L-sorbose 1-phosphate reductase, partial [Escherichia coli]
MDR/zinc-dependent alcohol dehydrogenase-like family protein( domain architecture ID 94789)
medium chain reductase/dehydrogenase (MDR)/zinc-dependent alcohol dehydrogenase-like family protein may catalyze the reversible NAD(P)(H)-dependent conversion of an alcohol to its corresponding aldehyde
List of domain hits
Name | Accession | Description | Interval | E-value | |||
MDR super family | cl16912 | Medium chain reductase/dehydrogenase (MDR)/zinc-dependent alcohol dehydrogenase-like family; ... |
9-167 | 9.17e-87 | |||
Medium chain reductase/dehydrogenase (MDR)/zinc-dependent alcohol dehydrogenase-like family; The medium chain reductase/dehydrogenases (MDR)/zinc-dependent alcohol dehydrogenase-like family, which contains the zinc-dependent alcohol dehydrogenase (ADH-Zn) and related proteins, is a diverse group of proteins related to the first identified member, class I mammalian ADH. MDRs display a broad range of activities and are distinguished from the smaller short chain dehydrogenases (~ 250 amino acids vs. the ~ 350 amino acids of the MDR). The MDR proteins have 2 domains: a C-terminal NAD(P) binding-Rossmann fold domain of a beta-alpha form and an N-terminal catalytic domain with distant homology to GroES. The MDR group contains a host of activities, including the founding alcohol dehydrogenase (ADH) , quinone reductase, sorbitol dehydrogenase, formaldehyde dehydrogenase, butanediol DH, ketose reductase, cinnamyl reductase, and numerous others. The zinc-dependent alcohol dehydrogenases (ADHs) catalyze the NAD(P)(H)-dependent interconversion of alcohols to aldehydes or ketones. ADH-like proteins typically form dimers (typically higher plants, mammals) or tetramers (yeast, bacteria), and generally have 2 tightly bound zinc atoms per subunit, a catalytic zinc at the active site and a structural zinc in a lobe of the catalytic domain. The active site zinc is coordinated by a histidine, two cysteines, and a water molecule. The second zinc seems to play a structural role, affects subunit interactions, and is typically coordinated by 4 cysteines. Other MDR members have only a catalytic zinc, and some contain no coordinated zinc. The actual alignment was detected with superfamily member cd08238: Pssm-ID: 450120 [Multi-domain] Cd Length: 410 Bit Score: 260.06 E-value: 9.17e-87
|
|||||||
Name | Accession | Description | Interval | E-value | |||
sorbose_phosphate_red | cd08238 | L-sorbose-1-phosphate reductase; L-sorbose-1-phosphate reductase, a member of the MDR family, ... |
9-167 | 9.17e-87 | |||
L-sorbose-1-phosphate reductase; L-sorbose-1-phosphate reductase, a member of the MDR family, catalyzes the NADPH-dependent conversion of l-sorbose 1-phosphate to d-glucitol 6-phosphate in the metabolism of L-sorbose to (also converts d-fructose 1-phosphate to d-mannitol 6-phosphate). The medium chain dehydrogenases/reductase (MDR)/zinc-dependent alcohol dehydrogenase-like family, which contains the zinc-dependent alcohol dehydrogenase (ADH-Zn) and related proteins, is a diverse group of proteins related to the first identified member, class I mammalian ADH. MDRs display a broad range of activities and are distinguished from the smaller short chain dehydrogenases (~ 250 amino acids vs. the ~ 350 amino acids of the MDR). The MDR proteins have 2 domains: a C-terminal NAD(P) binding-Rossmann fold domain of an beta-alpha form and an N-terminal catalytic domain with distant homology to GroES. The MDR group contains a host of activities, including the founding alcohol dehydrogenase (ADH), quinone reductase, sorbitol dehydrogenase, formaldehyde dehydrogenase, butanediol DH, ketose reductase, cinnamyl reductase, and numerous others. The zinc-dependent alcohol dehydrogenases (ADHs) catalyze the NAD(P)(H)-dependent interconversion of alcohols to aldehydes or ketones. Active site zinc has a catalytic role, while structural zinc aids in stability. Pssm-ID: 176200 [Multi-domain] Cd Length: 410 Bit Score: 260.06 E-value: 9.17e-87
