting of five beta-strands and three alpha helices and is necessary for mediating dimer formation within the protein. Pssm-ID: 463072 [Multi-domain] Cd Length: 117 Bit Score: 134.79 E-value: 1.06e-36
|
||||||||||||||||||||||
EngA1 | cd01894 | EngA1 GTPase contains the first domain of EngA; This EngA1 subfamily CD represents the first ... |
1718-1873 | 5.89e-28 | ||||||||||||||||||
EngA1 GTPase contains the first domain of EngA; This EngA1 subfamily CD represents the first GTPase domain of EngA and its orthologs, which are composed of two adjacent GTPase domains. Since the sequences of the two domains are more similar to each other than to other GTPases, it is likely that an ancient gene duplication, rather than a fusion of evolutionarily distinct GTPases, gave rise to this family. Although the exact function of these proteins has not been elucidated, studies have revealed that the E. coli EngA homolog, Der, and Neisseria gonorrhoeae EngA are essential for cell viability. A recent report suggests that E. coli Der functions in ribosome assembly and stability. Pssm-ID: 206681 [Multi-domain] Cd Length: 157 Bit Score: 111.37 E-value: 5.89e-28
|
||||||||||||||||||||||
MMR_HSR1 | pfam01926 | 50S ribosome-binding GTPase; The full-length GTPase protein is required for the complete ... |
1716-1835 | 6.31e-28 | ||||||||||||||||||
50S ribosome-binding GTPase; The full-length GTPase protein is required for the complete activity of the protein of interacting with the 50S ribosome and binding of both adenine and guanine nucleotides, with a preference for guanine nucleotide. Pssm-ID: 460387 [Multi-domain] Cd Length: 113 Bit Score: 109.63 E-value: 6.31e-28
|
||||||||||||||||||||||
EngA2 | cd01895 | EngA2 GTPase contains the second domain of EngA; This EngA2 subfamily CD represents the second ... |
1713-1876 | 4.12e-27 | ||||||||||||||||||
EngA2 GTPase contains the second domain of EngA; This EngA2 subfamily CD represents the second GTPase domain of EngA and its orthologs, which are composed of two adjacent GTPase domains. Since the sequences of the two domains are more similar to each other than to other GTPases, it is likely that an ancient gene duplication, rather than a fusion of evolutionarily distinct GTPases, gave rise to this family. Although the exact function of these proteins has not been elucidated, studies have revealed that the E. coli EngA homolog, Der, and Neisseria gonorrhoeae EngA are essential for cell viability. A recent report suggests that E. coli Der functions in ribosome assembly and stability. Pssm-ID: 206682 [Multi-domain] Cd Length: 174 Bit Score: 109.44 E-value: 4.12e-27
|
||||||||||||||||||||||
Der | COG1160 | Double Era-like domain GTPase Der [Translation, ribosomal structure and biogenesis]; |
1716-1875 | 8.59e-27 | ||||||||||||||||||
Double Era-like domain GTPase Der [Translation, ribosomal structure and biogenesis]; Pssm-ID: 440774 [Multi-domain] Cd Length: 438 Bit Score: 115.89 E-value: 8.59e-27
|
||||||||||||||||||||||
Era_like | cd00880 | E. coli Ras-like protein (Era)-like GTPase; The Era (E. coli Ras-like protein)-like family ... |
1718-1872 | 8.02e-26 | ||||||||||||||||||
E. coli Ras-like protein (Era)-like GTPase; The Era (E. coli Ras-like protein)-like family includes several distinct subfamilies (TrmE/ThdF, FeoB, YihA (EngB), Era, and EngA/YfgK) that generally show sequence conservation in the region between the Walker A and B motifs (G1 and G3 box motifs), to the exclusion of other GTPases. TrmE is ubiquitous in bacteria and is a widespread mitochondrial protein in eukaryotes, but is absent from archaea. The yeast member of TrmE family, MSS1, is involved in mitochondrial translation; bacterial members are often present in translation-related operons. FeoB represents an unusual adaptation of GTPases for high-affinity iron (II) transport. YihA (EngB) family of GTPases is typified by the E. coli YihA, which is an essential protein involved in cell division control. Era is characterized by a distinct derivative of the KH domain (the pseudo-KH domain) which is located C-terminal to the GTPase domain. EngA and its orthologs are composed of two GTPase domains and, since the sequences of the two domains are more similar to each other than to other GTPases, it is likely that an ancient gene duplication, rather than a fusion of evolutionarily distinct GTPases, gave rise to this family. Pssm-ID: 206646 [Multi-domain] Cd Length: 161 Bit Score: 105.41 E-value: 8.02e-26
|
||||||||||||||||||||||
PRK00093 | PRK00093 | GTP-binding protein Der; Reviewed |
1716-1875 | 1.66e-25 | ||||||||||||||||||
GTP-binding protein Der; Reviewed Pssm-ID: 234628 [Multi-domain] Cd Length: 435 Bit Score: 112.07 E-value: 1.66e-25
|
||||||||||||||||||||||
GTPase_EngA | TIGR03594 | ribosome-associated GTPase EngA; EngA (YfgK, Der) is a ribosome-associated essential GTPase ... |
1717-1875 | 1.82e-25 | ||||||||||||||||||
ribosome-associated GTPase EngA; EngA (YfgK, Der) is a ribosome-associated essential GTPase with a duplication of its GTP-binding domain. It is broadly to universally distributed among bacteria. It appears to function in ribosome biogenesis or stability. [Protein synthesis, Other] Pssm-ID: 274667 [Multi-domain] Cd Length: 428 Bit Score: 111.77 E-value: 1.82e-25
|
||||||||||||||||||||||
Ras_like_GTPase | cd00882 | Rat sarcoma (Ras)-like superfamily of small guanosine triphosphatases (GTPases); Ras-like ... |
1718-1871 | 8.81e-25 | ||||||||||||||||||
Rat sarcoma (Ras)-like superfamily of small guanosine triphosphatases (GTPases); Ras-like GTPase superfamily. The Ras-like superfamily of small GTPases consists of several families with an extremely high degree of structural and functional similarity. The Ras superfamily is divided into at least four families in eukaryotes: the Ras, Rho, Rab, and Sar1/Arf families. This superfamily also includes proteins like the GTP translation factors, Era-like GTPases, and G-alpha chain of the heterotrimeric G proteins. Members of the Ras superfamily regulate a wide variety of cellular functions: the Ras family regulates gene expression, the Rho family regulates cytoskeletal reorganization and gene expression, the Rab and Sar1/Arf families regulate vesicle trafficking, and the Ran family regulates nucleocytoplasmic transport and microtubule organization. The GTP translation factor family regulates initiation, elongation, termination, and release in translation, and the Era-like GTPase family regulates cell division, sporulation, and DNA replication. Members of the Ras superfamily are identified by the GTP binding site, which is made up of five characteristic sequence motifs, and the switch I and switch II regions. Pssm-ID: 206648 [Multi-domain] Cd Length: 161 Bit Score: 102.53 E-value: 8.81e-25
|
||||||||||||||||||||||
PRK00093 | PRK00093 | GTP-binding protein Der; Reviewed |
1712-1866 | 3.29e-24 | ||||||||||||||||||
GTP-binding protein Der; Reviewed Pssm-ID: 234628 [Multi-domain] Cd Length: 435 Bit Score: 107.83 E-value: 3.29e-24
|
||||||||||||||||||||||
Der | COG1160 | Double Era-like domain GTPase Der [Translation, ribosomal structure and biogenesis]; |
1712-1869 | 2.91e-22 | ||||||||||||||||||
Double Era-like domain GTPase Der [Translation, ribosomal structure and biogenesis]; Pssm-ID: 440774 [Multi-domain] Cd Length: 438 Bit Score: 102.02 E-value: 2.91e-22
|
||||||||||||||||||||||
SH2_SOCS_family | cd09923 | Src homology 2 (SH2) domain found in suppressor of cytokine signaling (SOCS) family; SH2 ... |
1351-1428 | 2.72e-19 | ||||||||||||||||||
Src homology 2 (SH2) domain found in suppressor of cytokine signaling (SOCS) family; SH2 domain found in SOCS proteins. SOCS was first recognized as a group of cytokine-inducible SH2 (CIS) domain proteins comprising eight family members in human (CIS and SOCS1-SOCS7). In addition to the SH2 domain, SOCS proteins have a variable N-terminal domain and a conserved SOCS box in the C-terminal domain. SOCS proteins bind to a substrate via their SH2 domain. The prototypical members, CIS and SOCS1-SOCS3, have been shown to regulate growth hormone signaling in vitro and in a classic negative feedback response compete for binding at phosphotyrosine sites in JAK kinase and receptor pathways to displace effector proteins and target bound receptors for proteasomal degradation. Loss of SOCS activity results in excessive cytokine signaling associated with a variety of hematopoietic, autoimmune, and inflammatory diseases and certain cancers. Members (SOCS4-SOCS7) were identified by their conserved SOCS box, an adapter motif of 3 helices that associates substrate binding domains, such as the SOCS SH2 domain, ankryin, and WD40 with ubiquitin ligase components. These show limited cytokine induction. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites. Pssm-ID: 198178 Cd Length: 81 Bit Score: 83.79 E-value: 2.72e-19
|
||||||||||||||||||||||
Era | cd04163 | E. coli Ras-like protein (Era) is a multifunctional GTPase; Era (E. coli Ras-like protein) is ... |
1715-1872 | 5.74e-17 | ||||||||||||||||||
E. coli Ras-like protein (Era) is a multifunctional GTPase; Era (E. coli Ras-like protein) is a multifunctional GTPase found in all bacteria except some eubacteria. It binds to the 16S ribosomal RNA (rRNA) of the 30S subunit and appears to play a role in the assembly of the 30S subunit, possibly by chaperoning the 16S rRNA. It also contacts several assembly elements of the 30S subunit. Era couples cell growth with cytokinesis and plays a role in cell division and energy metabolism. Homologs have also been found in eukaryotes. Era contains two domains: the N-terminal GTPase domain and a C-terminal domain KH domain that is critical for RNA binding. Both domains are important for Era function. Era is functionally able to compensate for deletion of RbfA, a cold-shock adaptation protein that is required for efficient processing of the 16S rRNA. Pssm-ID: 206726 [Multi-domain] Cd Length: 168 Bit Score: 80.20 E-value: 5.74e-17
|
||||||||||||||||||||||
small_GTP | TIGR00231 | small GTP-binding protein domain; Proteins with a small GTP-binding domain recognized by this ... |
1716-1869 | 1.06e-16 | ||||||||||||||||||
small GTP-binding protein domain; Proteins with a small GTP-binding domain recognized by this model include Ras, RhoA, Rab11, translation elongation factor G, translation initiation factor IF-2, tetratcycline resistance protein TetM, CDC42, Era, ADP-ribosylation factors, tdhF, and many others. In some proteins the domain occurs more than once.This model recognizes a large number of small GTP-binding proteins and related domains in larger proteins. Note that the alpha chains of heterotrimeric G proteins are larger proteins in which the NKXD motif is separated from the GxxxxGK[ST] motif (P-loop) by a long insert and are not easily detected by this model. [Unknown function, General] Pssm-ID: 272973 [Multi-domain] Cd Length: 162 Bit Score: 79.34 E-value: 1.06e-16
|
||||||||||||||||||||||
Gem1 | COG1100 | GTPase SAR1 family domain [General function prediction only]; |
1715-1876 | 4.58e-16 | ||||||||||||||||||
GTPase SAR1 family domain [General function prediction only]; Pssm-ID: 440717 [Multi-domain] Cd Length: 177 Bit Score: 78.10 E-value: 4.58e-16
|
||||||||||||||||||||||
YeeP | COG3596 | Predicted GTPase [General function prediction only]; |
1701-1838 | 6.30e-16 | ||||||||||||||||||
Predicted GTPase [General function prediction only]; Pssm-ID: 442815 [Multi-domain] Cd Length: 318 Bit Score: 80.97 E-value: 6.30e-16
|
||||||||||||||||||||||
SH2_SOCS6 | cd10387 | Src homology 2 (SH2) domain found in suppressor of cytokine signaling (SOCS) proteins; SH2 ... |
1344-1439 | 9.03e-16 | ||||||||||||||||||
Src homology 2 (SH2) domain found in suppressor of cytokine signaling (SOCS) proteins; SH2 domain found in SOCS proteins. SOCS was first recognized as a group of cytokine-inducible SH2 (CIS) domain proteins comprising eight family members in human (CIS and SOCS1-SOCS7). In addition to the SH2 domain, SOCS proteins have a variable N-terminal domain and a conserved SOCS box in the C-terminal domain. SOCS proteins bind to a substrate via their SH2 domain. The prototypical members, CIS and SOCS1-SOCS3, have been shown to regulate growth hormone signaling in vitro and in a classic negative feedback response compete for binding at phosphotyrosine sites in JAK kinase and receptor pathways to displace effector proteins and target bound receptors for proteasomal degradation. Loss of SOCS activity results in excessive cytokine signaling associated with a variety of hematopoietic, autoimmune, and inflammatory diseases and certain cancers. Members (SOCS4-SOCS7) were identified by their conserved SOCS box, an adapter motif of 3 helices that associates substrate binding domains, such as the SOCS SH2 domain, ankryin, and WD40 with ubiquitin ligase components. These show limited cytokine induction. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites. Pssm-ID: 198250 Cd Length: 100 Bit Score: 74.49 E-value: 9.03e-16
|
||||||||||||||||||||||
SH2 | smart00252 | Src homology 2 domains; Src homology 2 domains bind phosphotyrosine-containing polypeptides ... |
1352-1427 | 1.61e-15 | ||||||||||||||||||
Src homology 2 domains; Src homology 2 domains bind phosphotyrosine-containing polypeptides via 2 surface pockets. Specificity is provided via interaction with residues that are distinct from the phosphotyrosine. Only a single occurrence of a SH2 domain has been found in S. cerevisiae. Pssm-ID: 214585 [Multi-domain] Cd Length: 84 Bit Score: 73.42 E-value: 1.61e-15
|
||||||||||||||||||||||
era | PRK00089 | GTPase Era; Reviewed |
1717-1906 | 1.04e-14 | ||||||||||||||||||
GTPase Era; Reviewed Pssm-ID: 234624 [Multi-domain] Cd Length: 292 Bit Score: 77.01 E-value: 1.04e-14
|
||||||||||||||||||||||
