hypothetical protein AXX17_AT5G10120 [Arabidopsis thaliana]
HAD family hydrolase( domain architecture ID 11576378)
HAD (haloacid dehalogenase) family hydrolase belongs to a wider superfamily that includes phosphoesterases, ATPases, phosphonatases, dehalogenases, and sugar phosphomutases acting on a remarkably diverse set of substrates
List of domain hits
Name | Accession | Description | Interval | E-value | |||||
HAD_like | cd07525 | uncharacterized family of the haloacid dehalogenase-like (HAD) hydrolase superfamily; The ... |
24-302 | 1.33e-107 | |||||
uncharacterized family of the haloacid dehalogenase-like (HAD) hydrolase superfamily; The haloacid dehalogenase-like (HAD) hydrolases are a large superfamily of diverse enzymes that catalyze carbon or phosphoryl group transfer reactions on a range of substrates, using an active site aspartate in nucleophilic catalysis. Members include 2-L-haloalkanoic acid dehalogenase (C-Cl bond hydrolysis), azetidine hydrolase (C-N bond hydrolysis); phosphonoacetaldehyde hydrolase (C-P bond hydrolysis), phosphoserine phosphatase and phosphomannomutase (CO-P bond hydrolysis), P-type ATPases (PO-P bond hydrolysis) and many others. Members are found in all three kingdoms of life, and most genomes are predicted to contain multiple HAD-like proteins. Members possess a highly conserved alpha/beta core domain, and many also possess a small cap domain, the fold and function of which is variable. HAD hydrolases are sometimes referred to as belonging to the DDDD superfamily of phosphohydrolases. : Pssm-ID: 319827 [Multi-domain] Cd Length: 253 Bit Score: 313.11 E-value: 1.33e-107
|
|||||||||
Name | Accession | Description | Interval | E-value | |||||
HAD_like | cd07525 | uncharacterized family of the haloacid dehalogenase-like (HAD) hydrolase superfamily; The ... |
24-302 | 1.33e-107 | |||||
uncharacterized family of the haloacid dehalogenase-like (HAD) hydrolase superfamily; The haloacid dehalogenase-like (HAD) hydrolases are a large superfamily of diverse enzymes that catalyze carbon or phosphoryl group transfer reactions on a range of substrates, using an active site aspartate in nucleophilic catalysis. Members include 2-L-haloalkanoic acid dehalogenase (C-Cl bond hydrolysis), azetidine hydrolase (C-N bond hydrolysis); phosphonoacetaldehyde hydrolase (C-P bond hydrolysis), phosphoserine phosphatase and phosphomannomutase (CO-P bond hydrolysis), P-type ATPases (PO-P bond hydrolysis) and many others. Members are found in all three kingdoms of life, and most genomes are predicted to contain multiple HAD-like proteins. Members possess a highly conserved alpha/beta core domain, and many also possess a small cap domain, the fold and function of which is variable. HAD hydrolases are sometimes referred to as belonging to the DDDD superfamily of phosphohydrolases. Pssm-ID: 319827 [Multi-domain] Cd Length: 253 Bit Score: 313.11 E-value: 1.33e-107
|
|||||||||
NagD | COG0647 | Ribonucleotide monophosphatase NagD, HAD superfamily [Nucleotide transport and metabolism]; |
21-271 | 2.07e-55 | |||||
Ribonucleotide monophosphatase NagD, HAD superfamily [Nucleotide transport and metabolism]; Pssm-ID: 440412 [Multi-domain] Cd Length: 259 Bit Score: 180.30 E-value: 2.07e-55
|
|||||||||
HAD-SF-IIA-hyp4 | TIGR01459 | HAD-superfamily class IIA hydrolase, TIGR01459; This hypothetical equivalog is a member of the ... |
22-265 | 2.99e-43 | |||||
HAD-superfamily class IIA hydrolase, TIGR01459; This hypothetical equivalog is a member of the Class IIA subfamily of the haloacid dehalogenase superfamily of aspartate-nucleophile hydrolases. The sequences modelled by this equivalog are all gram negative and primarily alpha proteobacteria. Only one sequence hase been annotated as other than "hypothetical." That one, from Brucella, is annotated as related to NagD, but only by sequence similarity and should be treated with some skepticism. (See comments for Class IIA subfamily model) Pssm-ID: 130526 [Multi-domain] Cd Length: 242 Bit Score: 148.50 E-value: 2.99e-43
|
|||||||||
Hydrolase_6 | pfam13344 | Haloacid dehalogenase-like hydrolase; This family is part of the HAD superfamily. |
26-132 | 6.34e-15 | |||||
Haloacid dehalogenase-like hydrolase; This family is part of the HAD superfamily. Pssm-ID: 433132 Cd Length: 101 Bit Score: 69.03 E-value: 6.34e-15
|
|||||||||
PRK10444 | PRK10444 | HAD-IIA family hydrolase; |
32-267 | 4.16e-04 | |||||
HAD-IIA family hydrolase; Pssm-ID: 182466 [Multi-domain] Cd Length: 248 Bit Score: 40.93 E-value: 4.16e-04
|
|||||||||
Name | Accession | Description | Interval | E-value | |||||
HAD_like | cd07525 | uncharacterized family of the haloacid dehalogenase-like (HAD) hydrolase superfamily; The ... |
24-302 | 1.33e-107 | |||||
uncharacterized family of the haloacid dehalogenase-like (HAD) hydrolase superfamily; The haloacid dehalogenase-like (HAD) hydrolases are a large superfamily of diverse enzymes that catalyze carbon or phosphoryl group transfer reactions on a range of substrates, using an active site aspartate in nucleophilic catalysis. Members include 2-L-haloalkanoic acid dehalogenase (C-Cl bond hydrolysis), azetidine hydrolase (C-N bond hydrolysis); phosphonoacetaldehyde hydrolase (C-P bond hydrolysis), phosphoserine phosphatase and phosphomannomutase (CO-P bond hydrolysis), P-type ATPases (PO-P bond hydrolysis) and many others. Members are found in all three kingdoms of life, and most genomes are predicted to contain multiple HAD-like proteins. Members possess a highly conserved alpha/beta core domain, and many also possess a small cap domain, the fold and function of which is variable. HAD hydrolases are sometimes referred to as belonging to the DDDD superfamily of phosphohydrolases. Pssm-ID: 319827 [Multi-domain] Cd Length: 253 Bit Score: 313.11 E-value: 1.33e-107
|
|||||||||
NagD | COG0647 | Ribonucleotide monophosphatase NagD, HAD superfamily [Nucleotide transport and metabolism]; |
21-271 | 2.07e-55 | |||||