|
|||||||
Tdh | COG1063 | Threonine dehydrogenase or related Zn-dependent dehydrogenase [Amino acid transport and ... |
34-167 | 1.76e-10 | |||
Threonine dehydrogenase or related Zn-dependent dehydrogenase [Amino acid transport and metabolism, General function prediction only]; Threonine dehydrogenase or related Zn-dependent dehydrogenase is part of the Pathway/BioSystem: Non-phosphorylated Entner-Doudoroff pathway Pssm-ID: 440683 [Multi-domain] Cd Length: 341 Bit Score: 58.23 E-value: 1.76e-10
|
|||||||
ADH_zinc_N | pfam00107 | Zinc-binding dehydrogenase; |
81-167 | 1.88e-07 | |||
Zinc-binding dehydrogenase; Pssm-ID: 395057 [Multi-domain] Cd Length: 129 Bit Score: 47.60 E-value: 1.88e-07
|
|||||||
Name | Accession | Description | Interval | E-value | ||||
sorbose_phosphate_red | cd08238 | L-sorbose-1-phosphate reductase; L-sorbose-1-phosphate reductase, a member of the MDR family, ... |
9-167 | 9.17e-87 | ||||
L-sorbose-1-phosphate reductase; L-sorbose-1-phosphate reductase, a member of the MDR family, catalyzes the NADPH-dependent conversion of l-sorbose 1-phosphate to d-glucitol 6-phosphate in the metabolism of L-sorbose to (also converts d-fructose 1-phosphate to d-mannitol 6-phosphate). The medium chain dehydrogenases/reductase (MDR)/zinc-dependent alcohol dehydrogenase-like family, which contains the zinc-dependent alcohol dehydrogenase (ADH-Zn) and related proteins, is a diverse group of proteins related to the first identified member, class I mammalian ADH. MDRs display a broad range of activities and are distinguished from the smaller short chain dehydrogenases (~ 250 amino acids vs. the ~ 350 amino acids of the MDR). The MDR proteins have 2 domains: a C-terminal NAD(P) binding-Rossmann fold domain of an beta-alpha form and an N-terminal catalytic domain with distant homology to GroES. The MDR group contains a host of activities, including the founding alcohol dehydrogenase (ADH), quinone reductase, sorbitol dehydrogenase, formaldehyde dehydrogenase, butanediol DH, ketose reductase, cinnamyl reductase, and numerous others. The zinc-dependent alcohol dehydrogenases (ADHs) catalyze the NAD(P)(H)-dependent interconversion of alcohols to aldehydes or ketones. Active site zinc has a catalytic role, while structural zinc aids in stability. Pssm-ID: 176200 [Multi-domain] Cd Length: 410 Bit Score: 260.06 E-value: 9.17e-87
|
||||||||
iditol_2_DH_like | cd08235 | L-iditol 2-dehydrogenase; Putative L-iditol 2-dehydrogenase based on annotation of some ... |
9-167 | 1.47e-10 | ||||
L-iditol 2-dehydrogenase; Putative L-iditol 2-dehydrogenase based on annotation of some members in this subgroup. L-iditol 2-dehydrogenase catalyzes the NAD+-dependent conversion of L-iditol to L-sorbose in fructose and mannose metabolism. This enzyme is related to sorbitol dehydrogenase, alcohol dehydrogenase, and other medium chain dehydrogenase/reductases. The zinc-dependent alcohol dehydrogenase (ADH-Zn)-like family of proteins is a diverse group of proteins related to the first identified member, class I mammalian ADH. This group is also called the medium chain dehydrogenases/reductase family (MDR) to highlight its broad range of activities and to distinguish from the smaller short chain dehydrogenases (~ 250 amino acids vs. the ~ 350 amino acids of the MDR). The MDR proteins have 2 domains: a C-terminal NAD(P) binding-Rossmann fold domain of a beta-alpha form and an N-terminal GroES-like catalytic domain. The MDR group contains a host of activities, including the founding alcohol dehydrogenase (ADH), quinone reductase, sorbitol dehydrogenase, formaldehyde dehydrogenase, butanediol DH, ketose reductase, cinnamyl reductase, and numerous others. The zinc-dependent alcohol dehydrogenases (ADHs) catalyze the NAD(P)(H)-dependent interconversion of alcohols to aldehydes or ketones. Active site zinc has a catalytic role, while structural zinc aids in stability. ADH-like proteins typically form dimers (typically higher plants, mammals) or tetramers (yeast, bacteria), and generally have 2 tightly bound zinc atoms per subunit. The active site zinc is coordinated by a histidine, two cysteines, and a water molecule. The second zinc seems to play a structural role, affects subunit interactions, and is typically coordinated by 4 cysteines. Pssm-ID: 176197 [Multi-domain] Cd Length: 343 Bit Score: 58.38 E-value: 1.47e-10
|
||||||||
Tdh | COG1063 | Threonine dehydrogenase or related Zn-dependent dehydrogenase [Amino acid transport and ... |
34-167 | 1.76e-10 | ||||
Threonine dehydrogenase or related Zn-dependent dehydrogenase [Amino acid transport and metabolism, General function prediction only]; Threonine dehydrogenase or related Zn-dependent dehydrogenase is part of the Pathway/BioSystem: Non-phosphorylated Entner-Doudoroff pathway Pssm-ID: 440683 [Multi-domain] Cd Length: 341 Bit Score: 58.23 E-value: 1.76e-10
|
||||||||
Zn_ADH7 | cd08261 | Alcohol dehydrogenases of the MDR family; This group contains members identified as related to ... |
9-157 | 4.10e-10 | ||||
Alcohol dehydrogenases of the MDR family; This group contains members identified as related to zinc-dependent alcohol dehydrogenase and other members of the MDR family. The medium chain dehydrogenases/reductase (MDR)/zinc-dependent alcohol dehydrogenase-like family, which contains the zinc-dependent alcohol dehydrogenase (ADH-Zn) and related proteins, is a diverse group of proteins related to the first identified member, class I mammalian ADH. MDRs display a broad range of activities and are distinguished from the smaller short chain dehydrogenases (~ 250 amino acids vs. the ~ 350 amino acids of the MDR). The MDR proteins have 2 domains: a C-terminal NAD(P)-binding Rossmann fold domain of a beta-alpha form and an N-terminal catalytic domain with distant homology to GroES. The MDR group includes various activities, including the founding alcohol dehydrogenase (ADH), quinone reductase, sorbitol dehydrogenase, formaldehyde dehydrogenase, butanediol DH, ketose reductase, cinnamyl reductase, and numerous others. The zinc-dependent alcohol dehydrogenases (ADHs) catalyze the NAD(P)(H)-dependent interconversion of alcohols to aldehydes or ketones. Active site zinc has a catalytic role, while structural zinc aids in stability. ADH-like proteins typically form dimers (typically higher plants, mammals) or tetramers (yeast, bacteria), and generally have 2 tightly bound zinc atoms per subunit. The active site zinc is coordinated by a histidine, two cysteines, and a water molecule. The second zinc seems to play a structural role, affects subunit interactions, and is typically coordinated by 4 cysteines. Pssm-ID: 176222 [Multi-domain] Cd Length: 337 Bit Score: 56.81 E-value: 4.10e-10
|
||||||||
sugar_DH | cd08236 | NAD(P)-dependent sugar dehydrogenases; This group contains proteins identified as sorbitol ... |
9-167 | 4.84e-09 | ||||