PRK09518 | PRK09518 | bifunctional cytidylate kinase/GTPase Der; Reviewed |
1717-1935 | 3.46e-13 | ||||||||||||||||||
bifunctional cytidylate kinase/GTPase Der; Reviewed Pssm-ID: 236546 [Multi-domain] Cd Length: 712 Bit Score: 74.83 E-value: 3.46e-13
|
||||||||||||||||||||||
era | TIGR00436 | GTP-binding protein Era; Era is an essential GTPase in Escherichia coli and many other ... |
1715-1907 | 4.34e-13 | ||||||||||||||||||
GTP-binding protein Era; Era is an essential GTPase in Escherichia coli and many other bacteria. It plays a role in ribosome biogenesis. Few bacteria lack this protein. [Protein synthesis, Other] Pssm-ID: 129528 [Multi-domain] Cd Length: 270 Bit Score: 71.65 E-value: 4.34e-13
|
||||||||||||||||||||||
Era | COG1159 | GTPase Era, involved in 16S rRNA processing [Translation, ribosomal structure and biogenesis]; |
1717-1875 | 8.23e-13 | ||||||||||||||||||
GTPase Era, involved in 16S rRNA processing [Translation, ribosomal structure and biogenesis]; Pssm-ID: 440773 [Multi-domain] Cd Length: 290 Bit Score: 71.17 E-value: 8.23e-13
|
||||||||||||||||||||||
SH2 | cd00173 | Src homology 2 (SH2) domain; In general, SH2 domains are involved in signal transduction; they ... |
1351-1427 | 1.04e-12 | ||||||||||||||||||
Src homology 2 (SH2) domain; In general, SH2 domains are involved in signal transduction; they bind pTyr-containing polypeptide ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites. They are present in a wide array of proteins including: adaptor proteins (Nck1, Crk, Grb2), scaffolds (Slp76, Shc, Dapp1), kinases (Src, Syk, Fps, Tec), phosphatases (Shp-1, Shp-2), transcription factors (STAT1), Ras signaling molecules (Ras-Gap), ubiquitination factors (c-Cbl), cytoskeleton regulators (Tensin), signal regulators (SAP), and phospholipid second messengers (PLCgamma), amongst others. Pssm-ID: 198173 [Multi-domain] Cd Length: 79 Bit Score: 65.17 E-value: 1.04e-12
|
||||||||||||||||||||||
SH2_SOCS2 | cd10383 | Src homology 2 (SH2) domain found in suppressor of cytokine signaling (SOCS) proteins; SH2 ... |
1344-1438 | 2.06e-12 | ||||||||||||||||||
Src homology 2 (SH2) domain found in suppressor of cytokine signaling (SOCS) proteins; SH2 domain found in SOCS proteins. SOCS was first recognized as a group of cytokine-inducible SH2 (CIS) domain proteins comprising eight family members in human (CIS and SOCS1-SOCS7). In addition to the SH2 domain, SOCS proteins have a variable N-terminal domain and a conserved SOCS box in the C-terminal domain. SOCS proteins bind to a substrate via their SH2 domain. The prototypical members, CIS and SOCS1-SOCS3, have been shown to regulate growth hormone signaling in vitro and in a classic negative feedback response compete for binding at phosphotyrosine sites in JAK kinase and receptor pathways to displace effector proteins and target bound receptors for proteasomal degradation. Loss of SOCS activity results in excessive cytokine signaling associated with a variety of hematopoietic, autoimmune, and inflammatory diseases and certain cancers. Members (SOCS4-SOCS7) were identified by their conserved SOCS box, an adapter motif of 3 helices that associates substrate binding domains, such as the SOCS SH2 domain, ankryin, and WD40 with ubiquitin ligase components. These show limited cytokine induction. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites. Pssm-ID: 198246 Cd Length: 103 Bit Score: 65.29 E-value: 2.06e-12
|
||||||||||||||||||||||
HflX | COG2262 | 50S ribosomal subunit-associated GTPase HflX [Translation, ribosomal structure and biogenesis]; ... |
1696-1875 | 6.48e-12 | ||||||||||||||||||
50S ribosomal subunit-associated GTPase HflX [Translation, ribosomal structure and biogenesis]; Pssm-ID: 441863 [Multi-domain] Cd Length: 419 Bit Score: 69.73 E-value: 6.48e-12
|
||||||||||||||||||||||
SH2_SOCS3 | cd10384 | Src homology 2 (SH2) domain found in suppressor of cytokine signaling (SOCS) proteins; SH2 ... |
1342-1410 | 6.71e-12 | ||||||||||||||||||
Src homology 2 (SH2) domain found in suppressor of cytokine signaling (SOCS) proteins; SH2 domain found in SOCS proteins. SOCS was first recognized as a group of cytokine-inducible SH2 (CIS) domain proteins comprising eight family members in human (CIS and SOCS1-SOCS7). In addition to the SH2 domain, SOCS proteins have a variable N-terminal domain and a conserved SOCS box in the C-terminal domain. SOCS proteins bind to a substrate via their SH2 domain. The prototypical members, CIS and SOCS1-SOCS3, have been shown to regulate growth hormone signaling in vitro and in a classic negative feedback response compete for binding at phosphotyrosine sites in JAK kinase and receptor pathways to displace effector proteins and target bound receptors for proteasomal degradation. Loss of SOCS activity results in excessive cytokine signaling associated with a variety of hematopoietic, autoimmune, and inflammatory diseases and certain cancers. Members (SOCS4-SOCS7) were identified by their conserved SOCS box, an adapter motif of 3 helices that associates substrate binding domains, such as the SOCS SH2 domain, ankryin, and WD40 with ubiquitin ligase components. These show limited cytokine induction. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites. Pssm-ID: 198247 Cd Length: 101 Bit Score: 63.60 E-value: 6.71e-12
|
||||||||||||||||||||||
HflX | cd01878 | HflX GTPase family; HflX subfamily. A distinct conserved domain with a glycine-rich segment ... |
1697-1873 | 1.25e-11 | ||||||||||||||||||
HflX GTPase family; HflX subfamily. A distinct conserved domain with a glycine-rich segment N-terminal of the GTPase domain characterizes the HflX subfamily. The E. coli HflX has been implicated in the control of the lambda cII repressor proteolysis, but the actual biological functions of these GTPases remain unclear. HflX is widespread, but not universally represented in all three superkingdoms. Pssm-ID: 206666 [Multi-domain] Cd Length: 204 Bit Score: 65.94 E-value: 1.25e-11
|
||||||||||||||||||||||
PRK03003 | PRK03003 | GTP-binding protein Der; Reviewed |
1717-1871 | 1.77e-11 | ||||||||||||||||||
GTP-binding protein Der; Reviewed Pssm-ID: 179525 [Multi-domain] Cd Length: 472 Bit Score: 68.84 E-value: 1.77e-11
|
||||||||||||||||||||||
PRK03003 | PRK03003 | GTP-binding protein Der; Reviewed |
1716-1859 | 2.61e-10 | ||||||||||||||||||
GTP-binding protein Der; Reviewed Pssm-ID: 179525 [Multi-domain] Cd Length: 472 Bit Score: 64.99 E-value: 2.61e-10
|
||||||||||||||||||||||
PRK09518 | PRK09518 | bifunctional cytidylate kinase/GTPase Der; Reviewed |
1708-1773 | 4.04e-10 | ||||||||||||||||||
bifunctional cytidylate kinase/GTPase Der; Reviewed Pssm-ID: 236546 [Multi-domain] Cd Length: 712 Bit Score: 64.82 E-value: 4.04e-10
|
||||||||||||||||||||||
Obg_like | cd01881 | Obg-like family of GTPases consist of five subfamilies: Obg, DRG, YyaF/YchF, Ygr210, and NOG1; ... |
1718-1871 | 2.50e-09 | ||||||||||||||||||
Obg-like family of GTPases consist of five subfamilies: Obg, DRG, YyaF/YchF, Ygr210, and NOG1; The Obg-like subfamily consists of five well-delimited, ancient subfamilies, namely Obg, DRG, YyaF/YchF, Ygr210, and NOG1. Four of these groups (Obg, DRG, YyaF/YchF, and Ygr210) are characterized by a distinct glycine-rich motif immediately following the Walker B motif (G3 box). Obg/CgtA is an essential gene that is involved in the initiation of sporulation and DNA replication in the bacteria Caulobacter and Bacillus, but its exact molecular role is unknown. Furthermore, several OBG family members possess a C-terminal RNA-binding domain, the TGS domain, which is also present in threonyl-tRNA synthetase and in bacterial guanosine polyphosphatase SpoT. Nog1 is a nucleolar protein that might function in ribosome assembly. The DRG and Nog1 subfamilies are ubiquitous in archaea and eukaryotes, the Ygr210 subfamily is present in archaea and fungi, and the Obg and YyaF/YchF subfamilies are ubiquitous in bacteria and eukaryotes. The Obg/Nog1 and DRG subfamilies appear to form one major branch of the Obg family and the Ygr210 and YchF subfamilies form another branch. No GEFs, GAPs, or GDIs for Obg have been identified. Pssm-ID: 206668 [Multi-domain] Cd Length: 167 Bit Score: 58.17 E-value: 2.50e-09
|
||||||||||||||||||||||
YfjP | cd11383 | YfjP GTPase; The Era (E. coli Ras-like protein)-like YfjP subfamily includes several ... |
1718-1865 | 3.27e-09 | ||||||||||||||||||
YfjP GTPase; The Era (E. coli Ras-like protein)-like YfjP subfamily includes several uncharacterized bacterial GTPases that are similar to Era. They generally show sequence conservation in the region between the Walker A and B motifs (G1 and G3 box motifs), to the exclusion of other GTPases. Era is characterized by a distinct derivative of the KH domain (the pseudo-KH domain) which is located C-terminal to the GTPase domain. Pssm-ID: 206743 [Multi-domain] Cd Length: 140 Bit Score: 57.35 E-value: 3.27e-09
|
||||||||||||||||||||||
feoB | TIGR00437 | ferrous iron transporter FeoB; FeoB (773 amino acids in E. coli), a cytoplasmic membrane ... |
1721-1932 | 1.40e-08 | ||||||||||||||||||
ferrous iron transporter FeoB; FeoB (773 amino acids in E. coli), a cytoplasmic membrane protein required for iron(II) update, is encoded in an operon with FeoA (75 amino acids), which is also required, and is regulated by Fur. There appear to be two copies in Archaeoglobus fulgidus and Clostridium acetobutylicum. [Transport and binding proteins, Cations and iron carrying compounds] Pssm-ID: 273077 [Multi-domain] Cd Length: 591 Bit Score: 59.75 E-value: 1.40e-08
|
||||||||||||||||||||||
SH2 | pfam00017 | SH2 domain; |
1352-1427 | 1.41e-08 | ||||||||||||||||||
SH2 domain; Pssm-ID: 425423 [Multi-domain] Cd Length: 77 Bit Score: 53.37 E-value: 1.41e-08
|
||||||||||||||||||||||
SH2_Vav_family | cd09940 | Src homology 2 (SH2) domain found in the Vav family; Vav proteins are involved in several ... |
1352-1430 | 1.90e-08 | ||||||||||||||||||
Src homology 2 (SH2) domain found in the Vav family; Vav proteins are involved in several processes that require cytoskeletal reorganization, such as the formation of the immunological synapse (IS), phagocytosis, platelet aggregation, spreading, and transformation. Vavs function as guanine nucleotide exchange factors (GEFs) for the Rho/Rac family of GTPases. Vav family members have several conserved motifs/domains including: a leucine-rich region, a leucine-zipper, a calponin homology (CH) domain, an acidic domain, a Dbl-homology (DH) domain, a pleckstrin homology (PH) domain, a cysteine-rich domain, 2 SH3 domains, a proline-rich region, and a SH2 domain. Vavs are the only known Rho GEFs that have both the DH/PH motifs and SH2/SH3 domains in the same protein. The leucine-rich helix-loop-helix (HLH) domain is thought to be involved in protein heterodimerization with other HLH proteins and it may function as a negative regulator by forming inactive heterodimers. The CH domain is usually involved in the association with filamentous actin, but in Vav it controls NFAT stimulation, Ca2+ mobilization, and its transforming activity. Acidic domains are involved in protein-protein interactions and contain regulatory tyrosines. The DH domain is a GDP-GTP exchange factor on Rho/Rac GTPases. The PH domain in involved in interactions with GTP-binding proteins, lipids and/or phosphorylated serine/threonine residues. The SH3 domain is involved in localization of proteins to specific sites within the cell interacting with protein with proline-rich sequences. The SH2 domain mediates a high affinity interaction with tyrosine phosphorylated proteins. There are three Vav mammalian family members: Vav1 which is expressed in the hematopoietic system, Vav2 and Vav3 are more ubiquitously expressed. The members here include insect and amphibian Vavs. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites. Pssm-ID: 198193 Cd Length: 102 Bit Score: 53.84 E-value: 1.90e-08
|
||||||||||||||||||||||
SH2_CIS | cd10718 | Src homology 2 (SH2) domain found in cytokine-inducible SH2-containing protein (CIS); CIS ... |
1347-1410 | 2.01e-08 | ||||||||||||||||||
Src homology 2 (SH2) domain found in cytokine-inducible SH2-containing protein (CIS); CIS family members are known to be cytokine-inducible negative regulators of cytokine signaling. The expression of the CIS gene can be induced by IL2, IL3, GM-CSF and EPO in hematopoietic cells. Proteasome-mediated degradation of this protein has been shown to be involved in the inactivation of the erythropoietin receptor. Suppressor of cytokine signalling (SOCS) was first recognized as a group of cytokine-inducible SH2 (CIS) domain proteins comprising eight family members in human (CIS and SOCS1-SOCS7). In addition to the SH2 domain, SOCS proteins have a variable N-terminal domain and a conserved SOCS box in the C-terminal domain. SOCS proteins bind to a substrate via their SH2 domain. The prototypical members, CIS and SOCS1-SOCS3, have been shown to regulate growth hormone signaling in vitro and in a classic negative feedback response compete for binding at phosphotyrosine sites in JAK kinase and receptor pathways to displace effector proteins and target bound receptors for proteasomal degradation. Loss of SOCS activity results in excessive cytokine signaling associated with a variety of hematopoietic, autoimmune, and inflammatory diseases and certain cancers. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites. Pssm-ID: 198285 Cd Length: 88 Bit Score: 53.22 E-value: 2.01e-08
|
||||||||||||||||||||||
SH2_Vav1 | cd10405 | Src homology 2 (SH2) domain found in the Vav1 proteins; Proto-oncogene vav is a member of the ... |
1352-1444 | 2.41e-08 | ||||||||||||||||||