Ribonucleotide monophosphatase NagD, HAD superfamily [Nucleotide transport and metabolism]; Pssm-ID: 440412 [Multi-domain] Cd Length: 259 Bit Score: 180.30 E-value: 2.07e-55
|
|||||||||
HAD-SF-IIA-hyp4 | TIGR01459 | HAD-superfamily class IIA hydrolase, TIGR01459; This hypothetical equivalog is a member of the ... |
22-265 | 2.99e-43 | |||||
HAD-superfamily class IIA hydrolase, TIGR01459; This hypothetical equivalog is a member of the Class IIA subfamily of the haloacid dehalogenase superfamily of aspartate-nucleophile hydrolases. The sequences modelled by this equivalog are all gram negative and primarily alpha proteobacteria. Only one sequence hase been annotated as other than "hypothetical." That one, from Brucella, is annotated as related to NagD, but only by sequence similarity and should be treated with some skepticism. (See comments for Class IIA subfamily model) Pssm-ID: 130526 [Multi-domain] Cd Length: 242 Bit Score: 148.50 E-value: 2.99e-43
|
|||||||||
HAD-SF-IIA | TIGR01460 | Haloacid Dehalogenase Superfamily Class (subfamily) IIA; This model represents one structural ... |
27-266 | 2.00e-21 | |||||
Haloacid Dehalogenase Superfamily Class (subfamily) IIA; This model represents one structural subclass of the Haloacid Dehalogenase (HAD) superfamily of aspartate-nucleophile hydrolases. The superfamily is defined by the presence of three short catalytic motifs. The classes are defined based on the location and the observed or predicted fold of a so-called "capping domain", or the absence of such a domain. Class I consists of sequences in which the capping domain is found in between the first and second catalytic motifs. Class II consists of sequences in which the capping domain is found between the second and third motifs. Class III sequences have no capping domain in iether of these positions. The Class IIA capping domain is predicted by PSI-PRED to consist of a mixed alpha-beta fold with the basic pattern: Helix-Helix-Helix-Sheet-Helix-Loop-Sheet-Helix-Sheet-Helix. Presently, this subfamily encompasses a single equivalog model (TIGR01452) for the eukaryotic phosphoglycolate phosphatase, as well as four hypothetical equivalogs covering closely related sequences (TIGR01456 and TIGR01458 in eukaryotes, TIGR01457 in gram positive bacteria and TIGR01459 in gram negative bacteria). The Escherishia coli NagD gene and the Bacillus subtilus AraL gene are members of this subfamily but are not members of the any of the presently defined equivalogs within it. NagD is part of the NAG operon responsible for N-acetylglucosamine metabolism. The function of this gene is unknown. Genes from several organisms have been annotated as NagD, or NagD-like. However, without data on the presence of other members of this pathway, (such as in the case of Yersinia pestis) these assignments should not be given great weight. The AraL gene is similar: it is part of the L-arabinose operon, but the function is unknown. A gene from Halobacterium has been annotated as AraL, but no other Ara operon genes have been annotated. Many of the genes in this subfamily have been annotated as "pNPPase" "4-nitrophenyl phosphatase" or "NPPase". These all refer to the same activity versus a common lab test compound used to determine phosphatase activity. There is no evidence that this activity is physiologically relevant. [Unknown function, Enzymes of unknown specificity] Pssm-ID: 273637 [Multi-domain] Cd Length: 236 Bit Score: 90.46 E-value: 2.00e-21
|
|||||||||
HAD_Pase_UmpH-like | cd07530 | UmpH/NagD family phosphatase, similar to Escherichia coli UmpH UMP phosphatase/NagD nucleotide ... |
24-271 | 1.12e-15 | |||||
UmpH/NagD family phosphatase, similar to Escherichia coli UmpH UMP phosphatase/NagD nucleotide phosphatase and Mycobacterium tuberculosis Rv1692 glycerol 3-phosphate phosphatase; Escherichia coli UmpH/NagD is a ribonucleoside tri-, di-, and monophosphatase with a preference for purines, it shows peak activity with UMP and functions in UMP-degradation. It is also an effective phosphatase with AMP, GMP and CMP. Mycobacterium tuberculosis phosphatase, Rv1692 is a glycerol 3-phosphate phosphatase. Rv1692 is the final enzyme involved in glycerophospholipid recycling/catabolism. This subfamily belongs to the UmpH/NagD phosphatase family, and to the haloacid dehalogenase-like (HAD) hydrolases, a large superfamily of diverse enzymes that catalyze carbon or phosphoryl group transfer reactions on a range of substrates, using an active site aspartate in nucleophilic catalysis. Members of this superfamily include 2-L-haloalkanoic acid dehalogenase, azetidine hydrolase, phosphonoacetaldehyde hydrolase, phosphoserine phosphatase, phosphomannomutase, P-type ATPases and many others. HAD hydrolases are found in all three kingdoms of life, and most genomes are predicted to contain multiple HAD-like proteins. Members possess a highly conserved alpha/beta core domain, and many also possess a small cap domain, the fold and function of which is variable. HAD hydrolases are sometimes referred to as belonging to the DDDD superfamily of phosphohydrolases. Pssm-ID: 319832 [Multi-domain] Cd Length: 247 Bit Score: 74.94 E-value: 1.12e-15
|
|||||||||
Hydrolase_6 | pfam13344 | Haloacid dehalogenase-like hydrolase; This family is part of the HAD superfamily. |
26-132 | 6.34e-15 | |||||
Haloacid dehalogenase-like hydrolase; This family is part of the HAD superfamily. Pssm-ID: 433132 Cd Length: 101 Bit Score: 69.03 E-value: 6.34e-15
|
|||||||||
Hydrolase_like | pfam13242 | HAD-hyrolase-like; |
217-271 | 3.45e-13 | |||||
HAD-hyrolase-like; Pssm-ID: 433056 [Multi-domain] Cd Length: 75 Bit Score: 63.79 E-value: 3.45e-13
|
|||||||||
YigB | COG1011 | FMN and 5-amino-6-(5-phospho-D-ribitylamino)uracil phosphatase YigB, HAD superfamily ... |
80-289 | 5.95e-13 | |||||
FMN and 5-amino-6-(5-phospho-D-ribitylamino)uracil phosphatase YigB, HAD superfamily (riboflavin biosynthesis) [Coenzyme transport and metabolism]; Pssm-ID: 440635 [Multi-domain] Cd Length: 220 Bit Score: 66.59 E-value: 5.95e-13