NAD(P)-dependent sugar dehydrogenases; This group contains proteins identified as sorbitol dehydrogenases and other sugar dehydrogenases of the medium-chain dehydrogenase/reductase family (MDR), which includes zinc-dependent alcohol dehydrogenase and related proteins. Sorbitol and aldose reductase are NAD(+) binding proteins of the polyol pathway, which interconverts glucose and fructose. Sorbitol dehydrogenase is tetrameric and has a single catalytic zinc per subunit. NAD(P)(H)-dependent oxidoreductases are the major enzymes in the interconversion of alcohols and aldehydes, or ketones. Related proteins include threonine dehydrogenase, formaldehyde dehydrogenase, and butanediol dehydrogenase. The medium chain alcohol dehydrogenase family (MDR) has a NAD(P)(H)-binding domain in a Rossmann fold of a beta-alpha form. The N-terminal region typically has an all-beta catalytic domain. These proteins typically form dimers (typically higher plants, mammals) or tetramers (yeast, bacteria), and have 2 tightly bound zinc atoms per subunit. Horse liver alcohol dehydrogenase is a dimeric enzyme and each subunit has two domains. The NAD binding domain is in a Rossmann fold and the catalytic domain contains a zinc ion to which substrates bind. There is a cleft between the domains that closes upon formation of the ternary complex. Pssm-ID: 176198 [Multi-domain] Cd Length: 343 Bit Score: 53.77 E-value: 4.84e-09
|
||||||||
ADH_zinc_N | pfam00107 | Zinc-binding dehydrogenase; |
81-167 | 1.88e-07 | ||||
Zinc-binding dehydrogenase; Pssm-ID: 395057 [Multi-domain] Cd Length: 129 Bit Score: 47.60 E-value: 1.88e-07
|
||||||||
MDR | cd05188 | Medium chain reductase/dehydrogenase (MDR)/zinc-dependent alcohol dehydrogenase-like family; ... |
9-167 | 6.28e-07 | ||||
Medium chain reductase/dehydrogenase (MDR)/zinc-dependent alcohol dehydrogenase-like family; The medium chain reductase/dehydrogenases (MDR)/zinc-dependent alcohol dehydrogenase-like family, which contains the zinc-dependent alcohol dehydrogenase (ADH-Zn) and related proteins, is a diverse group of proteins related to the first identified member, class I mammalian ADH. MDRs display a broad range of activities and are distinguished from the smaller short chain dehydrogenases (~ 250 amino acids vs. the ~ 350 amino acids of the MDR). The MDR proteins have 2 domains: a C-terminal NAD(P) binding-Rossmann fold domain of a beta-alpha form and an N-terminal catalytic domain with distant homology to GroES. The MDR group contains a host of activities, including the founding alcohol dehydrogenase (ADH) , quinone reductase, sorbitol dehydrogenase, formaldehyde dehydrogenase, butanediol DH, ketose reductase, cinnamyl reductase, and numerous others. The zinc-dependent alcohol dehydrogenases (ADHs) catalyze the NAD(P)(H)-dependent interconversion of alcohols to aldehydes or ketones. ADH-like proteins typically form dimers (typically higher plants, mammals) or tetramers (yeast, bacteria), and generally have 2 tightly bound zinc atoms per subunit, a catalytic zinc at the active site and a structural zinc in a lobe of the catalytic domain. The active site zinc is coordinated by a histidine, two cysteines, and a water molecule. The second zinc seems to play a structural role, affects subunit interactions, and is typically coordinated by 4 cysteines. Other MDR members have only a catalytic zinc, and some contain no coordinated zinc. Pssm-ID: 176178 [Multi-domain] Cd Length: 271 Bit Score: 47.70 E-value: 6.28e-07
|
||||||||
THR_DH_like | cd08239 | L-threonine dehydrogenase (TDH)-like; MDR/AHD-like proteins, including a protein annotated as ... |
9-154 | 1.83e-06 | ||||
L-threonine dehydrogenase (TDH)-like; MDR/AHD-like proteins, including a protein annotated as a threonine dehydrogenase. L-threonine dehydrogenase (TDH) catalyzes the zinc-dependent formation of 2-amino-3-ketobutyrate from L-threonine via NAD(H)-dependent oxidation. The zinc-dependent alcohol dehydrogenases (ADHs) catalyze the NAD(P)(H)-dependent interconversion of alcohols to aldehydes or ketones. Zinc-dependent ADHs are medium chain dehydrogenase/reductase type proteins (MDRs) and have a NAD(P)(H)-binding domain in a Rossmann fold of an beta-alpha form. The N-terminal region typically