cytochrome P450, family 76, subfamily C, polypeptide 1 [Arabidopsis thaliana]
cytochrome P450 family protein( domain architecture ID 1750044)
cytochrome P450 family protein may catalyze the oxidation of organic species by molecular oxygen, by the oxidative addition of atomic oxygen into an unactivated C-H or C-C bond
List of domain hits
Name | Accession | Description | Interval | E-value | ||||
cytochrome_P450 super family | cl41757 | cytochrome P450 (CYP) superfamily; Cytochrome P450 (P450, CYP) is a large superfamily of ... |
66-240 | 3.16e-86 | ||||
cytochrome P450 (CYP) superfamily; Cytochrome P450 (P450, CYP) is a large superfamily of heme-containing proteins that catalyze a variety of oxidative reactions of a large number of structurally different endogenous and exogenous compounds in organisms from all major domains of life. CYPs with > 40% sequence identity are members of the same family. There are approximately 2250 CYP families: mammals, insects, plants, fungi, bacteria, and archaea have around 18, 208, 277, 805, 591, and 14 families, respectively. CYPs bind their diverse ligands in a buried, hydrophobic active site, which is accessed through a substrate access channel formed by two flexible helices and their connecting loop. Their monooxygenase activity relies on the reductive scission of molecular oxygen bound to the P450 heme iron, and the delivery of two electrons to the heme iron during the catalytic cycle. CYPs use a variety of redox partners, such as the eukaryotic diflavin enzyme NADPH-cytochrome P450 oxidoreductase and the bacterial/mitochondrial NAD(P)H-ferredoxin reductase and ferredoxin partners. Some CYPs are naturally linked to their redox partners and others have evolved to bypass requirements for redox partners, and instead react directly with hydrogen peroxide or NAD(P)H to facilitate oxidative or reductive catalysis. The actual alignment was detected with superfamily member cd11073: Pssm-ID: 477761 [Multi-domain] Cd Length: 435 Bit Score: 262.47 E-value: 3.16e-86
|
||||||||
cytochrome_P450 super family | cl41757 | cytochrome P450 (CYP) superfamily; Cytochrome P450 (P450, CYP) is a large superfamily of ... |
1-117 | 1.46e-07 | ||||
cytochrome P450 (CYP) superfamily; Cytochrome P450 (P450, CYP) is a large superfamily of heme-containing proteins that catalyze a variety of oxidative reactions of a large number of structurally different endogenous and exogenous compounds in organisms from all major domains of life. CYPs with > 40% sequence identity are members of the same family. There are approximately 2250 CYP families: mammals, insects, plants, fungi, bacteria, and archaea have around 18, 208, 277, 805, 591, and 14 families, respectively. CYPs bind their diverse ligands in a buried, hydrophobic active site, which is accessed through a substrate access channel formed by two flexible helices and their connecting loop. Their monooxygenase activity relies on the reductive scission of molecular oxygen bound to the P450 heme iron, and the delivery of two electrons to the heme iron during the catalytic cycle. CYPs use a variety of redox partners, such as the eukaryotic diflavin enzyme NADPH-cytochrome P450 oxidoreductase and the bacterial/mitochondrial NAD(P)H-ferredoxin reductase and ferredoxin partners. Some CYPs are naturally linked to their redox partners and others have evolved to bypass requirements for redox partners, and instead react directly with hydrogen peroxide or NAD(P)H to facilitate oxidative or reductive catalysis. The actual alignment was detected with superfamily member PLN02196: Pssm-ID: 477761 [Multi-domain] Cd Length: 463 Bit Score: 51.47 E-value: 1.46e-07
|
||||||||
Name | Accession | Description | Interval | E-value | ||||
CYP76-like | cd11073 | cytochrome P450 family 76 and similar cytochrome P450s; Characterized members of the plant ... |
66-240 | 3.16e-86 | ||||