|
|||||||||
HAD_Pase_UmpH-like | cd07531 | UmpH/NagD family phosphatase, similar to Bacillus AraL phosphatase, a putative sugar ... |
24-290 | 2.12e-12 | |||||
UmpH/NagD family phosphatase, similar to Bacillus AraL phosphatase, a putative sugar phosphatase; Bacillus subtilis AraL is a phosphatase displaying activity towards different sugar phosphate substrates; it is encoded by the arabinose metabolic operon araABDLMNPQ-abfA and may play a role in the dephosphorylation of substrates related to l-arabinose metabolism. This subfamily belongs to the UmpH/NagD phosphatase family, and to the haloacid dehalogenase-like (HAD) hydrolases, a large superfamily of diverse enzymes that catalyze carbon or phosphoryl group transfer reactions on a range of substrates, using an active site aspartate in nucleophilic catalysis. Members of this superfamily include 2-L-haloalkanoic acid dehalogenase, azetidine hydrolase, phosphonoacetaldehyde hydrolase, phosphoserine phosphatase, phosphomannomutase, P-type ATPases and many others. HAD hydrolases are found in all three kingdoms of life, and most genomes are predicted to contain multiple HAD-like proteins. Members possess a highly conserved alpha/beta core domain, and many also possess a small cap domain, the fold and function of which is variable. HAD hydrolases are sometimes referred to as belonging to the DDDD superfamily of phosphohydrolases. Pssm-ID: 319833 [Multi-domain] Cd Length: 252 Bit Score: 65.67 E-value: 2.12e-12
|
|||||||||
HAD_PPase | cd07509 | inorganic pyrophosphatase similar to a human phospholysine phosphohistidine inorganic ... |
24-265 | 2.16e-12 | |||||
inorganic pyrophosphatase similar to a human phospholysine phosphohistidine inorganic pyrophosphate phosphatase (LHPP); LHPP hydrolyzes nitrogen-phosphorus bonds in phospholysine, phosphohistidine and imidodiphosphate as well as oxygen-phosphorus bonds in inorganic pyrophosphate in vitro. This family also includes human haloacid dehalogenase like hydrolase domain containing 2 protine (HDHD2) a phosphatase which may be involved in polygenic hypertension. Members of this family belong to the haloacid dehalogenase-like (HAD) hydrolases, a large superfamily of diverse enzymes that catalyze carbon or phosphoryl group transfer reactions on a range of substrates, using an active site aspartate in nucleophilic catalysis. Members of this superfamily include 2-L-haloalkanoic acid dehalogenase, azetidine hydrolase, phosphonoacetaldehyde hydrolase, phosphoserine phosphatase, phosphomannomutase, P-type ATPases and many others. HAD hydrolases are found in all three kingdoms of life, and most genomes are predicted to contain multiple HAD-like proteins. Members possess a highly conserved alpha/beta core domain, and many also possess a small cap domain, the fold and function of which is variable. HAD hydrolases are sometimes referred to as belonging to the DDDD superfamily of phosphohydrolases. Pssm-ID: 319812 [Multi-domain] Cd Length: 248 Bit Score: 65.76 E-value: 2.16e-12
|
|||||||||
HAD_Pase_UmpH-like | cd07510 | UmpH/NagD family phosphatase, similar to human PGP phosphoglycolate phosphatase and ... |
27-267 | 7.45e-11 | |||||
UmpH/NagD family phosphatase, similar to human PGP phosphoglycolate phosphatase and Schizosaccharomyces pombe PHO2 p-nitrophenylphosphatase; This subfamily includes the phosphoglycolate phosphatases (human PGP and Arabidopsis thaliana PGLP2) and p-nitrophenylphosphatases (Schizosaccharomyces pombe PHO2 and Saccharomyces PHO13p). It belongs to the UmpH/NagD phosphatase family, and to the haloacid dehalogenase-like (HAD) hydrolases, a large superfamily of diverse enzymes that catalyze carbon or phosphoryl group transfer reactions on a range of substrates, using an active site aspartate in nucleophilic catalysis. Members of this superfamily include 2-L-haloalkanoic acid dehalogenase, azetidine hydrolase, phosphonoacetaldehyde hydrolase, phosphoserine phosphatase, phosphomannomutase, P-type ATPases and many others. HAD hydrolases are found in all three kingdoms of life, and most genomes are predicted to contain multiple HAD-like proteins. Members possess a highly conserved alpha/beta core domain, and many also possess a small cap domain, the fold and function of which is variable. HAD hydrolases are sometimes referred to as belonging to the DDDD superfamily of phosphohydrolases. Pssm-ID: 319813 [Multi-domain] Cd Length: 282 Bit Score: 61.63 E-value: 7.45e-11
|
|||||||||
HAD_Pase_UmpH-like | cd07508 | haloacid dehalogenase-like superfamily phosphatases, UmpH/NagD family; Phosphatases in this ... |
27-266 | 1.28e-10 | |||||
haloacid dehalogenase-like superfamily phosphatases, UmpH/NagD family; Phosphatases in this UmpH/NagD family include Escherichia coli UmpH UMP phosphatase/NagD nucleotide phosphatase , Mycobacterium tuberculosis Rv1692 glycerol 3-phosphate phosphatase, human PGP phosphoglycolate phosphatase, Schizosaccharomyces pombe PHO2 p-nitrophenylphosphatase, Bacillus AraL a putative sugar phosphatase, and Plasmodium falciparum para nitrophenyl phosphate phosphatase PNPase. This family belongs to the haloacid dehalogenase-like (HAD) hydrolases, a large superfamily of diverse enzymes that catalyze carbon or phosphoryl group transfer reactions on a range of substrates, using an active site aspartate in nucleophilic catalysis. Members of this superfamily include 2-L-haloalkanoic acid dehalogenase, azetidine hydrolase, phosphonoacetaldehyde hydrolase, phosphoserine phosphatase, phosphomannomutase, P-type ATPases and many others. HAD hydrolases are found in all three kingdoms of life, and most genomes are predicted to contain multiple HAD-like proteins. Members possess a highly conserved alpha/beta core domain, and many also possess a small cap domain, the fold and function of which is variable. HAD hydrolases are sometimes referred to as belonging to the DDDD superfamily of phosphohydrolases. Pssm-ID: 319811 [Multi-domain] Cd Length: 270 Bit Score: 60.84 E-value: 1.28e-10