has an all-beta catalytic domain. In addition to alcohol dehydrogenases, this group includes quinone reductase, sorbitol dehydrogenase, formaldehyde dehydrogenase, butanediol DH, ketose reductase, cinnamyl reductase, and numerous others. These proteins typically form dimers (typically higher plants, mammals) or tetramers (yeast, bacteria), and generally have 2 tightly bound zinc atoms per subunit. The active site zinc is coordinated by a histidine, two cysteines, and a water molecule. The second zinc seems to play a structural role, affects subunit interactions, and is typically coordinated by 4 cysteines. Pssm-ID: 176201 [Multi-domain] Cd Length: 339 Bit Score: 46.54 E-value: 1.83e-06
|
||||||||
FDH_like_ADH2 | cd08286 | formaldehyde dehydrogenase (FDH)-like; This group is related to formaldehyde dehydrogenase ... |
66-154 | 2.25e-06 | ||||
formaldehyde dehydrogenase (FDH)-like; This group is related to formaldehyde dehydrogenase (FDH), which is a member of the zinc-dependent/medium chain alcohol dehydrogenase family. This family uses NAD(H) as a cofactor in the interconversion of alcohols and aldehydes, or ketones. Another member is identified as a dihydroxyacetone reductase. Like the zinc-dependent alcohol dehydrogenases (ADH) of the medium chain alcohol dehydrogenase/reductase family (MDR), tetrameric FDHs have a catalytic zinc that resides between the catalytic and NAD(H)binding domains and a structural zinc in a lobe of the catalytic domain. Unlike ADH, where NAD(P)(H) acts as a cofactor, NADH in FDH is a tightly bound redox cofactor (similar to nicotinamide proteins). The medium chain alcohol dehydrogenase family (MDR) has a NAD(P)(H)-binding domain in a Rossmann fold of a beta-alpha form. The N-terminal region typically has an all-beta catalytic domain. These proteins typically form dimers (typically higher plants, mammals) or tetramers (yeast, bacteria), and have 2 tightly bound zinc atoms per subunit. Pssm-ID: 176246 [Multi-domain] Cd Length: 345 Bit Score: 46.09 E-value: 2.25e-06
|
||||||||
Zn_ADH2 | cd08256 | Alcohol dehydrogenases of the MDR family; This group has the characteristic catalytic and ... |
9-154 | 2.65e-06 | ||||
Alcohol dehydrogenases of the MDR family; This group has the characteristic catalytic and structural zinc-binding sites of the zinc-dependent alcohol dehydrogenases of the MDR family. The medium chain dehydrogenases/reductase (MDR)/zinc-dependent alcohol dehydrogenase-like family, which contains the zinc-dependent alcohol dehydrogenase (ADH-Zn) and related proteins, is a diverse group of proteins related to the first identified member, class I mammalian ADH. MDRs display a broad range of activities and are distinguished from the smaller short chain dehydrogenases (~ 250 amino acids vs. the ~ 350 amino acids of the MDR). The MDR proteins have 2 domains: a C-terminal NAD(P)-binding Rossmann fold domain of a beta-alpha form and an N-terminal catalytic domain with distant homology to GroES. The MDR group contains a host of activities, including the founding alcohol dehydrogenase (ADH), quinone reductase, sorbitol dehydrogenase, formaldehyde dehydrogenase, butanediol DH, ketose reductase, cinnamyl reductase, and numerous others. The zinc-dependent alcohol dehydrogenases (ADHs) catalyze the NAD(P)(H)-dependent interconversion of alcohols to aldehydes or ketones. Active site zinc has a catalytic role, while structural zinc aids in stability. Pssm-ID: 176218 [Multi-domain] Cd Length: 350 Bit Score: 45.86 E-value: 2.65e-06
|
||||||||
Zn_ADH3 | cd08265 | Alcohol dehydrogenases of the MDR family; This group resembles the zinc-dependent alcohol ... |
34-161 | 2.67e-06 | ||||