Src homology 2 (SH2) domain found in the Vav1 proteins; Proto-oncogene vav is a member of the Dbl family of guanine nucleotide exchange factors (GEF) for the Rho family of GTP binding proteins. All vavs are activated by tyrosine phosphorylation leading to their activation. There are three Vav mammalian family members: Vav1 which is expressed in the hematopoietic system, and Vav2 and Vav3 are more ubiquitously expressed. Vav1 plays a role in T-cell and B-cell development and activation. It has been identified as the specific binding partner of Nef proteins from HIV-1, resulting in morphological changes, cytoskeletal rearrangements, and the JNK/SAPK signaling cascade, leading to increased levels of viral transcription and replication. Vav1 has been shown to interact with Ku70, PLCG1, Lymphocyte cytosolic protein 2, Janus kinase 2, SIAH2, S100B, Abl gene, ARHGDIB, SHB, PIK3R1, PRKCQ, Grb2, MAPK1, Syk, Linker of activated T cells, Cbl gene and EZH2. Vav proteins are involved in several processes that require cytoskeletal reorganization, such as the formation of the immunological synapse (IS), phagocytosis, platelet aggregation, spreading, and transformation. Vavs function as guanine nucleotide exchange factors (GEFs) for the Rho/Rac family of GTPases. Vav family members have several conserved motifs/domains including: a leucine-rich region, a leucine-zipper, a calponin homology (CH) domain, an acidic domain, a Dbl-homology (DH) domain, a pleckstrin homology (PH) domain, a cysteine-rich domain, 2 SH3 domains, a proline-rich region, and a SH2 domain. Vavs are the only known Rho GEFs that have both the DH/PH motifs and SH2/SH3 domains in the same protein. The leucine-rich helix-loop-helix (HLH) domain is thought to be involved in protein heterodimerization with other HLH proteins and it may function as a negative regulator by forming inactive heterodimers. The CH domain is usually involved in the association with filamentous actin, but in Vav it controls NFAT stimulation, Ca2+ mobilization, and its transforming activity. Acidic domains are involved in protein-protein interactions and contain regulatory tyrosines. The DH domain is a GDP-GTP exchange factor on Rho/Rac GTPases. The PH domain in involved in interactions with GTP-binding proteins, lipids and/or phosphorylated serine/threonine residues. The SH3 domain is involved in localization of proteins to specific sites within the cell interacting with protein with proline-rich sequences. The SH2 domain mediates a high affinity interaction with tyrosine phosphorylated proteins. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites. Pssm-ID: 198268 Cd Length: 103 Bit Score: 53.48 E-value: 2.41e-08
|
||||||||||||||||||||||
SH2_SOCS1 | cd10382 | Src homology 2 (SH2) domain found in suppressor of cytokine signaling (SOCS) proteins; SH2 ... |
1341-1444 | 3.36e-08 | ||||||||||||||||||
Src homology 2 (SH2) domain found in suppressor of cytokine signaling (SOCS) proteins; SH2 domain found in SOCS proteins. SOCS was first recognized as a group of cytokine-inducible SH2 (CIS) domain proteins comprising eight family members in human (CIS and SOCS1-SOCS7). In addition to the SH2 domain, SOCS proteins have a variable N-terminal domain and a conserved SOCS box in the C-terminal domain. SOCS proteins bind to a substrate via their SH2 domain. The prototypical members, CIS and SOCS1-SOCS3, have been shown to regulate growth hormone signaling in vitro and in a classic negative feedback response compete for binding at phosphotyrosine sites in JAK kinase and receptor pathways to displace effector proteins and target bound receptors for proteasomal degradation. Loss of SOCS activity results in excessive cytokine signaling associated with a variety of hematopoietic, autoimmune, and inflammatory diseases and certain cancers. Members (SOCS4-SOCS7) were identified by their conserved SOCS box, an adapter motif of 3 helices that associates substrate binding domains, such as the SOCS SH2 domain, ankryin, and WD40 with ubiquitin ligase components. These show limited cytokine induction. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites. Pssm-ID: 198245 Cd Length: 98 Bit Score: 53.13 E-value: 3.36e-08
|
||||||||||||||||||||||
SH2_DAPP1_BAM32_like | cd10355 | Src homology 2 domain found in dual adaptor for phosphotyrosine and 3-phosphoinositides ( ... |
1351-1428 | 4.15e-08 | ||||||||||||||||||
Src homology 2 domain found in dual adaptor for phosphotyrosine and 3-phosphoinositides ( DAPP1)/B lymphocyte adaptor molecule of 32 kDa (Bam32)-like proteins; DAPP1/Bam32 contains a putative myristoylation site at its N-terminus, followed by a SH2 domain, and a pleckstrin homology (PH) domain at its C-terminus. DAPP1 could potentially be recruited to the cell membrane by any of these domains. Its putative myristoylation site could facilitate the interaction of DAPP1 with the lipid bilayer. Its SH2 domain may also interact with phosphotyrosine residues on membrane-associated proteins such as activated tyrosine kinase receptors. And finally its PH domain exhibits a high-affinity interaction with the PtdIns(3,4,5)P(3) PtdIns(3,4)P(2) second messengers produced at the cell membrane following the activation of PI 3-kinases. DAPP1 is thought to interact with both tyrosine phosphorylated proteins and 3-phosphoinositides and therefore may play a role in regulating the location and/or activity of such proteins(s) in response to agonists that elevate PtdIns(3,4,5)P(3) and PtdIns(3,4)P(2). This protein is likely to play an important role in triggering signal transduction pathways that lie downstream from receptor tyrosine kinases and PI 3-kinase. It is likely that DAPP1 functions as an adaptor to recruit other proteins to the plasma membrane in response to extracellular signals. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites. Pssm-ID: 198218 Cd Length: 92 Bit Score: 52.48 E-value: 4.15e-08
|
||||||||||||||||||||||
SH2_CRK_like | cd09926 | Src homology 2 domain found in cancer-related signaling adaptor protein CRK; SH2 domain in the ... |
1350-1381 | 6.41e-08 | ||||||||||||||||||
Src homology 2 domain found in cancer-related signaling adaptor protein CRK; SH2 domain in the CRK proteins. CRKI (SH2-SH3) and CRKII (SH2-SH3-SH3) are splicing isoforms of the oncoprotein CRK. CRKs regulate transcription and cytoskeletal reorganization for cell growth and motility by linking tyrosine kinases to small G proteins. The SH2 domain of CRK associates with tyrosine-phosphorylated receptors or components of focal adhesions, such as p130Cas and paxillin. CRK transmits signals to small G proteins through effectors that bind its SH3 domain, such as C3G, the guanine-nucleotide exchange factor (GEF) for Rap1 and R-Ras, and DOCK180, the GEF for Rac6. The binding of p130Cas to the CRK-C3G complex activates Rap1, leading to regulation of cell adhesion, and activates R-Ras, leading to JNK-mediated activation of cell proliferation, whereas the binding of CRK DOCK180 induces Rac1-mediated activation of cellular migration. The activity of the different splicing isoforms varies greatly with CRKI displaying substantial transforming activity, CRKII less so, and phosphorylated CRKII with no biological activity whatsoever. CRKII has a linker region with a phosphorylated Tyr and an additional C-terminal SH3 domain. The phosphorylated Tyr creates a binding site for its SH2 domain which disrupts the association between CRK and its SH2 target proteins. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites. Pssm-ID: 198180 [Multi-domain] Cd Length: 106 Bit Score: 52.48 E-value: 6.41e-08
|
||||||||||||||||||||||
SH2_C-SH2_PLC_gamma_like | cd09932 | C-terminal Src homology 2 (C-SH2) domain in Phospholipase C gamma; Phospholipase C gamma is a ... |
1349-1444 | 7.10e-08 | ||||||||||||||||||
C-terminal Src homology 2 (C-SH2) domain in Phospholipase C gamma; Phospholipase C gamma is a signaling molecule that is recruited to the C-terminal tail of the receptor upon autophosphorylation of a highly conserved tyrosine. PLCgamma is composed of a Pleckstrin homology (PH) domain followed by an elongation factor (EF) domain, 2 catalytic regions of PLC domains that flank 2 tandem SH2 domains (N-SH2, C-SH2), and ending with a SH3 domain and C2 domain. N-SH2 SH2 domain-mediated interactions represent a crucial step in transmembrane signaling by receptor tyrosine kinases. SH2 domains recognize phosphotyrosine (pY) in the context of particular sequence motifs in receptor phosphorylation sites. Both N-SH2 and C-SH2 have a very similar binding affinity to pY. But in growth factor stimulated cells these domains bind to different target proteins. N-SH2 binds to pY containing sites in the C-terminal tails of tyrosine kinases and other receptors. Recently it has been shown that this interaction is mediated by phosphorylation-independent interactions between a secondary binding site found exclusively on the N-SH2 domain and a region of the FGFR1 tyrosine kinase domain. This secondary site on the SH2 cooperates with the canonical pY site to regulate selectivity in mediating a specific cellular process. C-SH2 binds to an intramolecular site on PLCgamma itself which allows it to hydrolyze phosphatidylinositol-4,5-bisphosphate into diacylglycerol and inositol triphosphate. These then activate protein kinase C and release calcium. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites. Pssm-ID: 198186 Cd Length: 104 Bit Score: 52.27 E-value: 7.10e-08
|
||||||||||||||||||||||
SH2_Src_Src42 | cd10370 | Src homology 2 (SH2) domain found in the Src oncogene at 42A (Src42); Src42 is a member of the ... |
1352-1408 | 7.88e-08 | ||||||||||||||||||
Src homology 2 (SH2) domain found in the Src oncogene at 42A (Src42); Src42 is a member of the Src non-receptor type tyrosine kinase family of proteins. The integration of receptor tyrosine kinase-induced RAS and Src42 signals by Connector eNhancer of KSR (CNK) as a two-component input is essential for RAF activation in Drosophila. Src42 is present in a wide variety of organisms including: California sea hare, pea aphid, yellow fever mosquito, honey bee, Panamanian leafcutter ant, and sea urchin. Src42 has a unique N-terminal domain, an SH3 domain, an SH2 domain, a kinase domain and a regulatory tail, as do the other members of the family. Like the other members of the Src family the SH2 domain in addition to binding the target, also plays an autoinhibitory role by binding to its C-terminal tail. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites. Pssm-ID: 198233 Cd Length: 96 Bit Score: 51.74 E-value: 7.88e-08
|
||||||||||||||||||||||
SH2_SOCS5 | cd10386 | Src homology 2 (SH2) domain found in suppressor of cytokine signaling (SOCS) family; SH2 ... |
1353-1424 | 1.15e-07 | ||||||||||||||||||
Src homology 2 (SH2) domain found in suppressor of cytokine signaling (SOCS) family; SH2 domain found in SOCS proteins. SOCS was first recognized as a group of cytokine-inducible SH2 (CIS) domain proteins comprising eight family members in human (CIS and SOCS1-SOCS7). In addition to the SH2 domain, SOCS proteins have a variable N-terminal domain and a conserved SOCS box in the C-terminal domain. SOCS proteins bind to a substrate via their SH2 domain. The prototypical members, CIS and SOCS1-SOCS3, have been shown to regulate growth hormone signaling in vitro and in a classic negative feedback response compete for binding at phosphotyrosine sites in JAK kinase and receptor pathways to displace effector proteins and target bound receptors for proteasomal degradation. Loss of SOCS activity results in excessive cytokine signaling associated with a variety of hematopoietic, autoimmune, and inflammatory diseases and certain cancers. Members (SOCS4-SOCS7) were identified by their conserved SOCS box, an adapter motif of 3 helices that associates substrate binding domains, such as the SOCS SH2 domain, ankryin, and WD40 with ubiquitin ligase components. These show limited cytokine induction. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites. Pssm-ID: 198249 Cd Length: 81 Bit Score: 50.85 E-value: 1.15e-07
|
||||||||||||||||||||||
SOCS | smart00253 | suppressors of cytokine signalling; suppressors of cytokine signalling |
1462-1501 | 1.27e-07 | ||||||||||||||||||
suppressors of cytokine signalling; suppressors of cytokine signalling Pssm-ID: 128549 Cd Length: 43 Bit Score: 49.60 E-value: 1.27e-07
|
||||||||||||||||||||||
RbgA | COG1161 | Ribosome biogenesis GTPase RbgA [Translation, ribosomal structure and biogenesis]; |
1682-1772 | 1.32e-07 | ||||||||||||||||||
Ribosome biogenesis GTPase RbgA [Translation, ribosomal structure and biogenesis]; Pssm-ID: 440775 [Multi-domain] Cd Length: 279 Bit Score: 55.11 E-value: 1.32e-07
|
||||||||||||||||||||||
SOCS_SOCS_like | cd03717 | SOCS (suppressors of cytokine signaling) box of SOCS-like proteins. The CIS/SOCS family of ... |
1467-1500 | 2.42e-07 | ||||||||||||||||||
SOCS (suppressors of cytokine signaling) box of SOCS-like proteins. The CIS/SOCS family of proteins is characterized by the presence of a C-terminal SOCS box and a central SH2 domain. These intracellular proteins regulate the responses of immune cells to cytokines. Identified as negative regulators of the cytokine-JAK-STAT pathway, they seem to play a role in many immunological and pathological processes. The function of the SOCS box is the recruitment of the ubiquitin-transferase system. Related SOCS boxes are also present in Rab40-like proteins and insect proteins of unknown function that also contain a NEUZ (domain in neuralized proteins) domain. Pssm-ID: 239687 Cd Length: 39 Bit Score: 48.75 E-value: 2.42e-07
|
||||||||||||||||||||||
SH2_SOCS4 | cd10385 | Src homology 2 (SH2) domain found in suppressor of cytokine signaling (SOCS) proteins; SH2 ... |
1346-1408 | 2.54e-07 | ||||||||||||||||||