|
|||||||||
HAD_Pase_UmpH-like | cd16422 | uncharacterized subfamily of the UmpH/NagD phosphatase family, belongs to the haloacid ... |
26-287 | 2.08e-09 | |||||
uncharacterized subfamily of the UmpH/NagD phosphatase family, belongs to the haloacid dehalogenase-like superfamily; This uncharacterized subfamily belongs to the UmpH/NagD phosphatase family and to the haloacid dehalogenase-like (HAD) hydrolases, a large superfamily of diverse enzymes that catalyze carbon or phosphoryl group transfer reactions on a range of substrates, using an active site aspartate in nucleophilic catalysis. Members of this superfamily include 2-L-haloalkanoic acid dehalogenase, azetidine hydrolase, phosphonoacetaldehyde hydrolase, phosphoserine phosphatase, phosphomannomutase, P-type ATPases and many others. HAD hydrolases are found in all three kingdoms of life, and most genomes are predicted to contain multiple HAD-like proteins. Members possess a highly conserved alpha/beta core domain, and many also possess a small cap domain, the fold and function of which is variable. HAD hydrolases are sometimes referred to as belonging to the DDDD superfamily of phosphohydrolases. Pssm-ID: 319858 [Multi-domain] Cd Length: 247 Bit Score: 57.06 E-value: 2.08e-09
|
|||||||||
HAD_PNPase_UmpH-like | cd07532 | UmpH/NagD family phosphatase para nitrophenyl phosphate phosphatase, similar to Plasmodium ... |
22-271 | 1.08e-08 | |||||
UmpH/NagD family phosphatase para nitrophenyl phosphate phosphatase, similar to Plasmodium falciparum PNPase; Plasmodium falciparum para nitrophenyl phosphate phosphatase (PNPase) catalyzes the dephosphorylation of thiamine monophosphate to thiamine, other substrates on which its active are nucleotides, phosphorylated sugars, pyridoxal-5-phosphate, and paranitrophenyl phosphate. This subfamily belongs to the UmpH/NagD phosphatase family, and to the haloacid dehalogenase-like (HAD) hydrolases, a large superfamily of diverse enzymes that catalyze carbon or phosphoryl group transfer reactions on a range of substrates, using an active site aspartate in nucleophilic catalysis. Members of this superfamily include 2-L-haloalkanoic acid dehalogenase, azetidine hydrolase, phosphonoacetaldehyde hydrolase, phosphoserine phosphatase, phosphomannomutase, P-type ATPases and many others. HAD hydrolases are found in all three kingdoms of life, and most genomes are predicted to contain multiple HAD-like proteins. Members possess a highly conserved alpha/beta core domain, and many also possess a small cap domain, the fold and function of which is variable. HAD hydrolases are sometimes referred to as belonging to the DDDD superfamily of phosphohydrolases. Pssm-ID: 319834 [Multi-domain] Cd Length: 286 Bit Score: 55.00 E-value: 1.08e-08
|
|||||||||
HAD_Neu5Ac-Pase_like | cd04305 | human N-acetylneuraminate-9-phosphate phosphatase, Escherichia coli house-cleaning phosphatase ... |
208-263 | 2.81e-07 | |||||
human N-acetylneuraminate-9-phosphate phosphatase, Escherichia coli house-cleaning phosphatase YjjG, and related phosphatases; N-acetylneuraminate-9- phosphatase (Neu5Ac-9-Pase; E.C. 3.1.3.29) catalyzes the dephosphorylation of N-acylneuraminate 9-phosphate during the synthesis of N-acetylneuraminate; Escherichia coli nucleotide phosphatase YjjG has a broad pyrimidine nucleotide activity spectrum and functions as an in vivo house-cleaning phosphatase for noncanonical pyrimidine nucleotides. This family belongs to the haloacid dehalogenase-like (HAD) hydrolases, a large superfamily of diverse enzymes that catalyze carbon or phosphoryl group transfer reactions on a range of substrates, using an active site aspartate in nucleophilic catalysis. Members of this superfamily include 2-L-haloalkanoic acid dehalogenase, azetidine hydrolase, phosphonoacetaldehyde hydrolase, phosphoserine phosphatase, phosphomannomutase, P-type ATPases and many others. HAD hydrolases are found in all three kingdoms of life, and most genomes are predicted to contain multiple HAD-like proteins. Members possess a highly conserved alpha/beta core domain, and many also possess a small cap domain, the fold and function of which is variable. HAD hydrolases are sometimes referred to as belonging to the DDDD superfamily of phosphohydrolases. Pssm-ID: 319800 [Multi-domain] Cd Length: 109 Bit Score: 48.31 E-value: 2.81e-07
|
|||||||||
Gph | COG0546 | Phosphoglycolate phosphatase, HAD superfamily [Energy production and conversion]; |
218-271 | 7.59e-07 | |||||
Phosphoglycolate phosphatase, HAD superfamily [Energy production and conversion]; Pssm-ID: 440312 [Multi-domain] Cd Length: 214 Bit Score: 49.16 E-value: 7.59e-07
|
|||||||||
CTE7 | TIGR02253 | HAD superfamily (subfamily IA) hydrolase, TIGR02253; This family of sequences from archaea and ... |
218-263 | 2.47e-06 | |||||
HAD superfamily (subfamily IA) hydrolase, TIGR02253; This family of sequences from archaea and metazoans includes the human uncharacterized protein CTE7. Pyrococcus species appear to have three different forms of this enzyme, so it is unclear whether all members of this family have the same function. This family is a member of the haloacid dehalogenase (HAD) superfamily of hydrolases which are characterized by three conserved sequence motifs. By virtue of an alpha helical domain in-between the first and second conserved motif, this family is a member of subfamily IA (TIGR01549). Pssm-ID: 274057 [Multi-domain] Cd Length: 221 Bit Score: 47.40 E-value: 2.47e-06
|
|||||||||
HAD_dREG-2_like | cd16415 | uncharacterized family of the haloacid dehalogenase-like superfamily, similar to ... |
167-263 | 3.88e-06 | |||||