Alcohol dehydrogenases of the MDR family; This group resembles the zinc-dependent alcohol dehydrogenase and has the catalytic and structural zinc-binding sites characteristic of this group. The medium chain dehydrogenases/reductase (MDR)/zinc-dependent alcohol dehydrogenase-like family, which contains the zinc-dependent alcohol dehydrogenase (ADH-Zn) and related proteins, is a diverse group of proteins related to the first identified member, class I mammalian ADH. MDRs display a broad range of activities and are distinguished from the smaller short chain dehydrogenases (~ 250 amino acids vs. the ~ 350 amino acids of the MDR). The MDR proteins have 2 domains: a C-terminal NAD(P) binding-Rossmann fold domain of a beta-alpha form and an N-terminal catalytic domain with distant homology to GroES. The MDR group contains a host of activities, including the founding alcohol dehydrogenase (ADH), quinone reductase, sorbitol dehydrogenase, formaldehyde dehydrogenase, butanediol DH, ketose reductase, cinnamyl reductase, and numerous others. The zinc-dependent alcohol dehydrogenases (ADHs) catalyze the NAD(P)(H)-dependent interconversion of alcohols to aldehydes or ketones. Active site zinc has a catalytic role, while structural zinc aids in stability. ADH-like proteins typically form dimers (typically higher plants, mammals) or tetramers (yeast, bacteria), and generally have 2 tightly bound zinc atoms per subunit. The active site zinc is coordinated by a histidine, two cysteines, and a water molecule. The second zinc seems to play a structural role, affects subunit interactions, and is typically coordinated by 4 cysteines. Other MDR members have only a catalytic zinc, and some contain no coordinated zinc. Pssm-ID: 176226 [Multi-domain] Cd Length: 384 Bit Score: 45.97 E-value: 2.67e-06
|
||||||||
butanediol_DH_like | cd08233 | (2R,3R)-2,3-butanediol dehydrogenase; (2R,3R)-2,3-butanediol dehydrogenase, a zinc-dependent ... |
34-167 | 1.88e-05 | ||||
(2R,3R)-2,3-butanediol dehydrogenase; (2R,3R)-2,3-butanediol dehydrogenase, a zinc-dependent medium chain alcohol dehydrogenase, catalyzes the NAD(+)-dependent oxidation of (2R,3R)-2,3-butanediol and meso-butanediol to acetoin. BDH functions as a homodimer. NAD(P)(H)-dependent oxidoreductases are the major enzymes in the interconversion of alcohols and aldehydes, or ketones. The medium chain alcohol dehydrogenase family (MDR) have a NAD(P)(H)-binding domain in a Rossmann fold of a beta-alpha form. The N-terminal region typically has an all-beta catalytic domain. These proteins typically form dimers (typically higher plants, mammals) or tetramers (yeast, bacteria), and have 2 tightly bound zinc atoms per subunit. Sorbitol and aldose reductase are NAD(+) binding proteins of the polyol pathway, which interconverts glucose and fructose. Sorbitol dehydrogenase is tetrameric and has a single catalytic zinc per subunit. Pssm-ID: 176195 [Multi-domain] Cd Length: 351 Bit Score: 43.30 E-value: 1.88e-05
|
||||||||
AdhP | COG1064 | D-arabinose 1-dehydrogenase, Zn-dependent alcohol dehydrogenase family [Carbohydrate transport ... |
9-167 | 6.72e-05 | ||||
D-arabinose 1-dehydrogenase, Zn-dependent alcohol dehydrogenase family [Carbohydrate transport and metabolism]; Pssm-ID: 440684 [Multi-domain] Cd Length: 332 Bit Score: 41.64 E-value: 6.72e-05
|
||||||||
sorbitol_DH | cd05285 | Sorbitol dehydrogenase; Sorbitol and aldose reductase are NAD(+) binding proteins of the ... |
5-154 | 7.73e-05 | ||||