Src homology 2 (SH2) domain found in suppressor of cytokine signaling (SOCS) proteins; SH2 domain found in SOCS proteins. SOCS was first recognized as a group of cytokine-inducible SH2 (CIS) domain proteins comprising eight family members in human (CIS and SOCS1-SOCS7). In addition to the SH2 domain, SOCS proteins have a variable N-terminal domain and a conserved SOCS box in the C-terminal domain. SOCS proteins bind to a substrate via their SH2 domain. The prototypical members, CIS and SOCS1-SOCS3, have been shown to regulate growth hormone signaling in vitro and in a classic negative feedback response compete for binding at phosphotyrosine sites in JAK kinase and receptor pathways to displace effector proteins and target bound receptors for proteasomal degradation. Loss of SOCS activity results in excessive cytokine signaling associated with a variety of hematopoietic, autoimmune, and inflammatory diseases and certain cancers. Members (SOCS4-SOCS7) were identified by their conserved SOCS box, an adapter motif of 3 helices that associates substrate binding domains, such as the SOCS SH2 domain, ankryin, and WD40 with ubiquitin ligase components. These show limited cytokine induction. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites. Pssm-ID: 198248 Cd Length: 101 Bit Score: 50.47 E-value: 2.54e-07
|
||||||||||||||||||||||
SH2_C-SH2_SHP_like | cd09931 | C-terminal Src homology 2 (C-SH2) domain found in SH2 domain Phosphatases (SHP) proteins; The ... |
1352-1428 | 4.22e-07 | ||||||||||||||||||
C-terminal Src homology 2 (C-SH2) domain found in SH2 domain Phosphatases (SHP) proteins; The SH2 domain phosphatases (SHP-1, SHP-2/Syp, Drosophila corkscrew (csw), and Caenorhabditis elegans Protein Tyrosine Phosphatase (Ptp-2)) are cytoplasmic signaling enzymes. They are both targeted and regulated by interactions of their SH2 domains with phosphotyrosine docking sites. These proteins contain two SH2 domains (N-SH2, C-SH2) followed by a tyrosine phosphatase (PTP) domain, and a C-terminal extension. Shp1 and Shp2 have two tyrosyl phosphorylation sites in their C-tails, which are phosphorylated differentially by receptor and nonreceptor PTKs. Csw retains the proximal tyrosine and Ptp-2 lacks both sites. Shp-binding proteins include receptors, scaffolding adapters, and inhibitory receptors. Some of these bind both Shp1 and Shp2 while others bind only one. Most proteins that bind a Shp SH2 domain contain one or more immuno-receptor tyrosine-based inhibitory motifs (ITIMs): [SIVL]xpYxx[IVL]. Shp1 N-SH2 domain blocks the catalytic domain and keeps the enzyme in the inactive conformation, and is thus believed to regulate the phosphatase activity of SHP-1. Its C-SH2 domain is thought to be involved in searching for phosphotyrosine activators. The SHP2 N-SH2 domain is a conformational switch; it either binds and inhibits the phosphatase, or it binds phosphoproteins and activates the enzyme. The C-SH2 domain contributes binding energy and specificity, but it does not have a direct role in activation. Csw SH2 domain function is essential, but either SH2 domain can fulfill this requirement. The role of the csw SH2 domains during Sevenless receptor tyrosine kinase (SEV) signaling is to bind Daughter of Sevenless rather than activated SEV. Ptp-2 acts in oocytes downstream of sheath/oocyte gap junctions to promote major sperm protein (MSP)-induced MAP Kinase (MPK-1) phosphorylation. Ptp-2 functions in the oocyte cytoplasm, not at the cell surface to inhibit multiple RasGAPs, resulting in sustained Ras activation. It is thought that MSP triggers PTP-2/Ras activation and ROS production to stimulate MPK-1 activity essential for oocyte maturation and that secreted MSP domains and Cu/Zn superoxide dismutases function antagonistically to control ROS and MAPK signaling. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites. Pssm-ID: 198185 Cd Length: 99 Bit Score: 49.97 E-value: 4.22e-07
|
||||||||||||||||||||||
SH2_Cterm_RasGAP | cd10354 | C-terminal Src homology 2 (SH2) domain found in Ras GTPase-activating protein 1 (GAP); RasGAP ... |
1352-1412 | 4.24e-07 | ||||||||||||||||||
C-terminal Src homology 2 (SH2) domain found in Ras GTPase-activating protein 1 (GAP); RasGAP is part of the GAP1 family of GTPase-activating proteins. The protein is located in the cytoplasm and stimulates the GTPase activity of normal RAS p21, but not its oncogenic counterpart. Acting as a suppressor of RAS function, the protein enhances the weak intrinsic GTPase activity of RAS proteins resulting in RAS inactivation, thereby allowing control of cellular proliferation and differentiation. Mutations leading to changes in the binding sites of either protein are associated with basal cell carcinomas. Alternative splicing results in two isoforms. The shorter isoform which lacks the N-terminal hydrophobic region, has the same activity, and is expressed in placental tissues. In general longer isoform contains 2 SH2 domains, a SH3 domain, a pleckstrin homology (PH) domain, and a calcium-dependent phospholipid-binding C2 domain. The C-terminus contains the catalytic domain of RasGap which catalyzes the activation of Ras by hydrolyzing GTP-bound active Ras into an inactive GDP-bound form of Ras. This model contains the C-terminal SH2 domain. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites. Pssm-ID: 198217 Cd Length: 77 Bit Score: 49.34 E-value: 4.24e-07
|
||||||||||||||||||||||
SH2_Grb2_like | cd09941 | Src homology 2 domain found in Growth factor receptor-bound protein 2 (Grb2) and similar ... |
1351-1422 | 5.03e-07 | ||||||||||||||||||
Src homology 2 domain found in Growth factor receptor-bound protein 2 (Grb2) and similar proteins; The adaptor proteins here include homologs Grb2 in humans, Sex muscle abnormal protein 5 (Sem-5) in Caenorhabditis elegans, and Downstream of receptor kinase (drk) in Drosophila melanogaster. They are composed of one SH2 and two SH3 domains. Grb2/Sem-5/drk regulates the Ras pathway by linking the tyrosine kinases to the Ras guanine nucleotide releasing protein Sos, which converts Ras to the active GTP-bound state. The SH2 domain of Grb2/Sem-5/drk binds class II phosphotyrosyl peptides while its SH3 domain binds to Sos and Sos-derived, proline-rich peptides. Besides it function in Ras signaling, Grb2 is also thought to play a role in apoptosis. Unlike most SH2 structures in which the peptide binds in an extended conformation (such that the +3 peptide residue occupies a hydrophobic pocket in the protein, conferring a modest degree of selectivity), Grb2 forms several hydrogen bonds via main chain atoms with the side chain of +2 Asn. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites. Pssm-ID: 199828 Cd Length: 95 Bit Score: 49.58 E-value: 5.03e-07
|
||||||||||||||||||||||
Ras | cd00876 | Rat sarcoma (Ras) family of small guanosine triphosphatases (GTPases); The Ras family of the ... |
1716-1839 | 5.66e-07 | ||||||||||||||||||
Rat sarcoma (Ras) family of small guanosine triphosphatases (GTPases); The Ras family of the Ras superfamily includes classical N-Ras, H-Ras, and K-Ras, as well as R-Ras, Rap, Ral, Rheb, Rhes, ARHI, RERG, Rin/Rit, RSR1, RRP22, Ras2, Ras-dva, and RGK proteins. Ras proteins regulate cell growth, proliferation and differentiation. Ras is activated by guanine nucleotide exchange factors (GEFs) that release GDP and allow GTP binding. Many RasGEFs have been identified. These are sequestered in the cytosol until activation by growth factors triggers recruitment to the plasma membrane or Golgi, where the GEF colocalizes with Ras. Active GTP-bound Ras interacts with several effector proteins: among the best characterized are the Raf kinases, phosphatidylinositol 3-kinase (PI3K), RalGEFs and NORE/MST1. Most Ras proteins contain a lipid modification site at the C-terminus, with a typical sequence motif CaaX, where a = an aliphatic amino acid and X = any amino acid. Lipid binding is essential for membrane attachment, a key feature of most Ras proteins. Due to the presence of truncated sequences in this CD, the lipid modification site is not available for annotation. Pssm-ID: 206642 [Multi-domain] Cd Length: 160 Bit Score: 51.37 E-value: 5.66e-07
|
||||||||||||||||||||||
YqeH | cd01855 | Circularly permuted YqeH GTPase; YqeH is an essential GTP-binding protein. Depletion of YqeH ... |
1709-1772 | 6.74e-07 | ||||||||||||||||||
Circularly permuted YqeH GTPase; YqeH is an essential GTP-binding protein. Depletion of YqeH induces an excess initiation of DNA replication, suggesting that it negatively controls initiation of chromosome replication. The YqeH subfamily is common in eukaryotes and sporadically present in bacteria with probable acquisition by plants from chloroplasts. Proteins of the YqeH family contain all sequence motifs typical of the vast class of P-loop-containing GTPases, but show a circular permutation, with a G4-G1-G3 pattern of motifs as opposed to the regular G1-G3-G4 pattern seen in most GTPases. Pssm-ID: 206748 [Multi-domain] Cd Length: 191 Bit Score: 51.88 E-value: 6.74e-07
|
||||||||||||||||||||||
Arf_Arl | cd00878 | ADP-ribosylation factor(Arf)/Arf-like (Arl) small GTPases; Arf (ADP-ribosylation factor)/Arl ... |
1716-1862 | 7.41e-07 | ||||||||||||||||||
ADP-ribosylation factor(Arf)/Arf-like (Arl) small GTPases; Arf (ADP-ribosylation factor)/Arl (Arf-like) small GTPases. Arf proteins are activators of phospholipase D isoforms. Unlike Ras proteins they lack cysteine residues at their C-termini and therefore are unlikely to be prenylated. Arfs are N-terminally myristoylated. Members of the Arf family are regulators of vesicle formation in intracellular traffic that interact reversibly with membranes of the secretory and endocytic compartments in a GTP-dependent manner. They depart from other small GTP-binding proteins by a unique structural device, interswitch toggle, that implements front-back communication from N-terminus to the nucleotide binding site. Arf-like (Arl) proteins are close relatives of the Arf, but only Arl1 has been shown to function in membrane traffic like the Arf proteins. Arl2 has an unrelated function in the folding of native tubulin, and Arl4 may function in the nucleus. Most other Arf family proteins are so far relatively poorly characterized. Thus, despite their significant sequence homologies, Arf family proteins may regulate unrelated functions. Pssm-ID: 206644 [Multi-domain] Cd Length: 158 Bit Score: 50.65 E-value: 7.41e-07
|
||||||||||||||||||||||
SH2_nSH2_p85_like | cd09942 | N-terminal Src homology 2 (nSH2) domain found in p85; Phosphoinositide 3-kinases (PI3Ks) are ... |
1352-1446 | 1.05e-06 | ||||||||||||||||||
N-terminal Src homology 2 (nSH2) domain found in p85; Phosphoinositide 3-kinases (PI3Ks) are essential for cell growth, migration, and survival. p110, the catalytic subunit, is composed of an adaptor-binding domain, a Ras-binding domain, a C2 domain, a helical domain, and a kinase domain. The regulatory unit is called p85 and is composed of an SH3 domain, a RhoGap domain, a N-terminal SH2 (nSH2) domain, an internal SH2 (iSH2) domain, and C-terminal (cSH2) domain. There are 2 inhibitory interactions between p110alpha and p85 of P13K: (1) p85 nSH2 domain with the C2, helical, and kinase domains of p110alpha and (2) p85 iSH2 domain with C2 domain of p110alpha. There are 3 inhibitory interactions between p110beta and p85 of P13K: (1) p85 nSH2 domain with the C2, helical, and kinase domains of p110beta, (2) p85 iSH2 domain with C2 domain of p110alpha, and (3) p85 cSH2 domain with the kinase domain of p110alpha. It is interesting to note that p110beta is oncogenic as a wild type protein while p110alpha lacks this ability. One explanation is the idea that the regulation of p110beta by p85 is unique because of the addition of inhibitory contacts from the cSH2 domain and the loss of contacts in the iSH2 domain. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites. Pssm-ID: 198195 Cd Length: 110 Bit Score: 49.24 E-value: 1.05e-06
|
||||||||||||||||||||||
FeoB | cd01879 | Ferrous iron transport protein B (FeoB) family; Ferrous iron transport protein B (FeoB) ... |
1719-1871 | 1.12e-06 | ||||||||||||||||||
Ferrous iron transport protein B (FeoB) family; Ferrous iron transport protein B (FeoB) subfamily. E. coli has an iron(II) transport system, known as feo, which may make an important contribution to the iron supply of the cell under anaerobic conditions. FeoB has been identified as part of this transport system. FeoB is a large 700-800 amino acid integral membrane protein. The N terminus contains a P-loop motif suggesting that iron transport may be ATP dependent. Pssm-ID: 206667 [Multi-domain] Cd Length: 159 Bit Score: 50.15 E-value: 1.12e-06
|
||||||||||||||||||||||
YihA_EngB | cd01876 | YihA (EngB) GTPase family; The YihA (EngB) subfamily of GTPases is typified by the E. coli ... |
1717-1873 | 1.75e-06 | ||||||||||||||||||
YihA (EngB) GTPase family; The YihA (EngB) subfamily of GTPases is typified by the E. coli YihA, an essential protein involved in cell division control. YihA and its orthologs are small proteins that typically contain less than 200 amino acid residues and consists of the GTPase domain only (some of the eukaryotic homologs contain an N-terminal extension of about 120 residues that might be involved in organellar targeting). Homologs of yihA are found in most Gram-positive and Gram-negative pathogenic bacteria, with the exception of Mycobacterium tuberculosis. The broad-spectrum nature of YihA and its essentiality for cell viability in bacteria make it an attractive antibacterial target. Pssm-ID: 206665 [Multi-domain] Cd Length: 170 Bit Score: 50.20 E-value: 1.75e-06
|
||||||||||||||||||||||
YlqF | cd01856 | Circularly permuted YlqF GTPase; Proteins of the YlqF family contain all sequence motifs ... |