uncharacterized family of the haloacid dehalogenase-like superfamily, similar to uncharacterized Drosophila melanogaster rhythmically expressed gene 2 protein and human haloacid dehalogenase-like hydrolase domain-containing protein 3; The haloacid dehalogenase-like (HAD) hydrolases are a large superfamily of diverse enzymes that catalyze carbon or phosphoryl group transfer reactions on a range of substrates, using an active site aspartate in nucleophilic catalysis. Members include 2-L-haloalkanoic acid dehalogenase (C-Cl bond hydrolysis), azetidine hydrolase (C-N bond hydrolysis); phosphonoacetaldehyde hydrolase (C-P bond hydrolysis), phosphoserine phosphatase and phosphomannomutase (CO-P bond hydrolysis), P-type ATPases (PO-P bond hydrolysis) and many others. Members are found in all three kingdoms of life, and most genomes are predicted to contain multiple HAD-like proteins. Members possess a highly conserved alpha/beta core domain, and many also possess a small cap domain, the fold and function of which is variable. HAD hydrolases are sometimes referred to as belonging to the DDDD superfamily of phosphohydrolases. Pssm-ID: 319852 [Multi-domain] Cd Length: 128 Bit Score: 45.36 E-value: 3.88e-06
|
|||||||||
HAD_like | cd01427 | Haloacid dehalogenase-like hydrolases; The haloacid dehalogenase-like (HAD) superfamily ... |
171-261 | 2.06e-05 | |||||
Haloacid dehalogenase-like hydrolases; The haloacid dehalogenase-like (HAD) superfamily includes L-2-haloacid dehalogenase, epoxide hydrolase, phosphoserine phosphatase, phosphomannomutase, phosphoglycolate phosphatase, P-type ATPase, and many others. This superfamily includes a variety of enzymes that catalyze the cleavage of substrate C-Cl, P-C, and P-OP bonds via nucleophilic substitution pathways. All of which use a nucleophilic aspartate in their phosphoryl transfer reaction. They catalyze nucleophilic substitution reactions at phosphorus or carbon centers, using a conserved Asp carboxylate in covalent catalysis. All members possess a highly conserved alpha/beta core domain, and many also possess a small cap domain, the fold and function of which is variable. Members of this superfamily are sometimes referred to as belonging to the DDDD superfamily of phosphohydrolases. Pssm-ID: 319763 [Multi-domain] Cd Length: 106 Bit Score: 42.77 E-value: 2.06e-05
|
|||||||||
HAD_BPGM-like | cd07505 | beta-phosphoglucomutase-like family of the haloacid dehalogenase-like (HAD) hydrolase ... |
11-93 | 2.52e-05 | |||||
beta-phosphoglucomutase-like family of the haloacid dehalogenase-like (HAD) hydrolase superfamily; This family represents the beta-phosphoglucomutase-like family of the haloacid dehalogenase-like (HAD) hydrolase superfamily. Family members include Lactococcus lactis beta-PGM, a mutase which catalyzes the interconversion of beta-D-glucose 1-phosphate (G1P) and D-glucose 6-phosphate (G6P), Saccharomyces cerevisiae phosphatases GPP1 and GPP2 that dephosphorylate DL-glycerol-3-phosphate and DOG1 and DOG2 that dephosphorylate 2-deoxyglucose-6-phosphate, and Escherichia coli 6-phosphogluconate phosphatase YieH. It belongs to the haloacid dehalogenase-like (HAD) hydrolases, a large superfamily of diverse enzymes that catalyze carbon or phosphoryl group transfer reactions on a range of substrates, using an active site aspartate in nucleophilic catalysis. Members of this superfamily include 2-L-haloalkanoic acid dehalogenase, azetidine hydrolase, phosphonoacetaldehyde hydrolase, phosphoserine phosphatase, phosphomannomutase, P-type ATPases and many others. HAD hydrolases are found in all three kingdoms of life, and most genomes are predicted to contain multiple HAD-like proteins. Members possess a highly conserved alpha/beta core domain, and many also possess a small cap domain, the fold and function of which is variable. HAD hydrolases are sometimes referred to as belonging to the DDDD superfamily of phosphohydrolases. Pssm-ID: 319808 [Multi-domain] Cd Length: 143 Bit Score: 43.37 E-value: 2.52e-05
|
|||||||||
Hydrolase | pfam00702 | haloacid dehalogenase-like hydrolase; This family is structurally different from the alpha ... |
165-257 | 2.87e-05 | |||||
haloacid dehalogenase-like hydrolase; This family is structurally different from the alpha/beta hydrolase family (pfam00561). This family includes L-2-haloacid dehalogenase, epoxide hydrolases and phosphatases. The structure of the family consists of two domains. One is an inserted four helix bundle, which is the least well conserved region of the alignment, between residues 16 and 96 of Swiss:P24069. The rest of the fold is composed of the core alpha/beta domain. Those members with the characteriztic DxD triad at the N-terminus are probably phosphatidylglycerolphosphate (PGP) phosphatases involved in cardiolipin biosynthesis in the mitochondria. Pssm-ID: 459910 [Multi-domain] Cd Length: 191 Bit Score: 44.11 E-value: 2.87e-05
|
|||||||||
Gph | COG0546 | Phosphoglycolate phosphatase, HAD superfamily [Energy production and conversion]; |
39-105 | 3.13e-05 | |||||
Phosphoglycolate phosphatase, HAD superfamily [Energy production and conversion]; Pssm-ID: 440312 [Multi-domain] Cd Length: 214 Bit Score: 44.15 E-value: 3.13e-05
|
|||||||||
HAD_2 | pfam13419 | Haloacid dehalogenase-like hydrolase; |
164-263 | 3.54e-05 | |||||
Haloacid dehalogenase-like hydrolase; Pssm-ID: 404323 [Multi-domain] Cd Length: 178 Bit Score: 43.73 E-value: 3.54e-05
|
|||||||||
HAD-SF-IA-v3 | TIGR01509 | haloacid dehalogenase superfamily, subfamily IA, variant 3 with third motif having DD or ED; ... |
164-263 | 8.90e-05 | |||||