Sorbitol dehydrogenase; Sorbitol and aldose reductase are NAD(+) binding proteins of the polyol pathway, which interconverts glucose and fructose. Sorbitol dehydrogenase is tetrameric and has a single catalytic zinc per subunit. Aldose reductase catalyzes the NADP(H)-dependent conversion of glucose to sorbital, and SDH uses NAD(H) in the conversion of sorbitol to fructose. NAD(P)(H)-dependent oxidoreductases are the major enzymes in the interconversion of alcohols and aldehydes, or ketones. The medium chain alcohol dehydrogenase family (MDR) have a NAD(P)(H)-binding domain in a Rossmann fold of a beta-alpha form. The N-terminal region typically has an all-beta catalytic domain. These proteins typically form dimers (typically higher plants, mammals) or tetramers (yeast, bacteria), and have 2 tightly bound zinc atoms per subunit. Pssm-ID: 176188 [Multi-domain] Cd Length: 343 Bit Score: 41.71 E-value: 7.73e-05
|
||||||||
FDH_like_1 | cd08283 | Glutathione-dependent formaldehyde dehydrogenase related proteins, child 1; Members identified ... |
66-154 | 3.63e-04 | ||||
Glutathione-dependent formaldehyde dehydrogenase related proteins, child 1; Members identified as glutathione-dependent formaldehyde dehydrogenase(FDH), a member of the zinc-dependent/medium chain alcohol dehydrogenase family. FDH converts formaldehyde and NAD(P) to formate and NAD(P)H. The initial step in this process the spontaneous formation of a S-(hydroxymethyl)glutathione adduct from formaldehyde and glutathione, followed by FDH-mediated oxidation (and detoxification) of the adduct to S-formylglutathione. MDH family uses NAD(H) as a cofactor in the interconversion of alcohols and aldehydes, or ketones. Like many zinc-dependent alcohol dehydrogenases (ADH) of the medium chain alcohol dehydrogenase/reductase family (MDR), these FDHs form dimers, with 4 zinc ions per dimer. The medium chain alcohol dehydrogenase family (MDR) has a NAD(P)(H)-binding domain in a Rossmann fold of a beta-alpha form. The N-terminal region typically has an all-beta catalytic domain. These proteins typically form dimers (typically higher plants, mammals) or tetramers (yeast, bacteria), and have 2 tightly bound zinc atoms per subunit. Pssm-ID: 176243 [Multi-domain] Cd Length: 386 Bit Score: 39.83 E-value: 3.63e-04
|
||||||||
Zn_ADH6 | cd08260 | Alcohol dehydrogenases of the MDR family; NAD(P)(H)-dependent oxidoreductases are the major ... |
11-149 | 4.11e-04 | ||||
Alcohol dehydrogenases of the MDR family; NAD(P)(H)-dependent oxidoreductases are the major enzymes in the interconversion of alcohols and aldehydes, or ketones. This group has the characteristic catalytic and structural zinc sites of the zinc-dependent alcohol dehydrogenases. Alcohol dehydrogenase in the liver converts ethanol and NAD+ to acetaldehyde and NADH, while in yeast and some other microorganisms ADH catalyzes the conversion acetaldehyde to ethanol in alcoholic fermentation. ADH is a member of the medium chain alcohol dehydrogenase family (MDR), which has a NAD(P)(H)-binding domain in a Rossmann fold of a beta-alpha form. The NAD(H)-binding region is comprised of 2 structurally similar halves, each of which contacts a mononucleotide. A GxGxxG motif after the first mononucleotide contact half allows the close contact of the coenzyme with the ADH backbone. The N-terminal catalytic domain has a distant homology to GroES. These proteins typically form dimers (typically higher plants, mammals) or tetramers (yeast, bacteria), and have 2 tightly bound zinc atoms per subunit, a catalytic zinc at the active site and a structural zinc in a lobe of the catalytic domain. NAD(H)-binding occurs in the cleft between the catalytic and coenzyme-binding domains at the active site, and coenzyme binding induces a conformational closing of this cleft. Coenzyme binding typically precedes and contributes to substrate binding. In human ADH catalysis, the zinc ion helps coordinate the alcohol, followed by deprotonation of a histidine, the ribose of NAD, a serine, then the alcohol, which allows the transfer of a hydride to NAD+, creating NADH and a zinc-bound aldehyde or ketone. In yeast and some bacteria, the active site zinc binds an aldehyde, polarizing it, and leading to the reverse reaction. Pssm-ID: 176221 [Multi-domain] Cd Length: 345 Bit Score: 39.51 E-value: 4.11e-04