cytochrome P450 family 76 and similar cytochrome P450s; Characterized members of the plant cytochrome P450 family 76 (CYP76 or Cyp76) include: Catharanthus roseus CYP76B6, a multifunctional enzyme catalyzing two sequential oxidation steps leading to the formation of 8-oxogeraniol from geraniol; the Brassicaceae-specific CYP76C subfamily of enzymes that are involved in the metabolism of monoterpenols and phenylurea herbicides; and two P450s from Lamiaceae, CYP76AH and CYP76AK, that are involved in the oxidation of abietane diterpenes. CYP76AH produces ferruginol and 11-hydroxyferruginol, while CYP76AK catalyzes oxidations at the C20 position. Also included in this group is Berberis stolonifera Cyp80, also called berbamunine synthase or (S)-N-methylcoclaurine oxidase [C-O phenol-coupling], that catalyzes the phenol oxidation of N-methylcoclaurine to form the bisbenzylisoquinoline alkaloid berbamunine. The CYP76-like family belongs to the large cytochrome P450 (P450, CYP) superfamily of heme-containing proteins that catalyze a variety of oxidative reactions of a large number of structurally different endogenous and exogenous compounds in organisms from all major domains of life. CYPs bind their diverse ligands in a buried, hydrophobic active site, which is accessed through a substrate access channel formed by two flexible helices and their connecting loop. Pssm-ID: 410696 [Multi-domain] Cd Length: 435 Bit Score: 262.47 E-value: 3.16e-86
|
||||||||
PLN02687 | PLN02687 | flavonoid 3'-monooxygenase |
11-240 | 8.73e-38 | ||||
flavonoid 3'-monooxygenase Pssm-ID: 215371 [Multi-domain] Cd Length: 517 Bit Score: 138.02 E-value: 8.73e-38
|
||||||||
p450 | pfam00067 | Cytochrome P450; Cytochrome P450s are haem-thiolate proteins involved in the oxidative ... |
39-237 | 7.78e-32 | ||||
Cytochrome P450; Cytochrome P450s are haem-thiolate proteins involved in the oxidative degradation of various compounds. They are particularly well known for their role in the degradation of environmental toxins and mutagens. They can be divided into 4 classes, according to the method by which electrons from NAD(P)H are delivered to the catalytic site. Sequence conservation is relatively low within the family - there are only 3 absolutely conserved residues - but their general topography and structural fold are highly conserved. The conserved core is composed of a coil termed the 'meander', a four-helix bundle, helices J and K, and two sets of beta-sheets. These constitute the haem-binding loop (with an absolutely conserved cysteine that serves as the 5th ligand for the haem iron), the proton-transfer groove and the absolutely conserved EXXR motif in helix K. While prokaryotic P450s are soluble proteins, most eukaryotic P450s are associated with microsomal membranes. their general enzymatic function is to catalyze regiospecific and stereospecific oxidation of non-activated hydrocarbons at physiological temperatures. Pssm-ID: 395020 [Multi-domain] Cd Length: 461 Bit Score: 120.85 E-value: 7.78e-32
|
||||||||
CypX | COG2124 | Cytochrome P450 [Secondary metabolites biosynthesis, transport and catabolism, Defense ... |
56-150 | 2.63e-08 | ||||
Cytochrome P450 [Secondary metabolites biosynthesis, transport and catabolism, Defense mechanisms]; Cytochrome P450 is part of the Pathway/BioSystem: Biotin biosynthesis Pssm-ID: 441727 [Multi-domain] Cd Length: 400 Bit Score: 53.74 E-value: 2.63e-08
|
||||||||
PLN02196 | PLN02196 | abscisic acid 8'-hydroxylase |
1-117 | 1.46e-07 | ||||
abscisic acid 8'-hydroxylase Pssm-ID: 177847 [Multi-domain] Cd Length: 463 Bit Score: 51.47 E-value: 1.46e-07
|
||||||||
Name | Accession | Description | Interval | E-value | |||||
CYP76-like | cd11073 | cytochrome P450 family 76 and similar cytochrome P450s; Characterized members of the plant ... |
66-240 | 3.16e-86 | |||||
cytochrome P450 family 76 and similar cytochrome P450s; Characterized members of the plant cytochrome P450 family 76 (CYP76 or Cyp76) include: Catharanthus roseus CYP76B6, a multifunctional enzyme catalyzing two sequential oxidation steps leading to the formation of 8-oxogeraniol from geraniol; the Brassicaceae-specific CYP76C subfamily of enzymes that are involved in the metabolism of monoterpenols and phenylurea herbicides; and two P450s from Lamiaceae, CYP76AH and CYP76AK, that are involved in the oxidation of abietane diterpenes. CYP76AH produces ferruginol and 11-hydroxyferruginol, while CYP76AK catalyzes oxidations at the C20 position. Also included in this group is Berberis stolonifera Cyp80, also called berbamunine synthase or (S)-N-methylcoclaurine oxidase [C-O phenol-coupling], that catalyzes the phenol oxidation of N-methylcoclaurine to form the bisbenzylisoquinoline alkaloid berbamunine. The CYP76-like family belongs to the large cytochrome P450 (P450, CYP) superfamily of heme-containing proteins that catalyze a variety of oxidative reactions of a large number of structurally different endogenous and exogenous compounds in organisms from all major domains of life. CYPs bind their diverse ligands in a buried, hydrophobic active site, which is accessed through a substrate access channel formed by two flexible helices and their connecting loop. Pssm-ID: 410696 [Multi-domain] Cd Length: 435 Bit Score: 262.47 E-value: 3.16e-86