1690-1772 | 2.09e-06 | ||||||||||||||||||
Circularly permuted YlqF GTPase; Proteins of the YlqF family contain all sequence motifs typical of the vast class of P-loop-containing GTPases, but show a circular permutation, with a G4-G1-G3 pattern of motifs as opposed to the regular G1-G3-G4 pattern seen in most GTPases. The YlqF subfamily is represented in all eukaryotes as well as a phylogenetically diverse array of bacteria (including gram-positive bacteria, proteobacteria, Synechocystis, Borrelia, and Thermotoga). Pssm-ID: 206749 [Multi-domain] Cd Length: 171 Bit Score: 49.83 E-value: 2.09e-06
|
||||||||||||||||||||||
Rab | cd00154 | Ras-related in brain (Rab) family of small guanosine triphosphatases (GTPases); Rab GTPases ... |
1715-1840 | 4.71e-06 | ||||||||||||||||||
Ras-related in brain (Rab) family of small guanosine triphosphatases (GTPases); Rab GTPases form the largest family within the Ras superfamily. There are at least 60 Rab genes in the human genome, and a number of Rab GTPases are conserved from yeast to humans. Rab GTPases are small, monomeric proteins that function as molecular switches to regulate vesicle trafficking pathways. The different Rab GTPases are localized to the cytosolic face of specific intracellular membranes, where they regulate distinct steps in membrane traffic pathways. In the GTP-bound form, Rab GTPases recruit specific sets of effector proteins onto membranes. Through their effectors, Rab GTPases regulate vesicle formation, actin- and tubulin-dependent vesicle movement, and membrane fusion. GTPase activating proteins (GAPs) interact with GTP-bound Rab and accelerate the hydrolysis of GTP to GDP. Guanine nucleotide exchange factors (GEFs) interact with GDP-bound Rabs to promote the formation of the GTP-bound state. Rabs are further regulated by guanine nucleotide dissociation inhibitors (GDIs), which mask C-terminal lipid binding and promote cytosolic localization. While most unicellular organisms possess 5-20 Rab members, several have been found to possess 60 or more Rabs; for many of these Rab isoforms, homologous proteins are not found in other organisms. Most Rab GTPases contain a lipid modification site at the C-terminus, with sequence motifs CC, CXC, or CCX. Lipid binding is essential for membrane attachment, a key feature of most Rab proteins. Since crystal structures often lack C-terminal residues, the lipid modification site is not available for annotation in many of the CDs in the hierarchy, but is included where possible. Pssm-ID: 206640 [Multi-domain] Cd Length: 159 Bit Score: 48.61 E-value: 4.71e-06
|
||||||||||||||||||||||
SH2_SHB_SHD_SHE_SHF_like | cd09945 | Src homology 2 domain found in SH2 domain-containing adapter proteins B, D, E, and F (SHB, SHD, ... |
1352-1403 | 1.17e-05 | ||||||||||||||||||
Src homology 2 domain found in SH2 domain-containing adapter proteins B, D, E, and F (SHB, SHD, SHE, SHF); SHB, SHD, SHE, and SHF are SH2 domain-containing proteins that play various roles throughout the cell. SHB functions in generating signaling compounds in response to tyrosine kinase activation. SHB contains proline-rich motifs, a phosphotyrosine binding (PTB) domain, tyrosine phosphorylation sites, and a SH2 domain. SHB mediates certain aspects of platelet-derived growth factor (PDGF) receptor-, fibroblast growth factor (FGF) receptor-, neural growth factor (NGF) receptor TRKA-, T cell receptor-, interleukin-2 (IL-2) receptor- and focal adhesion kinase- (FAK) signaling. SRC-like FYN-Related Kinase FRK/RAK (also named BSK/IYK or GTK) and SHB regulate apoptosis, proliferation and differentiation. SHB promotes apoptosis and is also required for proper mitogenicity, spreading and tubular morphogenesis in endothelial cells. SHB also plays a role in preventing early cavitation of embryoid bodies and reduces differentiation to cells expressing albumin, amylase, insulin and glucagon. SHB is a multifunctional protein that has difference responses in different cells under various conditions. SHE is expressed in heart, lung, brain, and skeletal muscle, while expression of SHD is restricted to the brain. SHF is mainly expressed in skeletal muscle, brain, liver, prostate, testis, ovary, small intestine, and colon. SHD may be a physiological substrate of c-Abl and may function as an adapter protein in the central nervous system. It is also thought to be involved in apoptotic regulation. SHD contains five YXXP motifs, a substrate sequence preferred by Abl tyrosine kinases, in addition to a poly-proline rich region and a C-terminal SH2 domain. SHE contains two pTry protein binding domains, protein interaction domain (PID) and a SH2 domain, followed by a glycine-proline rich region, all of which are N-terminal to the phosphotyrosine binding (PTB) domain. SHF contains four putative tyrosine phosphorylation sites and an SH2 domain. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites. Pssm-ID: 198198 Cd Length: 98 Bit Score: 45.88 E-value: 1.17e-05
|
||||||||||||||||||||||
SOCS_box | pfam07525 | SOCS box; The SOCS box acts as a bridge between specific substrate- binding domains and more ... |
1467-1500 | 1.29e-05 | ||||||||||||||||||
SOCS box; The SOCS box acts as a bridge between specific substrate- binding domains and more generic proteins that comprise a large family of E3 ubiquitin protein ligases. Pssm-ID: 462192 Cd Length: 39 Bit Score: 43.69 E-value: 1.29e-05
|
||||||||||||||||||||||
Roc | pfam08477 | Ras of Complex, Roc, domain of DAPkinase; Roc, or Ras of Complex, proteins are mitochondrial ... |
1716-1837 | 1.51e-05 | ||||||||||||||||||
Ras of Complex, Roc, domain of DAPkinase; Roc, or Ras of Complex, proteins are mitochondrial Rho proteins (Miro-1, and Miro-2) and atypical Rho GTPases. Full-length proteins have a unique domain organization, with tandem GTP-binding domains and two EF hand domains (pfam00036) that may bind calcium. They are also larger than classical small GTPases. It has been proposed that they are involved in mitochondrial homeostasis and apoptosis. Pssm-ID: 462490 [Multi-domain] Cd Length: 114 Bit Score: 45.96 E-value: 1.51e-05
|
||||||||||||||||||||||
GTPase_YqeH | TIGR03597 | ribosome biogenesis GTPase YqeH; This family describes YqeH, a member of a larger family of ... |
1713-1772 | 1.60e-05 | ||||||||||||||||||
ribosome biogenesis GTPase YqeH; This family describes YqeH, a member of a larger family of GTPases involved in ribosome biogenesis. Like YqlF, it shows a cyclical permutation relative to GTPases EngA (in which the GTPase domain is duplicated), Era, and others. Members of this protein family are found in a relatively small number of bacterial species, including Bacillus subtilis but not Escherichia coli. [Protein synthesis, Other] Pssm-ID: 213834 [Multi-domain] Cd Length: 360 Bit Score: 49.16 E-value: 1.60e-05
|
||||||||||||||||||||||
SOCS_SOCS7 | cd03741 | SOCS (suppressors of cytokine signaling) box of SOCS7-like proteins. Together with CIS1, the ... |
1468-1507 | 2.15e-05 | ||||||||||||||||||
SOCS (suppressors of cytokine signaling) box of SOCS7-like proteins. Together with CIS1, the CIS/SOCS family of proteins is characterized by the presence of a C-terminal SOCS box and a central SH2 domain. SOCS7 is important in the functioning of neuronal cells. The general function of the SOCS box is the recruitment of the ubiquitin-transferase system. The SOCS box interacts with Elongins B and C, Cullin-5 or Cullin-2, Rbx-1, and E2. Therefore, SOCS-box-containing proteins probably function as E3 ubiquitin ligases and mediate the degradation of proteins associated through their N-terminal regions. Pssm-ID: 239710 Cd Length: 49 Bit Score: 43.55 E-value: 2.15e-05
|
||||||||||||||||||||||
SH2_Src_Frk | cd10369 | Src homology 2 (SH2) domain found in the Fyn-related kinase (Frk); Frk is a member of the Src ... |
1352-1425 | 2.35e-05 | ||||||||||||||||||
Src homology 2 (SH2) domain found in the Fyn-related kinase (Frk); Frk is a member of the Src non-receptor type tyrosine kinase family of proteins. The Frk subfamily is composed of Frk/Rak and Iyk/Bsk/Gst. It is expressed primarily epithelial cells. Frk is a nuclear protein and may function during G1 and S phase of the cell cycle and suppress growth. Unlike the other Src members it lacks a glycine at position 2 of SH4 which is important for addition of a myristic acid moiety that is involved in targeting Src PTKs to cellular membranes. FRK and SHB exert similar effects when overexpressed in rat phaeochromocytoma (PC12) and beta-cells, where both induce PC12 cell differentiation and beta-cell proliferation. Under conditions that cause beta-cell degeneration these proteins augment beta-cell apoptosis. The FRK-SHB responses involve FAK and insulin receptor substrates (IRS) -1 and -2. Frk has been demonstrated to interact with retinoblastoma protein. Frk regulates PTEN protein stability by phosphorylating PTEN, which in turn prevents PTEN degradation. Frk also plays a role in regulation of embryonal pancreatic beta cell formation. Frk has a unique N-terminal domain, an SH3 domain, an SH2 domain, a kinase domain and a regulatory tail, as do the other members of the family. Like the other members of the Src family the SH2 domain in addition to binding the target, also plays an autoinhibitory role by binding to its activation loop. The tryosine involved is at the same site as the tyrosine involved in the autophosphorylation of Src. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites. Pssm-ID: 199831 Cd Length: 96 Bit Score: 44.87 E-value: 2.35e-05
|
||||||||||||||||||||||
SOCS | cd03587 | SOCS (suppressors of cytokine signaling) box. The SOCS box is found in the C-terminal region ... |
1467-1500 | 2.67e-05 | ||||||||||||||||||
SOCS (suppressors of cytokine signaling) box. The SOCS box is found in the C-terminal region of CIS/SOCS family proteins (in combination with a SH2 domain), ASBs (ankyrin repeat-containing proteins with a SOCS box), SSBs (SPRY domain-containing proteins with a SOCS box), and WSBs (WD40 repeat-containing proteins with a SOCS box), as well as, other miscellaneous proteins. The function of the SOCS box is the recruitment of the ubiquitin-transferase system. The SOCS box interacts with Elongins B and C, Cullin-5 or Cullin-2, Rbx-1, and E2. Therefore, SOCS-box-containing proteins probably function as E3 ubiquitin ligases and mediate the degradation of proteins associated through their N-terminal regions. Pssm-ID: 239641 Cd Length: 41 Bit Score: 42.84 E-value: 2.67e-05
|
||||||||||||||||||||||
SH2_ShkA_ShkC | cd10356 | Src homology 2 (SH2) domain found in SH2 domain-bearing protein kinases A and C (ShkA and ShkC) ... |
1343-1434 | 3.90e-05 | ||||||||||||||||||
Src homology 2 (SH2) domain found in SH2 domain-bearing protein kinases A and C (ShkA and ShkC); SH2-bearing genes cloned from Dictyostelium include two transcription factors, STATa and STATc, and a signaling factor, SHK1 (shkA). A database search of the Dictyostelium discoideum genome revealed two additional putative STAT sequences, dd-STATb and dd-STATd, and four additional putative SHK genes, dd-SHK2 (shkB), dd-SHK3 (shkC), dd-SHK4 (shkD), and dd-SHK5 (shkE). This model contains members of shkA and shkC. All of the SHK members are most closely related to the protein kinases found in plants. However these kinases in plants are not conjugated to any SH2 or SH2-like sequences. Alignment data indicates that the SHK SH2 domains carry some features of the STAT SH2 domains in Dictyostelium. When STATc's linker domain was used for a BLAST search, the sequence between the protein kinase domain and the SH2 domain (the linker) of SHK was recovered, suggesting a close relationship among these molecules within this region. SHK's linker domain is predicted to contain an alpha-helix which is indeed homologous to that of STAT. Based on the phylogenetic alignment, SH2 domains can be grouped into two categories, STAT-type and Src-type. SHK family members are in between, but are closer to the STAT-type which indicates a close relationship between SHK and STAT families in their SH2 domains and further supports the notion that SHKs linker-SH2 domain evolved from STAT or STATL (STAT-like Linker-SH2) domain found in plants. In SHK, STAT, and SPT6, the linker-SH2 domains all reside exclusively in the C-terminal regions. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites. Pssm-ID: 198219 Cd Length: 113 Bit Score: 44.91 E-value: 3.90e-05
|
||||||||||||||||||||||
DLP_2 | cd09912 | Dynamin-like protein including dynamins, mitofusins, and guanylate-binding proteins; The ... |
1715-1840 | 6.92e-05 | ||||||||||||||||||
Dynamin-like protein including dynamins, mitofusins, and guanylate-binding proteins; The dynamin family of large mechanochemical GTPases includes the classical dynamins and dynamin-like proteins (DLPs) that are found throughout the Eukarya. This family also includes bacterial DLPs. These proteins catalyze membrane fission during clathrin-mediated endocytosis. Dynamin consists of five domains; an N-terminal G domain that binds and hydrolyzes GTP, a middle domain (MD) involved in self-assembly and oligomerization, a pleckstrin homology (PH) domain responsible for interactions with the plasma membrane, GED, which is also involved in self-assembly, and a proline arginine rich domain (PRD) that interacts with SH3 domains on accessory proteins. To date, three vertebrate dynamin genes have been identified; dynamin 1, which is brain specific, mediates uptake of synaptic vesicles in presynaptic terminals; dynamin-2 is expressed ubiquitously and similarly participates in membrane fission; mutations in the MD, PH and GED domains of dynamin 2 have been linked to human diseases such as Charcot-Marie-Tooth peripheral neuropathy and rare forms of centronuclear myopathy. Dynamin 3 participates in megakaryocyte progenitor amplification, and is also involved in cytoplasmic enlargement and the formation of the demarcation membrane system. This family also includes mitofusins (MFN1 and MFN2 in mammals) that are involved in mitochondrial fusion. Dynamin oligomerizes into helical structures around the neck of budding vesicles in a GTP hydrolysis-dependent manner. Pssm-ID: 206739 [Multi-domain] Cd Length: 180 Bit Score: 45.62 E-value: 6.92e-05