|
||||||||
CAD3 | cd08297 | Cinnamyl alcohol dehydrogenases (CAD); These alcohol dehydrogenases are related to the ... |
66-167 | 8.45e-04 | ||||
Cinnamyl alcohol dehydrogenases (CAD); These alcohol dehydrogenases are related to the cinnamyl alcohol dehydrogenases (CAD), members of the medium chain dehydrogenase/reductase family. NAD(P)(H)-dependent oxidoreductases are the major enzymes in the interconversion of alcohols and aldehydes, or ketones. Cinnamyl alcohol dehydrogenases (CAD) reduce cinnamaldehydes to cinnamyl alcohols in the last step of monolignal metabolism in plant cells walls. CAD binds 2 zinc ions and is NADPH- dependent. CAD family members are also found in non-plant species, e.g. in yeast where they have an aldehyde reductase activity. The medium chain dehydrogenases/reductase (MDR)/zinc-dependent alcohol dehydrogenase-like family, which contains the zinc-dependent alcohol dehydrogenase (ADH-Zn) and related proteins, is a diverse group of proteins related to the first identified member, class I mammalian ADH. MDRs display a broad range of activities and are distinguished from the smaller short chain dehydrogenases (~ 250 amino acids vs. the ~ 350 amino acids of the MDR). The MDR proteins have 2 domains: a C-terminal NAD(P) binding-Rossmann fold domain of a beta-alpha form and an N-terminal catalytic domain with distant homology to GroES. The MDR group contains a host of activities, including the founding alcohol dehydrogenase (ADH), quinone reductase, sorbitol dehydrogenase, formaldehyde dehydrogenase, butanediol DH, ketose reductase, cinnamyl reductase, and numerous others. The zinc-dependent alcohol dehydrogenases (ADHs) catalyze the NAD(P)(H)-dependent interconversion of alcohols to aldehydes or ketones. Active site zinc has a catalytic role, while structural zinc aids in stability. ADH-like proteins typically form dimers (typically higher plants, mammals) or tetramers (yeast, bacteria), and generally have 2 tightly bound zinc atoms per subunit. The active site zinc is coordinated by a histidine, two cysteines, and a water molecule. The second zinc seems to play a structural role, affects subunit interactions, and is typically coordinated by 4 cysteines. Pssm-ID: 176257 [Multi-domain] Cd Length: 341 Bit Score: 38.67 E-value: 8.45e-04
|
||||||||
FDH_like | cd05278 | Formaldehyde dehydrogenases; Formaldehyde dehydrogenase (FDH) is a member of the ... |
66-154 | 1.21e-03 | ||||
Formaldehyde dehydrogenases; Formaldehyde dehydrogenase (FDH) is a member of the zinc-dependent/medium chain alcohol dehydrogenase family. Formaldehyde dehydrogenase (aka ADH3) may be the ancestral form of alcohol dehydrogenase, which evolved to detoxify formaldehyde. This CD contains glutathione dependant FDH, glutathione independent FDH, and related alcohol dehydrogenases. FDH converts formaldehyde and NAD(P) to formate and NAD(P)H. The initial step in this process the spontaneous formation of a S-(hydroxymethyl)glutathione adduct from formaldehyde and glutathione, followed by FDH-mediated oxidation (and detoxification) of the adduct to S-formylglutathione. Unlike typical FDH, Pseudomonas putida aldehyde-dismutating FDH (PFDH) is glutathione-independent. The medium chain alcohol dehydrogenase family (MDR) have a NAD(P)(H)-binding domain in a Rossmann fold of a beta-alpha form. The N-terminal region typically has an all-beta catalytic domain. These proteins typically form dimers (typically higher plants, mammals) or tetramers (yeast, bacteria), and have 2 tightly bound zinc atoms per subunit. Pssm-ID: 176181 [Multi-domain] Cd Length: 347 Bit Score: 38.02 E-value: 1.21e-03
|
||||||||
Blast search parameters | ||||
|