haloacid dehalogenase superfamily, subfamily IA, variant 3 with third motif having DD or ED; This model represents part of one structural subfamily of the Haloacid Dehalogenase (HAD) superfamily of aspartate-nucleophile hydrolases. The superfamily is defined by the presence of three short catalytic motifs. The subfamilies are defined based on the location and the observed or predicted fold of a so-called "capping domain", or the absence of such a domain. Subfamily I consists of sequences in which the capping domain is found in between the first and second catalytic motifs. Subfamily II consists of sequences in which the capping domain is found between the second and third motifs. Subfamily III sequences have no capping domain in either of these positions. The Subfamily IA and IB capping domains are predicted by PSI-PRED to consist of an alpha helical bundle. Subfamily I encompasses such a wide region of sequence space (the sequences are highly divergent) that representing it with a single model is impossible, resulting in an overly broad description which allows in many unrelated sequences. Subfamily IA and IB are separated based on an aparrent phylogenetic bifurcation. Subfamily IA is still too broad to model, but cannot be further subdivided into large chunks based on phylogenetic trees. Of the three motifs defining the HAD superfamily, the third has three variant forms: (1) hhhhsDxxx(x)D, (2) hhhhssxxx(x)D and (3) hhhhDDxxx(x)s where _s_ refers to a small amino acid and _h_ to a hydrophobic one. All three of these variants are found in subfamily IA. Individual models were made based on seeds exhibiting only one of the variants each. Variant 3 (this model) is found in the enzymes beta-phosphoglucomutase (TIGR01990) and deoxyglucose-6-phosphatase, while many other enzymes of subfamily IA exhibit this variant as well as variant 1 (TIGR01549). These three variant models were created with the knowledge that there will be overlap among them - this is by design and serves the purpose of eliminating the overlap with models of more distantly related HAD subfamilies caused by an overly broad single model. [Unknown function, Enzymes of unknown specificity] Pssm-ID: 273662 [Multi-domain] Cd Length: 178 Bit Score: 42.41 E-value: 8.90e-05
|
|||||||||
HAD_sEH-N_like | cd02603 | N-terminal lipase phosphatase domain of human soluble epoxide hydrolase, Escherichia coli YihX ... |
121-267 | 1.35e-04 | |||||
N-terminal lipase phosphatase domain of human soluble epoxide hydrolase, Escherichia coli YihX/HAD4 alpha-D-glucose 1-phosphate phosphatase, and related domains, may be inactive; This family includes the N-terminal phosphatase domain of human soluble epoxide hydrolase (sEH). sEH is a bifunctional enzyme with two distinct enzyme activities, the C-terminal domain has epoxide hydrolysis activity and the N-terminal domain (Ntermphos), which belongs to this family, has lipid phosphatase activity. The latter prefers mono-phosphate esters, and lysophosphatidic acids (LPAs) are the best natural substrates found to date. In addition this family includes Gallus gallus sEH and Xenopus sEH which appears to lack phosphatase activity, and Escherichia coli YihX/HAD4 which selectively hydrolyzes alpha-Glucose-1-P, phosphatase, has significant phosphatase activity against pyridoxal phosphate, and has low beta phosphoglucomutase activity. This family belongs to the haloacid dehalogenase-like (HAD) hydrolases, a large superfamily of diverse enzymes that catalyze carbon or phosphoryl group transfer reactions on a range of substrates, using an active site aspartate in nucleophilic catalysis. Members of this superfamily include 2-L-haloalkanoic acid dehalogenase, azetidine hydrolase, phosphonoacetaldehyde hydrolase, phosphoserine phosphatase, phosphomannomutase, P-type ATPases and many others. HAD hydrolases are found in all three kingdoms of life, and most genomes are predicted to contain multiple HAD-like proteins. Members possess a highly conserved alpha/beta core domain, and many also possess a small cap domain, the fold and function of which is variable. HAD hydrolases are sometimes referred to as belonging to the DDDD superfamily of phosphohydrolases. Pssm-ID: 319790 [Multi-domain] Cd Length: 195 Bit Score: 41.95 E-value: 1.35e-04
|
|||||||||
YcjU | COG0637 | Beta-phosphoglucomutase, HAD superfamily [Carbohydrate transport and metabolism]; |
211-271 | 1.43e-04 | |||||
Beta-phosphoglucomutase, HAD superfamily [Carbohydrate transport and metabolism]; Pssm-ID: 440402 [Multi-domain] Cd Length: 208 Bit Score: 42.12 E-value: 1.43e-04
|
|||||||||
CECR5 | TIGR01456 | HAD-superfamily class IIA hydrolase, TIGR01456, CECR5; This hypothetical equivalog is a member ... |
172-286 | 1.84e-04 | |||||
HAD-superfamily class IIA hydrolase, TIGR01456, CECR5; This hypothetical equivalog is a member of the Class IIA subfamily of the haloacid dehalogenase superfamily of aspartate-nucleophile hydrolases. The sequences modelled by this equivalog are all eukaryotes. One sequence (GP|13344995) is called "Cat Eye Syndrome critical region protein 5" (CECR5). This gene has been cloned from a pericentromere region of human chromosome 22 believed to be the location of the gene or genes responsible for Cat Eye Syndrome. This is one of a number of candidate genes. The Schizosaccharomyces pombe sequence (EGAD|138276) is annotated as "phosphatidyl synthase," however this is due entirely to a C-terminal region of the protein (outside the region of similarity of this model) which is highly homologous to a family of CDP-alcohol phosphatidyltransferases. (Thus, the annotation of GP|4226073 from C. elegans as similar to phosphatidyl synthase, is a mistake as this gene does not contain the C-terminal portion). The physical connection of the phosphatidyl synthase and the HAD-superfamily hydrolase domain in S. pombe may, however, be an important clue to the substrate for the hydrolases in this equivalog. Pssm-ID: 200106 [Multi-domain] Cd Length: 321 Bit Score: 42.56 E-value: 1.84e-04
|
|||||||||
HAD_2 | pfam13419 | Haloacid dehalogenase-like hydrolase; |
34-98 | 2.89e-04 | |||||
Haloacid dehalogenase-like hydrolase; Pssm-ID: 404323 [Multi-domain] Cd Length: 178 Bit Score: 41.03 E-value: 2.89e-04
|
|||||||||
PRK10444 | PRK10444 | HAD-IIA family hydrolase; |
32-267 | 4.16e-04 | |||||
HAD-IIA family hydrolase; Pssm-ID: 182466 [Multi-domain] Cd Length: 248 Bit Score: 40.93 E-value: 4.16e-04
|
|||||||||
PRK09449 | PRK09449 | dUMP phosphatase; Provisional |
208-260 | 4.90e-04 | |||||
dUMP phosphatase; Provisional Pssm-ID: 181865 [Multi-domain] Cd Length: 224 Bit Score: 40.65 E-value: 4.90e-04