|
||||||||||||||||||||||
SH2_SHC | cd09925 | Src homology 2 (SH2) domain found in SH2 adaptor protein C (SHC); SHC is involved in a wide ... |
1347-1387 | 1.11e-04 | ||||||||||||||||||
Src homology 2 (SH2) domain found in SH2 adaptor protein C (SHC); SHC is involved in a wide variety of pathways including regulating proliferation, angiogenesis, invasion and metastasis, and bone metabolism. An adapter protein, SHC has been implicated in Ras activation following the stimulation of a number of different receptors, including growth factors [insulin, epidermal growth factor (EGF), nerve growth factor, and platelet derived growth factor (PDGF)], cytokines [interleukins 2, 3, and 5], erythropoietin, and granulocyte/macrophage colony-stimulating factor, and antigens [T-cell and B-cell receptors]. SHC has been shown to bind to tyrosine-phosphorylated receptors, and receptor stimulation leads to tyrosine phosphorylation of SHC. Upon phosphorylation, SHC interacts with another adapter protein, Grb2, which binds to the Ras GTP/GDP exchange factor mSOS which leads to Ras activation. SHC is composed of an N-terminal domain that interacts with proteins containing phosphorylated tyrosines, a (glycine/proline)-rich collagen-homology domain that contains the phosphorylated binding site, and a C-terminal SH2 domain. SH2 has been shown to interact with the tyrosine-phosphorylated receptors of EGF and PDGF and with the tyrosine-phosphorylated C chain of the T-cell receptor, providing one of the mechanisms of T-cell-mediated Ras activation. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites. Pssm-ID: 198179 Cd Length: 104 Bit Score: 43.10 E-value: 1.11e-04
|
||||||||||||||||||||||
GTP_EFTU | pfam00009 | Elongation factor Tu GTP binding domain; This domain contains a P-loop motif, also found in ... |
1717-1873 | 1.27e-04 | ||||||||||||||||||
Elongation factor Tu GTP binding domain; This domain contains a P-loop motif, also found in several other families such as pfam00071, pfam00025 and pfam00063. Elongation factor Tu consists of three structural domains, this plus two C-terminal beta barrel domains. Pssm-ID: 425418 [Multi-domain] Cd Length: 187 Bit Score: 44.82 E-value: 1.27e-04
|
||||||||||||||||||||||
YjeQ_EngC | cd01854 | Ribosomal interacting GTPase YjeQ/EngC, a circularly permuted subfamily of the Ras GTPases; ... |
1717-1788 | 1.48e-04 | ||||||||||||||||||
Ribosomal interacting GTPase YjeQ/EngC, a circularly permuted subfamily of the Ras GTPases; YjeQ (YloQ in Bacillus subtilis) is a ribosomal small subunit-dependent GTPase; hence also known as RsgA. YjeQ is a late-stage ribosomal biogenesis factor involved in the 30S subunit maturation, and it represents a protein family whose members are broadly conserved in bacteria and have been shown to be essential to the growth of E. coli and B. subtilis. Proteins of the YjeQ family contain all sequence motifs typical of the vast class of P-loop-containing GTPases, but show a circular permutation, with a G4-G1-G3 pattern of motifs as opposed to the regular G1-G3-G4 pattern seen in most GTPases. All YjeQ family proteins display a unique domain architecture, which includes an N-terminal OB-fold RNA-binding domain, the central permuted GTPase domain, and a zinc knuckle-like C-terminal cysteine domain. Pssm-ID: 206747 [Multi-domain] Cd Length: 211 Bit Score: 45.08 E-value: 1.48e-04
|
||||||||||||||||||||||
RsgA_GTPase | pfam03193 | RsgA GTPase; RsgA (also known as EngC and YjeQ) represents a protein family whose members are ... |
1717-1774 | 1.74e-04 | ||||||||||||||||||
RsgA GTPase; RsgA (also known as EngC and YjeQ) represents a protein family whose members are broadly conserved in bacteria and are indispensable for growth. The GTPase domain of RsgA is very similar to several P-loop GTPases, but differs in having a circular permutation of the GTPase structure described by a G4-G1-G3 pattern. Pssm-ID: 427191 [Multi-domain] Cd Length: 174 Bit Score: 44.07 E-value: 1.74e-04
|
||||||||||||||||||||||
SH2_ABL | cd09935 | Src homology 2 (SH2) domain found in Abelson murine lymphosarcoma virus (ABL) proteins; ... |
1351-1444 | 2.15e-04 | ||||||||||||||||||
Src homology 2 (SH2) domain found in Abelson murine lymphosarcoma virus (ABL) proteins; ABL-family proteins are highly conserved tyrosine kinases. Each ABL protein contains an SH3-SH2-TK (Src homology 3-Src homology 2-tyrosine kinase) domain cassette, which confers autoregulated kinase activity and is common among nonreceptor tyrosine kinases. Several types of posttranslational modifications control ABL catalytic activity, subcellular localization, and stability, with consequences for both cytoplasmic and nuclear ABL functions. Binding partners provide additional regulation of ABL catalytic activity, substrate specificity, and downstream signaling. By combining this cassette with actin-binding and -bundling domain, ABL proteins are capable of connecting phosphoregulation with actin-filament reorganization. Vertebrate paralogs, ABL1 and ABL2, have evolved to perform specialized functions. ABL1 includes nuclear localization signals and a DNA binding domain which is used to mediate DNA damage-repair functions, while ABL2 has additional binding capacity for actin and for microtubules to enhance its cytoskeletal remodeling functions. SH2 is involved in several autoinhibitory mechanism that constrain the enzymatic activity of the ABL-family kinases. In one mechanism SH2 and SH3 cradle the kinase domain while a cap sequence stabilizes the inactive conformation resulting in a locked inactive state. Another involves phosphatidylinositol 4,5-bisphosphate (PIP2) which binds the SH2 domain through residues normally required for phosphotyrosine binding in the linker segment between the SH2 and kinase domains. The SH2 domain contributes to ABL catalytic activity and target site specificity. It is thought that the ABL catalytic site and SH2 pocket have coevolved to recognize the same sequences. Recent work now supports a hierarchical processivity model in which the substrate target site most compatible with ABL kinase domain preferences is phosphorylated with greatest efficiency. If this site is compatible with the ABL SH2 domain specificity, it will then reposition and dock in the SH2 pocket. This mechanism also explains how ABL kinases phosphorylates poor targets on the same substrate if they are properly positioned and how relatively poor substrate proteins might be recruited to ABL through a complex with strong substrates that can also dock with the SH2 pocket. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites. Pssm-ID: 198189 Cd Length: 94 Bit Score: 41.99 E-value: 2.15e-04
|
||||||||||||||||||||||
SOCS_box | smart00969 | The SOCS box acts as a bridge between specific substrate- binding domains and more generic ... |
1467-1500 | 2.45e-04 | ||||||||||||||||||
The SOCS box acts as a bridge between specific substrate- binding domains and more generic proteins that comprise a large family of E3 ubiquitin protein ligases; Pssm-ID: 198037 Cd Length: 34 Bit Score: 40.08 E-value: 2.45e-04
|
||||||||||||||||||||||
FeoB_N | pfam02421 | Ferrous iron transport protein B; Escherichia coli has an iron(II) transport system (feo) ... |
1715-1866 | 2.46e-04 | ||||||||||||||||||
Ferrous iron transport protein B; Escherichia coli has an iron(II) transport system (feo) which may make an important contribution to the iron supply of the cell under anaerobic conditions. FeoB has been identified as part of this transport system. FeoB is a large 700-800 amino acid integral membrane protein. The N terminus contains a P-loop motif suggesting that iron transport may be ATP dependent. Pssm-ID: 460552 [Multi-domain] Cd Length: 156 Bit Score: 43.59 E-value: 2.46e-04
|
||||||||||||||||||||||
TIGR00157 | TIGR00157 | ribosome small subunit-dependent GTPase A; Members of this protein were designated YjeQ and ... |
1718-1794 | 2.91e-04 | ||||||||||||||||||
ribosome small subunit-dependent GTPase A; Members of this protein were designated YjeQ and are now designated RsgA (ribosome small subunit-dependent GTPase A). The strongest motif in the alignment of these proteins is GXSGVGKS[ST], a classic P-loop for nucleotide binding. This protein has been shown to cleave GTP and remain bound to GDP. A role as a regulator of translation has been suggested. The Aquifex aeolicus ortholog is split into consecutive open reading frames. Consequently, this model was build in fragment mode (-f option). [Protein synthesis, Translation factors] Pssm-ID: 272934 [Multi-domain] Cd Length: 245 Bit Score: 44.71 E-value: 2.91e-04
|
||||||||||||||||||||||
Toc34_like | cd01853 | Translocon at the Outer-envelope membrane of Chloroplasts 34-like (Toc34-like); The Toc34-like ... |
1703-1775 | 3.01e-04 | ||||||||||||||||||
Translocon at the Outer-envelope membrane of Chloroplasts 34-like (Toc34-like); The Toc34-like (Translocon at the Outer-envelope membrane of Chloroplasts) family contains several Toc proteins, including Toc34, Toc33, Toc120, Toc159, Toc86, Toc125, and Toc90. The Toc complex at the outer envelope membrane of chloroplasts is a molecular machine of ~500 kDa that contains a single Toc159 protein, four Toc75 molecules, and four or five copies of Toc34. Toc64 and Toc12 are associated with the translocon, but do not appear to be part of the core complex. The Toc translocon initiates the import of nuclear-encoded preproteins from the cytosol into the organelle. Toc34 and Toc159 are both GTPases, while Toc75 is a beta-barrel integral membrane protein. Toc159 is equally distributed between a soluble cytoplasmic form and a membrane-inserted form, suggesting that assembly of the Toc complex is dynamic. Toc34 and Toc75 act sequentially to mediate docking and insertion of Toc159 resulting in assembly of the functional translocon. Pssm-ID: 206652 Cd Length: 248 Bit Score: 44.62 E-value: 3.01e-04
|
||||||||||||||||||||||
RGK | cd04148 | Rem, Rem2, Rad, Gem/Kir (RGK) subfamily of Ras GTPases; RGK subfamily. The RGK (Rem, Rem2, Rad, ... |
1715-1838 | 3.25e-04 | ||||||||||||||||||
Rem, Rem2, Rad, Gem/Kir (RGK) subfamily of Ras GTPases; RGK subfamily. The RGK (Rem, Rem2, Rad, Gem/Kir) subfamily of Ras GTPases are expressed in a tissue-specific manner and are dynamically regulated by transcriptional and posttranscriptional mechanisms in response to environmental cues. RGK proteins bind to the beta subunit of L-type calcium channels, causing functional down-regulation of these voltage-dependent calcium channels, and either termination of calcium-dependent secretion or modulation of electrical conduction and contractile function. Inhibition of L-type calcium channels by Rem2 may provide a mechanism for modulating calcium-triggered exocytosis in hormone-secreting cells, and has been proposed to influence the secretion of insulin in pancreatic beta cells. RGK proteins also interact with and inhibit the Rho/Rho kinase pathway to modulate remodeling of the cytoskeleton. Two characteristics of RGK proteins cited in the literature are N-terminal and C-terminal extensions beyond the GTPase domain typical of Ras superfamily members. The N-terminal extension is not conserved among family members; the C-terminal extension is reported to be conserved among the family and lack the CaaX prenylation motif typical of membrane-associated Ras proteins. However, a putative CaaX motif has been identified in the alignment of the C-terminal residues of this CD. Pssm-ID: 206715 [Multi-domain] Cd Length: 219 Bit Score: 44.32 E-value: 3.25e-04
|
||||||||||||||||||||||
SH2_Srm | cd10360 | Src homology 2 (SH2) domain found in Src-related kinase lacking C-terminal regulatory tyrosine ... |
1352-1401 | 3.85e-04 | ||||||||||||||||||
Src homology 2 (SH2) domain found in Src-related kinase lacking C-terminal regulatory tyrosine and N-terminal myristoylation sites (srm); Srm is a nonreceptor protein kinase that has two SH2 domains, a SH3 domain, and a kinase domain with a tyrosine residue for autophosphorylation. However it lacks an N-terminal glycine for myristoylation and a C-terminal tyrosine which suppresses kinase activity when phosphorylated. Srm is most similar to members of the Tec family who other members include: Tec, Btk/Emb, and Itk/Tsk/Emt. However Srm differs in its N-terminal unique domain it being much smaller than in the Tec family and is closer to Src. Srm is thought to be a new family of nonreceptor tyrosine kinases that may be redundant in function. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites. Pssm-ID: 198223 Cd Length: 79 Bit Score: 41.10 E-value: 3.85e-04
|
||||||||||||||||||||||
SH2_Nterm_shark_like | cd10347 | N-terminal Src homology 2 (SH2) domain found in SH2 domains, ANK, and kinase domain (shark) ... |
1351-1424 | 5.44e-04 | ||||||||||||||||||