|
|||||||||
Hydrolase | pfam00702 | haloacid dehalogenase-like hydrolase; This family is structurally different from the alpha ... |
10-84 | 7.83e-04 | |||||
haloacid dehalogenase-like hydrolase; This family is structurally different from the alpha/beta hydrolase family (pfam00561). This family includes L-2-haloacid dehalogenase, epoxide hydrolases and phosphatases. The structure of the family consists of two domains. One is an inserted four helix bundle, which is the least well conserved region of the alignment, between residues 16 and 96 of Swiss:P24069. The rest of the fold is composed of the core alpha/beta domain. Those members with the characteriztic DxD triad at the N-terminus are probably phosphatidylglycerolphosphate (PGP) phosphatases involved in cardiolipin biosynthesis in the mitochondria. Pssm-ID: 459910 [Multi-domain] Cd Length: 191 Bit Score: 39.88 E-value: 7.83e-04
|
|||||||||
HAD_like | cd07533 | uncharacterized family of the haloacid dehalogenase-like (HAD) hydrolase superfamily, similar ... |
218-289 | 1.25e-03 | |||||
uncharacterized family of the haloacid dehalogenase-like (HAD) hydrolase superfamily, similar to Parvibaculum lavamentivorans HAD-superfamily hydrolase, subfamily IA, variant 1; This family belongs to the haloacid dehalogenase-like (HAD) hydrolases, a large superfamily of diverse enzymes that catalyze carbon or phosphoryl group transfer reactions on a range of substrates, using an active site aspartate in nucleophilic catalysis. Members of this superfamily include 2-L-haloalkanoic acid dehalogenase, azetidine hydrolase, phosphonoacetaldehyde hydrolase, phosphoserine phosphatase, phosphomannomutase, P-type ATPases and many others. HAD hydrolases are found in all three kingdoms of life, and most genomes are predicted to contain multiple HAD-like proteins. Members possess a highly conserved alpha/beta core domain, and many also possess a small cap domain, the fold and function of which is variable. HAD hydrolases are sometimes referred to as belonging to the DDDD superfamily of phosphohydrolases. Pssm-ID: 319835 [Multi-domain] Cd Length: 207 Bit Score: 39.30 E-value: 1.25e-03
|
|||||||||
HAD_BsYqeG-like | cd16416 | Uncharacterized family of the the haloacid dehalogenase-like superfamily, similar to the ... |
218-263 | 1.31e-03 | |||||
Uncharacterized family of the the haloacid dehalogenase-like superfamily, similar to the uncharacterized protein Bacillus subtilis YqeG; The haloacid dehalogenase-like (HAD) hydrolases are a large superfamily of diverse enzymes that catalyze carbon or phosphoryl group transfer reactions on a range of substrates, using an active site aspartate in nucleophilic catalysis. Members include 2-L-haloalkanoic acid dehalogenase (C-Cl bond hydrolysis), azetidine hydrolase (C-N bond hydrolysis); phosphonoacetaldehyde hydrolase (C-P bond hydrolysis), phosphoserine phosphatase and phosphomannomutase (CO-P bond hydrolysis), P-type ATPases (PO-P bond hydrolysis) and many others. Members are found in all three kingdoms of life, and most genomes are predicted to contain multiple HAD-like proteins. Members possess a highly conserved alpha/beta core domain, and many also possess a small cap domain, the fold and function of which is variable. HAD hydrolases are sometimes referred to as belonging to the DDDD superfamily of phosphohydrolases. Pssm-ID: 319853 [Multi-domain] Cd Length: 108 Bit Score: 37.63 E-value: 1.31e-03
|
|||||||||
YqeG | COG2179 | Predicted phosphohydrolase YqeG, HAD superfamily [General function prediction only]; |
218-264 | 1.35e-03 | |||||
Predicted phosphohydrolase YqeG, HAD superfamily [General function prediction only]; Pssm-ID: 441782 Cd Length: 164 Bit Score: 38.57 E-value: 1.35e-03
|
|||||||||
HAD_BPGM-like | cd16423 | uncharacterized subfamily of beta-phosphoglucomutase-like family, similar to uncharacterized ... |
164-270 | 2.70e-03 | |||||
uncharacterized subfamily of beta-phosphoglucomutase-like family, similar to uncharacterized Bacillus subtilis YhcW; This subfamily includes the uncharacterized Bacillus subtilis YhcW. It belongs to the beta-phosphoglucomutase-like family whose other members include Lactococcus lactis beta-PGM, a mutase which catalyzes the interconversion of beta-D-glucose 1-phosphate (G1P) and D-glucose 6-phosphate (G6P), Saccharomyces cerevisiae phosphatases GPP1 and GPP2 that dephosphorylate DL-glycerol-3-phosphate and DOG1 and DOG2 that dephosphorylate 2-deoxyglucose-6-phosphate, and Escherichia coli 6-phosphogluconate phosphatase YieH. This family belongs to the haloacid dehalogenase-like (HAD) hydrolases, a large superfamily of diverse enzymes that catalyze carbon or phosphoryl group transfer reactions on a range of substrates, using an active site aspartate in nucleophilic catalysis. Members of this superfamily include 2-L-haloalkanoic acid dehalogenase, azetidine hydrolase, phosphonoacetaldehyde hydrolase, phosphoserine phosphatase, phosphomannomutase, P-type ATPases and many others. HAD hydrolases are found in all three kingdoms of life, and most genomes are predicted to contain multiple HAD-like proteins. Members possess a highly conserved alpha/beta core domain, and many also possess a small cap domain, the fold and function of which is variable. HAD hydrolases are sometimes referred to as belonging to the DDDD superfamily of phosphohydrolases. Pssm-ID: 319859 [Multi-domain] Cd Length: 169 Bit Score: 38.00 E-value: 2.70e-03
|
|||||||||
HAD_PGPase | cd07512 | haloacid dehalogenase-like superfamily phosphoglycolate phosphatase, similar to Rhodobacter ... |
27-105 | 3.11e-03 | |||||