N-terminal Src homology 2 (SH2) domain found in SH2 domains, ANK, and kinase domain (shark) proteins; These non-receptor protein-tyrosine kinases contain two SH2 domains, five ankyrin (ANK)-like repeats, and a potential tyrosine phosphorylation site in the carboxyl-terminal tail which resembles the phosphorylation site in members of the src family. Like, mammalian non-receptor protein-tyrosine kinases, ZAP-70 and syk proteins, they do not have SH3 domains. However, the presence of ANK makes these unique among protein-tyrosine kinases. Both tyrosine kinases and ANK repeats have been shown to transduce developmental signals, and SH2 domains are known to participate intimately in tyrosine kinase signaling. These tyrosine kinases are believed to be involved in epithelial cell polarity. The members of this family include the shark (SH2 domains, ANK, and kinase domain) gene in Drosophila and yellow fever mosquitos, as well as the hydra protein HTK16. Drosophila Shark is proposed to transduce intracellularly the Crumbs, a protein necessary for proper organization of ectodermal epithelia, intercellular signal. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites. Pssm-ID: 198210 Cd Length: 81 Bit Score: 40.44 E-value: 5.44e-04
|
||||||||||||||||||||||
SH2_a2chimerin_b2chimerin | cd10352 | Src homology 2 (SH2) domain found in alpha2-chimerin and beta2-chimerin proteins; Chimerins ... |
1353-1407 | 6.38e-04 | ||||||||||||||||||
Src homology 2 (SH2) domain found in alpha2-chimerin and beta2-chimerin proteins; Chimerins are a family of phorbol ester- and diacylglycerol-responsive GTPase-activating proteins. Alpha1-chimerin (formerly known as n-chimerin) and alpha2-chimerin are alternatively spliced products of a single gene, as are beta1- and beta2-chimerin. alpha1- and beta1-chimerin have a relatively short N-terminal region that does not encode any recognizable domains, whereas alpha2- and beta2-chimerin both include a functional SH2 domain that can bind to phosphotyrosine motifs within receptors. All of the isoforms contain a GAP domain with specificity in vitro for Rac1 and a diacylglycerol (DAG)-binding C1 domain which allows them to translocate to membranes in response to DAG signaling and anchors them in close proximity to activated Rac. Other C1 domain-containing diacylglycerol receptors including: PKC, Munc-13 proteins, phorbol ester binding scaffolding proteins involved in Ca2+-stimulated exocytosis, and RasGRPs, diacylglycerol-activated guanine-nucleotide exchange factors (GEFs) for Ras and Rap1. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites. Pssm-ID: 198215 Cd Length: 91 Bit Score: 40.43 E-value: 6.38e-04
|
||||||||||||||||||||||
SH2_Src_family | cd09933 | Src homology 2 (SH2) domain found in the Src family of non-receptor tyrosine kinases; The Src ... |
1352-1391 | 7.39e-04 | ||||||||||||||||||
Src homology 2 (SH2) domain found in the Src family of non-receptor tyrosine kinases; The Src family kinases are nonreceptor tyrosine kinases that have been implicated in pathways regulating proliferation, angiogenesis, invasion and metastasis, and bone metabolism. It is thought that transforming ability of Src is linked to its ability to activate key signaling molecules in these pathways, rather than through direct activity. As such blocking Src activation has been a target for drug companies. Src family members can be divided into 3 groups based on their expression pattern: 1) Src, Fyn, and Yes; 2) Blk, Fgr, Hck, Lck, and Lyn; and 3) Frk-related kinases Frk/Rak and Iyk/Bsk Of these, cellular c-Src is the best studied and most frequently implicated in oncogenesis. The c-Src contains five distinct regions: a unique N-terminal domain, an SH3 domain, an SH2 domain, a kinase domain and a regulatory tail, as do the other members of the family. Src exists in both active and inactive conformations. Negative regulation occurs through phosphorylation of Tyr, resulting in an intramolecular association between phosphorylated Tyr and the SH2 domain of SRC, which locks the protein in a closed conformation. Further stabilization of the inactive state occurs through interactions between the SH3 domain and a proline-rich stretch of residues within the kinase domain. Conversely, dephosphorylation of Tyr allows SRC to assume an open conformation. Full activity requires additional autophosphorylation of a Tyr residue within the catalytic domain. Loss of the negative-regulatory C-terminal segment has been shown to result in increased activity and transforming potential. Phosphorylation of the C-terminal Tyr residue by C-terminal Src kinase (Csk) and Csk homology kinase results in increased intramolecular interactions and consequent Src inactivation. Specific phosphatases, protein tyrosine phosphatase a (PTPa) and the SH-containing phosphatases SHP1/SHP2, have also been shown to take a part in Src activation. Src is also activated by direct binding of focal adhesion kinase (Fak) and Crk-associated substrate (Cas) to the SH2 domain. SRC activity can also be regulated by numerous receptor tyrosine kinases (RTKs), such as Her2, epidermal growth factor receptor (EGFR), fibroblast growth factor receptor, platelet-derived growth factor receptor (PDGFR), and vascular endothelial growth factor receptor (VEGFR). In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites. Pssm-ID: 199827 Cd Length: 101 Bit Score: 40.64 E-value: 7.39e-04
|
||||||||||||||||||||||
SH2_SH2D2A | cd10416 | Src homology 2 domain found in the SH2 domain containing protein 2A (SH2D2A); SH2D2A contains ... |
1352-1405 | 7.78e-04 | ||||||||||||||||||
Src homology 2 domain found in the SH2 domain containing protein 2A (SH2D2A); SH2D2A contains a single SH2 domain. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites. Pssm-ID: 198279 Cd Length: 102 Bit Score: 40.79 E-value: 7.78e-04
|
||||||||||||||||||||||
SOCS_SOCS4 | cd03738 | SOCS (suppressors of cytokine signaling) box of SOCS4-like proteins. Together with CIS1, the ... |
1468-1504 | 7.91e-04 | ||||||||||||||||||
SOCS (suppressors of cytokine signaling) box of SOCS4-like proteins. Together with CIS1, the CIS/SOCS family of proteins is characterized by the presence of a C-terminal SOCS box and a central SH2 domain. The general function of the SOCS box is the recruitment of the ubiquitin-transferase system. The SOCS box interacts with Elongins B and C, Cullin-5 or Cullin-2, Rbx-1, and E2. Therefore, SOCS-box-containing proteins probably function as E3 ubiquitin ligases and mediate the degradation of proteins associated through their N-terminal regions. Pssm-ID: 239707 Cd Length: 56 Bit Score: 39.20 E-value: 7.91e-04
|
||||||||||||||||||||||
PRK11058 | PRK11058 | GTPase HflX; Provisional |
1687-1871 | 8.52e-04 | ||||||||||||||||||
GTPase HflX; Provisional Pssm-ID: 182934 [Multi-domain] Cd Length: 426 Bit Score: 43.94 E-value: 8.52e-04
|
||||||||||||||||||||||
SH2_Nck2 | cd10409 | Src homology 2 (SH2) domain found in Nck; Nck proteins are adaptors that modulate actin ... |
1350-1411 | 8.64e-04 | ||||||||||||||||||
Src homology 2 (SH2) domain found in Nck; Nck proteins are adaptors that modulate actin cytoskeleton dynamics by linking proline-rich effector molecules to tyrosine kinases or phosphorylated signaling intermediates. There are two members known in this family: Nck1 (Nckalpha) and Nck2 (Nckbeta and Growth factor receptor-bound protein 4 (Grb4)). They are characterized by having 3 SH3 domains and a C-terminal SH2 domain. Nck1 and Nck2 have overlapping functions as determined by gene knockouts. Both bind receptor tyrosine kinases and other tyrosine-phosphorylated proteins through their SH2 domains. In addition they also bind distinct targets. Neuronal signaling proteins: EphrinB1, EphrinB2, and Disabled-1 (Dab-1) all bind to Nck-2 exclusively. And in the case of PDGFR, Tyr(P)751 binds to Nck1 while Tyr(P)1009 binds to Nck2. Nck1 and Nck2 have a role in the infection process of enteropathogenic Escherichia coli (EPEC). Their SH3 domains are involved in recruiting and activating the N-WASP/Arp2/3 complex inducing actin polymerization resulting in the production of pedestals, dynamic bacteria-presenting protrusions of the plasma membrane. A similar thing occurs in the vaccinia virus where motile plasma membrane projections are formed beneath the virus. Recently it has been shown that the SH2 domains of both Nck1 and Nck2 bind the G-protein coupled receptor kinase-interacting protein 1 (GIT1) in a phosphorylation-dependent manner. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites. Pssm-ID: 198272 Cd Length: 98 Bit Score: 40.40 E-value: 8.64e-04
|
||||||||||||||||||||||
SH2_Vav2 | cd10406 | Src homology 2 (SH2) domain found in the Vav2 proteins; Proto-oncogene vav is a member of the ... |
1352-1444 | 9.48e-04 | ||||||||||||||||||
Src homology 2 (SH2) domain found in the Vav2 proteins; Proto-oncogene vav is a member of the Dbl family of guanine nucleotide exchange factors (GEF) for the Rho family of GTP binding proteins. All vavs are activated by tyrosine phosphorylation leading to their activation. There are three Vav mammalian family members: Vav1 which is expressed in the hematopoietic system, and Vav2 and Vav3 are more ubiquitously expressed. Vav2 is a GEF for RhoA, RhoB and RhoG and may activate Rac1 and Cdc42. Vav2 has been shown to interact with CD19 and Grb2. Alternatively spliced transcript variants encoding different isoforms have been found for Vav2. Vav proteins are involved in several processes that require cytoskeletal reorganization, such as the formation of the immunological synapse (IS), phagocytosis, platelet aggregation, spreading, and transformation. Vavs function as guanine nucleotide exchange factors (GEFs) for the Rho/Rac family of GTPases. Vav family members have several conserved motifs/domains including: a leucine-rich region, a leucine-zipper, a calponin homology (CH) domain, an acidic domain, a Dbl-homology (DH) domain, a pleckstrin homology (PH) domain, a cysteine-rich domain, 2 SH3 domains, a proline-rich region, and a SH2 domain. Vavs are the only known Rho GEFs that have both the DH/PH motifs and SH2/SH3 domains in the same protein. The leucine-rich helix-loop-helix (HLH) domain is thought to be involved in protein heterodimerization with other HLH proteins and it may function as a negative regulator by forming inactive heterodimers. The CH domain is usually involved in the association with filamentous actin, but in Vav it controls NFAT stimulation, Ca2+ mobilization, and its transforming activity. Acidic domains are involved in protein-protein interactions and contain regulatory tyrosines. The DH domain is a GDP-GTP exchange factor on Rho/Rac GTPases. The PH domain in involved in interactions with GTP-binding proteins, lipids and/or phosphorylated serine/threonine residues. The SH3 domain is involved in localization of proteins to specific sites within the cell interacting with protein with proline-rich sequences. The SH2 domain mediates a high affinity interaction with tyrosine phosphorylated proteins. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites. Pssm-ID: 198269 Cd Length: 103 Bit Score: 40.44 E-value: 9.48e-04
|
||||||||||||||||||||||
SH2_ShkD_ShkE | cd10357 | Src homology 2 (SH2) domain found in SH2 domain-bearing protein kinases D and E (ShkD and ShkE) ... |
1349-1422 | 9.69e-04 | ||||||||||||||||||
Src homology 2 (SH2) domain found in SH2 domain-bearing protein kinases D and E (ShkD and ShkE); SH2-bearing genes cloned from Dictyostelium include two transcription factors, STATa and STATc, and a signaling factor, SHK1 (shkA). A database search of the Dictyostelium discoideum genome revealed two additional putative STAT sequences, dd-STATb and dd-STATd, and four additional putative SHK genes, dd-SHK2 (shkB), dd-SHK3 (shkC), dd-SHK4 (shkD), and dd-SHK5 (shkE). This model contains members of shkD and shkE. All of the SHK members are most closely related to the protein kinases found in plants. However these kinases in plants are not conjugated to any SH2 or SH2-like sequences. Alignment data indicates that the SHK SH2 domains carry some features of the STAT SH2 domains in Dictyostelium. When STATc's linker domain was used for a BLAST search, the sequence between the protein kinase domain and the SH2 domain (the linker) of SHK was recovered, suggesting a close relationship among these molecules within this region. SHK's linker domain is predicted to contain an alpha-helix which is indeed homologous to that of STAT. Based on the phylogenetic alignment, SH2 domains can be grouped into two categories, STAT-type and Src-type. SHK family members are in between, but are closer to the STAT-type which indicates a close relationship between SHK and STAT families in their SH2 domains and further supports the notion that SHKs linker-SH2 domain evolved from STAT or STATL (STAT-like Linker-SH2) domain found in plants. In SHK, STAT, and SPT6, the linker-SH2 domains all reside exclusively in the C-terminal regions. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites. Pssm-ID: 198220 Cd Length: 87 Bit Score: 40.18 E-value: 9.69e-04
|
||||||||||||||||||||||
SH2_Nck_family | cd09943 | Src homology 2 (SH2) domain found in the Nck family; Nck proteins are adaptors that modulate ... |
1350-1423 | 1.06e-03 | ||||||||||||||||||
Src homology 2 (SH2) domain found in the Nck family; Nck proteins are adaptors that modulate actin cytoskeleton dynamics by linking proline-rich effector molecules to tyrosine kinases or phosphorylated signaling intermediates. There are two members known in this family: Nck1 (Nckalpha) and Nck2 (Nckbeta and Growth factor receptor-bound protein 4 (Grb4)). They are characterized by having 3 SH3 domains and a C-terminal SH2 domain. Nck1 and Nck2 have overlapping functions as determined by gene knockouts. Both bind receptor tyrosine kinases and other tyrosine-phosphorylated proteins through their SH2 domains. In addition they also bind distinct targets. Neuronal signaling proteins: EphrinB1, EphrinB2, and Disabled-1 (Dab-1) all bind to Nck-2 exclusively. And in the case of PDGFR, Tyr(P)751 binds to Nck1 while Tyr(P)1009 binds to Nck2. Nck1 and Nck2 have a role in the infection process of enteropathogenic Escherichia coli (EPEC). Their SH3 domains are involved in recruiting and activating the N-WASP/Arp2/3 complex inducing actin polymerization resulting in the production of pedestals, dynamic bacteria-presenting protrusions of the plasma membrane. A similar thing occurs in the vaccinia virus where motile plasma membrane projections are formed beneath the virus. Recently it has been shown that the SH2 domains of both Nck1 and Nck2 bind the G-protein coupled receptor kinase-interacting protein 1 (GIT1) in a phosphorylation-dependent manner. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites. Pssm-ID: 198196 Cd Length: 93 Bit Score: 40.19 E-value: 1.06e-03