haloacid dehalogenase-like superfamily phosphoglycolate phosphatase, similar to Rhodobacter sphaeroides CbbZ; Phosphoglycolate phosphatase catalyzes the dephosphorylation of phosphoglycolate; its activity requires divalent cations, especially Mg++. This family belongs to the haloacid dehalogenase-like (HAD) hydrolases, a large superfamily of diverse enzymes that catalyze carbon or phosphoryl group transfer reactions on a range of substrates, using an active site aspartate in nucleophilic catalysis. Members of this superfamily include 2-L-haloalkanoic acid dehalogenase, azetidine hydrolase, phosphonoacetaldehyde hydrolase, phosphoserine phosphatase, phosphomannomutase, P-type ATPases and many others. HAD hydrolases are found in all three kingdoms of life, and most genomes are predicted to contain multiple HAD-like proteins. Members possess a highly conserved alpha/beta core domain, and many also possess a small cap domain, the fold and function of which is variable. HAD hydrolases are sometimes referred to as belonging to the DDDD superfamily of phosphohydrolases. Pssm-ID: 319815 [Multi-domain] Cd Length: 214 Bit Score: 38.07 E-value: 3.11e-03
|
|||||||||
HAD-SF-IA-v3 | TIGR01509 | haloacid dehalogenase superfamily, subfamily IA, variant 3 with third motif having DD or ED; ... |
39-117 | 4.00e-03 | |||||
haloacid dehalogenase superfamily, subfamily IA, variant 3 with third motif having DD or ED; This model represents part of one structural subfamily of the Haloacid Dehalogenase (HAD) superfamily of aspartate-nucleophile hydrolases. The superfamily is defined by the presence of three short catalytic motifs. The subfamilies are defined based on the location and the observed or predicted fold of a so-called "capping domain", or the absence of such a domain. Subfamily I consists of sequences in which the capping domain is found in between the first and second catalytic motifs. Subfamily II consists of sequences in which the capping domain is found between the second and third motifs. Subfamily III sequences have no capping domain in either of these positions. The Subfamily IA and IB capping domains are predicted by PSI-PRED to consist of an alpha helical bundle. Subfamily I encompasses such a wide region of sequence space (the sequences are highly divergent) that representing it with a single model is impossible, resulting in an overly broad description which allows in many unrelated sequences. Subfamily IA and IB are separated based on an aparrent phylogenetic bifurcation. Subfamily IA is still too broad to model, but cannot be further subdivided into large chunks based on phylogenetic trees. Of the three motifs defining the HAD superfamily, the third has three variant forms: (1) hhhhsDxxx(x)D, (2) hhhhssxxx(x)D and (3) hhhhDDxxx(x)s where _s_ refers to a small amino acid and _h_ to a hydrophobic one. All three of these variants are found in subfamily IA. Individual models were made based on seeds exhibiting only one of the variants each. Variant 3 (this model) is found in the enzymes beta-phosphoglucomutase (TIGR01990) and deoxyglucose-6-phosphatase, while many other enzymes of subfamily IA exhibit this variant as well as variant 1 (TIGR01549). These three variant models were created with the knowledge that there will be overlap among them - this is by design and serves the purpose of eliminating the overlap with models of more distantly related HAD subfamilies caused by an overly broad single model. [Unknown function, Enzymes of unknown specificity] Pssm-ID: 273662 [Multi-domain] Cd Length: 178 Bit Score: 37.40 E-value: 4.00e-03
|
|||||||||
HAD_PPase | cd02616 | pyrophosphatase similar to Bacillus subtilis PpaX; This family includes Bacillus subtilis PpaX ... |
219-289 | 4.02e-03 | |||||
pyrophosphatase similar to Bacillus subtilis PpaX; This family includes Bacillus subtilis PpaX which hydrolyzes pyrophosphate formed during serine-46-phosphorylated HPr (P-Ser-HPr) dephosphorylation by the bifunctional enzyme HPr kinase/phosphorylase. This family belongs to the haloacid dehalogenase-like (HAD) hydrolases, a large superfamily of diverse enzymes that catalyze carbon or phosphoryl group transfer reactions on a range of substrates, using an active site aspartate in nucleophilic catalysis. Members of this superfamily include 2-L-haloalkanoic acid dehalogenase, azetidine hydrolase, phosphonoacetaldehyde hydrolase, phosphoserine phosphatase, phosphomannomutase, P-type ATPases and many others. HAD hydrolases are found in all three kingdoms of life, and most genomes are predicted to contain multiple HAD-like proteins. Members possess a highly conserved alpha/beta core domain, and many also possess a small cap domain, the fold and function of which is variable. HAD hydrolases are sometimes referred to as belonging to the DDDD superfamily of phosphohydrolases. Pssm-ID: 319797 [Multi-domain] Cd Length: 207 Bit Score: 37.64 E-value: 4.02e-03
|
|||||||||
HAD_dREG-2_like | cd16415 | uncharacterized family of the haloacid dehalogenase-like superfamily, similar to ... |
44-93 | 7.41e-03 | |||||
uncharacterized family of the haloacid dehalogenase-like superfamily, similar to uncharacterized Drosophila melanogaster rhythmically expressed gene 2 protein and human haloacid dehalogenase-like hydrolase domain-containing protein 3; The haloacid dehalogenase-like (HAD) hydrolases are a large superfamily of diverse enzymes that catalyze carbon or phosphoryl group transfer reactions on a range of substrates, using an active site aspartate in nucleophilic catalysis. Members include 2-L-haloalkanoic acid dehalogenase (C-Cl bond hydrolysis), azetidine hydrolase (C-N bond hydrolysis); phosphonoacetaldehyde hydrolase (C-P bond hydrolysis), phosphoserine phosphatase and phosphomannomutase (CO-P bond hydrolysis), P-type ATPases (PO-P bond hydrolysis) and many others. Members are found in all three kingdoms of life, and most genomes are predicted to contain multiple HAD-like proteins. Members possess a highly conserved alpha/beta core domain, and many also possess a small cap domain, the fold and function of which is variable. HAD hydrolases are sometimes referred to as belonging to the DDDD superfamily of phosphohydrolases. Pssm-ID: 319852 [Multi-domain] Cd Length: 128 Bit Score: 36.12 E-value: 7.41e-03
|
|||||||||
Blast search parameters | ||||
|