|
||||||||||||||||||||||
SOCS_ASB_like | cd03716 | SOCS (suppressors of cytokine signaling) box of ASB (ankyrin repeat and SOCS box) and SSB ... |
1467-1499 | 1.29e-03 | ||||||||||||||||||
SOCS (suppressors of cytokine signaling) box of ASB (ankyrin repeat and SOCS box) and SSB (SPRY domain-containing SOCS box proteins) protein families. ASB family members have a C-terminal SOCS box and an N-terminal ankyrin-related sequence of a variable number of repeats. SSB proteins contain a central SPRY domain and a C-terminal SOCS. Recently, it has been shown that all four SSB proteins interact with the MET, the receptor protein-tyrosine kinase for hepatocyte growth factor (HGF), and that SSB-1, SSB-2, and SSB-4 interact with prostate apoptosis response protein-4. Both types of interactions are mediated through the SPRY domain. Pssm-ID: 239686 Cd Length: 42 Bit Score: 38.25 E-value: 1.29e-03
|
||||||||||||||||||||||
SOCS_CIS1 | cd03734 | SOCS (suppressors of cytokine signaling) box of CIS (cytokine-inducible SH2 protein) 1-like ... |
1466-1500 | 1.57e-03 | ||||||||||||||||||
SOCS (suppressors of cytokine signaling) box of CIS (cytokine-inducible SH2 protein) 1-like proteins. Together with the SOCS proteins, the CIS/SOCS family of proteins is characterized by the presence of a C-terminal SOCS box and a central SH2 domain. CIS1, like SOCS1 and SOCS3, is involved in the down-regulation of the JAK/STAT pathway. CIS1 binds to cytokine receptors at STAT5-docking sites, which prohibits recruitment of STAT5 to the receptor signaling complex and results in the down-regulation of activation by STAT5. Pssm-ID: 239703 Cd Length: 41 Bit Score: 38.02 E-value: 1.57e-03
|
||||||||||||||||||||||
SH2_SHB | cd10389 | Src homology 2 domain found in SH2 domain-containing adapter protein B (SHB); SHB functions in ... |
1352-1411 | 2.05e-03 | ||||||||||||||||||
Src homology 2 domain found in SH2 domain-containing adapter protein B (SHB); SHB functions in generating signaling compounds in response to tyrosine kinase activation. SHB contains proline-rich motifs, a phosphotyrosine binding (PTB) domain, tyrosine phosphorylation sites, and a SH2 domain. SHB mediates certain aspects of platelet-derived growth factor (PDGF) receptor-, fibroblast growth factor (FGF) receptor-, neural growth factor (NGF) receptor TRKA-, T cell receptor-, interleukin-2 (IL-2) receptor- and focal adhesion kinase- (FAK) signaling. SRC-like FYN-Related Kinase FRK/RAK (also named BSK/IYK or GTK) and SHB regulate apoptosis, proliferation and differentiation. SHB promotes apoptosis and is also required for proper mitogenicity, spreading and tubular morphogenesis in endothelial cells. SHB also plays a role in preventing early cavitation of embryoid bodies and reduces differentiation to cells expressing albumin, amylase, insulin and glucagon. SHB is a multifunctional protein that has difference responses in different cells under various conditions. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites. Pssm-ID: 198252 Cd Length: 97 Bit Score: 39.31 E-value: 2.05e-03
|
||||||||||||||||||||||
SH2_SH2D4B | cd10351 | Src homology 2 domain found in the SH2 domain containing protein 4B (SH2D4B); SH2D4B contains ... |
1352-1398 | 2.40e-03 | ||||||||||||||||||
Src homology 2 domain found in the SH2 domain containing protein 4B (SH2D4B); SH2D4B contains a single SH2 domain. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites. Pssm-ID: 198214 Cd Length: 103 Bit Score: 39.49 E-value: 2.40e-03
|
||||||||||||||||||||||
Rab7 | cd01862 | Rab GTPase family 7 (Rab7); Rab7 subfamily. Rab7 is a small Rab GTPase that regulates ... |
1715-1737 | 3.99e-03 | ||||||||||||||||||
Rab GTPase family 7 (Rab7); Rab7 subfamily. Rab7 is a small Rab GTPase that regulates vesicular traffic from early to late endosomal stages of the endocytic pathway. The yeast Ypt7 and mammalian Rab7 are both involved in transport to the vacuole/lysosome, whereas Ypt7 is also required for homotypic vacuole fusion. Mammalian Rab7 is an essential participant in the autophagic pathway for sequestration and targeting of cytoplasmic components to the lytic compartment. Mammalian Rab7 is also proposed to function as a tumor suppressor. GTPase activating proteins (GAPs) interact with GTP-bound Rab and accelerate the hydrolysis of GTP to GDP. Guanine nucleotide exchange factors (GEFs) interact with GDP-bound Rabs to promote the formation of the GTP-bound state. Rabs are further regulated by guanine nucleotide dissociation inhibitors (GDIs), which facilitate Rab recycling by masking C-terminal lipid binding and promoting cytosolic localization. Most Rab GTPases contain a lipid modification site at the C-terminus, with sequence motifs CC, CXC, or CCX. Lipid binding is essential for membrane attachment, a key feature of most Rab proteins. Due to the presence of truncated sequences in this CD, the lipid modification site is not available for annotation. Pssm-ID: 206655 [Multi-domain] Cd Length: 172 Bit Score: 40.34 E-value: 3.99e-03
|
||||||||||||||||||||||
SH2_HSH2_like | cd09946 | Src homology 2 domain found in hematopoietic SH2 (HSH2) protein; HSH2 is thought to function ... |
1352-1398 | 4.01e-03 | ||||||||||||||||||
Src homology 2 domain found in hematopoietic SH2 (HSH2) protein; HSH2 is thought to function as an adapter protein involved in tyrosine kinase signaling. It may also be involved in regulating cytokine signaling and cytoskeletal reorganization in hematopoietic cells. HSH2 contains several putative protein-binding motifs, SH3-binding proline-rich regions, and phosphotyrosine sites, but lacks enzymatic motifs. HSH2 was found to interact with cytokine-regulated tyrosine kinase c-FES and an activated Cdc42-associated tyrosine kinase ACK1. HSH2 binds c-FES through both its C-terminal region and its N-terminal region including the SH2 domain and binds ACK1 via its N-terminal proline-rich region. Both kinases bound and tyrosine-phosphorylated HSH2 in mammalian cells. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites. Pssm-ID: 198199 Cd Length: 102 Bit Score: 38.72 E-value: 4.01e-03
|
||||||||||||||||||||||
SH2_Vav3 | cd10407 | Src homology 2 (SH2) domain found in the Vav3 proteins; Proto-oncogene vav is a member of the ... |
1349-1427 | 4.83e-03 | ||||||||||||||||||
Src homology 2 (SH2) domain found in the Vav3 proteins; Proto-oncogene vav is a member of the Dbl family of guanine nucleotide exchange factors (GEF) for the Rho family of GTP binding proteins. All vavs are activated by tyrosine phosphorylation leading to their activation. There are three Vav mammalian family members: Vav1 which is expressed in the hematopoietic system, and Vav2 and Vav3 are more ubiquitously expressed. Vav3 preferentially activates RhoA, RhoG and, to a lesser extent, Rac1. Alternatively spliced transcript variants encoding different isoforms have been described for this gene. VAV3 has been shown to interact with Grb2. Vav proteins are involved in several processes that require cytoskeletal reorganization, such as the formation of the immunological synapse (IS), phagocytosis, platelet aggregation, spreading, and transformation. Vavs function as guanine nucleotide exchange factors (GEFs) for the Rho/Rac family of GTPases. Vav family members have several conserved motifs/domains including: a leucine-rich region, a leucine-zipper, a calponin homology (CH) domain, an acidic domain, a Dbl-homology (DH) domain, a pleckstrin homology (PH) domain, a cysteine-rich domain, 2 SH3 domains, a proline-rich region, and a SH2 domain. Vavs are the only known Rho GEFs that have both the DH/PH motifs and SH2/SH3 domains in the same protein. The leucine-rich helix-loop-helix (HLH) domain is thought to be involved in protein heterodimerization with other HLH proteins and it may function as a negative regulator by forming inactive heterodimers. The CH domain is usually involved in the association with filamentous actin, but in Vav it controls NFAT stimulation, Ca2+ mobilization, and its transforming activity. Acidic domains are involved in protein-protein interactions and contain regulatory tyrosines. The DH domain is a GDP-GTP exchange factor on Rho/Rac GTPases. The PH domain in involved in interactions with GTP-binding proteins, lipids and/or phosphorylated serine/threonine residues. The SH3 domain is involved in localization of proteins to specific sites within the cell interacting with protein with proline-rich sequences. The SH2 domain mediates a high affinity interaction with tyrosine phosphorylated proteins. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites. Pssm-ID: 198270 Cd Length: 103 Bit Score: 38.45 E-value: 4.83e-03
|
||||||||||||||||||||||
YlqF_related_GTPase | cd01849 | Circularly permuted YlqF-related GTPases; These proteins are found in bacteria, eukaryotes, ... |
1694-1772 | 6.58e-03 | ||||||||||||||||||
Circularly permuted YlqF-related GTPases; These proteins are found in bacteria, eukaryotes, and archaea. They all exhibit a circular permutation of the GTPase signature motifs so that the order of the conserved G box motifs is G4-G5-G1-G2-G3, with G4 and G5 being permuted from the C-terminal region of proteins in the Ras superfamily to the N-terminus of YlqF-related GTPases. Pssm-ID: 206746 [Multi-domain] Cd Length: 146 Bit Score: 38.90 E-value: 6.58e-03
|
||||||||||||||||||||||
SH2_Src_Yes | cd10366 | Src homology 2 (SH2) domain found in Yes; Yes is a member of the Src non-receptor type ... |
1348-1391 | 7.02e-03 | ||||||||||||||||||
Src homology 2 (SH2) domain found in Yes; Yes is a member of the Src non-receptor type tyrosine kinase family of proteins. Yes is the cellular homolog of the Yamaguchi sarcoma virus oncogene. In humans it is encoded by the YES1 gene which maps to chromosome 18 and is in close proximity to thymidylate synthase. A corresponding Yes pseudogene has been found on chromosome 22. YES1 has been shown to interact with Janus kinase 2, CTNND1,RPL10, and Occludin. Yes1 has a unique N-terminal domain, an SH3 domain, an SH2 domain, a kinase domain and a regulatory tail, as do the other members of the family. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites. Pssm-ID: 198229 Cd Length: 101 Bit Score: 38.08 E-value: 7.02e-03
|
||||||||||||||||||||||
Ras | pfam00071 | Ras family; Includes sub-families Ras, Rab, Rac, Ral, Ran, Rap Ypt1 and more. Shares P-loop ... |
1716-1840 | 7.11e-03 | ||||||||||||||||||
Ras family; Includes sub-families Ras, Rab, Rac, Ral, Ran, Rap Ypt1 and more. Shares P-loop motif with GTP_EFTU, arf and myosin_head. See pfam00009 pfam00025, pfam00063. As regards Rab GTPases, these are important regulators of vesicle formation, motility and fusion. They share a fold in common with all Ras GTPases: this is a six-stranded beta-sheet surrounded by five alpha-helices. Pssm-ID: 425451 [Multi-domain] Cd Length: 162 Bit Score: 39.42 E-value: 7.11e-03
|
||||||||||||||||||||||
PRK00098 | PRK00098 | GTPase RsgA; Reviewed |
1718-1783 | 7.28e-03 | ||||||||||||||||||
GTPase RsgA; Reviewed Pssm-ID: 234631 [Multi-domain] Cd Length: 298 Bit Score: 40.57 E-value: 7.28e-03
|
||||||||||||||||||||||
SH2_Nterm_RasGAP | cd10353 | N-terminal Src homology 2 (SH2) domain found in Ras GTPase-activating protein 1 (GAP); RasGAP ... |
1350-1412 | 7.43e-03 | ||||||||||||||||||
N-terminal Src homology 2 (SH2) domain found in Ras GTPase-activating protein 1 (GAP); RasGAP is part of the GAP1 family of GTPase-activating proteins. The protein is located in the cytoplasm and stimulates the GTPase activity of normal RAS p21, but not its oncogenic counterpart. Acting as a suppressor of RAS function, the protein enhances the weak intrinsic GTPase activity of RAS proteins resulting in RAS inactivation, thereby allowing control of cellular proliferation and differentiation. Mutations leading to changes in the binding sites of either protein are associated with basal cell carcinomas. Alternative splicing results in two isoforms. The shorter isoform which lacks the N-terminal hydrophobic region, has the same activity, and is expressed in placental tissues. In general the longer isoform contains 2 SH2 domains, a SH3 domain, a pleckstrin homology (PH) domain, and a calcium-dependent phospholipid-binding C2 domain. The C-terminus contains the catalytic domain of RasGap which catalyzes the activation of Ras by hydrolyzing GTP-bound active Ras into an inactive GDP-bound form of Ras. This model contains the N-terminal SH2 domain. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites. Pssm-ID: 198216 Cd Length: 103 Bit Score: 37.89 E-value: 7.43e-03
|
||||||||||||||||||||||
small_GTPase | smart00010 | Small GTPase of the Ras superfamily; ill-defined subfamily; SMART predicts Ras-like small ... |
1716-1840 | 8.77e-03 | ||||||||||||||||||
Small GTPase of the Ras superfamily; ill-defined subfamily; SMART predicts Ras-like small GTPases of the ARF, RAB, RAN, RAS, and SAR subfamilies. Others that could not be classified in this way are predicted to be members of the small GTPase superfamily without predictions of the subfamily. Pssm-ID: 197466 [Multi-domain] Cd Length: 166 Bit Score: 39.08 E-value: 8.77e-03
|
||||||||||||||||||||||
Blast search parameters | ||||
|