|
|||||||||
CYP71_clan | cd20618 | Plant cytochrome P450s, clan CYP71; The number of cytochrome P450s (P450s, CYPs) in plants is ... |
70-240 | 7.34e-45 | |||||
Plant cytochrome P450s, clan CYP71; The number of cytochrome P450s (P450s, CYPs) in plants is considerably larger than in other taxa. In individual plant genomes, CYPs form the third largest family of plant genes; the two largest gene families code for F-box proteins and receptor-like kinases. CYPs have been classified into families and subfamilies based on homology and phylogenetic criteria; family membership is defined as 40% amino acid sequence identity or higher. However, there is a phenomenon called family creep, where a sequence (below 40% identity) is absorbed into a large family; this is seen in the plant CYP71 and CYP89 families. The plant CYPs have also been classified according to clans; land plants have 11 clans that form two groups: single-family clans (CYP51, CYP74, CYP97, CYP710, CYP711, CYP727, CYP746) and multi-family clans (CYP71, CYP72, CYP85, CYP86). The CYP71 clan has expanded dramatically and represents 50% of all plant CYPs; it includes several families including CYP71, CYP73, CYP76, CYP81, CYP82, CYP89, and CYP93, among others. It belongs to the large cytochrome P450 (P450, CYP) superfamily of heme-containing proteins that catalyze a variety of oxidative reactions of a large number of structurally different endogenous and exogenous compounds in organisms from all major domains of life. CYPs bind their diverse ligands in a buried, hydrophobic active site, which is accessed through a substrate access channel formed by two flexible helices and their connecting loop. Pssm-ID: 410711 [Multi-domain] Cd Length: 429 Bit Score: 155.40 E-value: 7.34e-45
|
|||||||||
PLN02687 | PLN02687 | flavonoid 3'-monooxygenase |
11-240 | 8.73e-38 | |||||
flavonoid 3'-monooxygenase Pssm-ID: 215371 [Multi-domain] Cd Length: 517 Bit Score: 138.02 E-value: 8.73e-38
|
|||||||||
CYP71-like | cd11072 | cytochrome P450 family 71 and similar cytochrome P450s; The group includes plant cytochrome ... |
68-240 | 3.43e-35 | |||||
cytochrome P450 family 71 and similar cytochrome P450s; The group includes plant cytochrome P450 family 71 (CYP71) proteins, as well as some CYPs designated as belonging to a different family including CYP99A1, CYP83B1, and CYP84A1, among others. Characterized CYP71 enzymes include: parsnip (Pastinaca sativa) CYP71AJ4, also called angelicin synthase, that converts (+)-columbianetin to angelicin, an angular furanocumarin; periwinkle (Catharanthus roseus) CYP71D351, also called tabersonine 16-hydroxylase 2, that is involved in the foliar biosynthesis of vindoline; sorghum CYP71E1, also called 4-hydroxyphenylacetaldehyde oxime monooxygenase, that catalyzes the conversion of p-hydroxyphenylacetaldoxime to p-hydroxymandelonitrile; as well as maize CYP71C1, CYP71C2, and CYP71C4, which are monooxygenases catalyzing the oxidation of 3-hydroxyindolin-2-one, indolin-2-one, and indole, respectively. CYPs within a single CYP71 subfamily, such as the C subfamily, usually metabolize similar/related compounds. The CYP71-like family belongs to the large cytochrome P450 (P450, CYP) superfamily of heme-containing proteins that catalyze a variety of oxidative reactions of a large number of structurally different endogenous and exogenous compounds in organisms from all major domains of life. CYPs bind their diverse ligands in a buried, hydrophobic active site, which is accessed through a substrate access channel formed by two flexible helices and their connecting loop. Pssm-ID: 410695 [Multi-domain] Cd Length: 428 Bit Score: 129.50 E-value: 3.43e-35
|
|||||||||
PLN00110 | PLN00110 | flavonoid 3',5'-hydroxylase (F3'5'H); Provisional |
31-240 | 3.79e-34 | |||||
flavonoid 3',5'-hydroxylase (F3'5'H); Provisional Pssm-ID: 177725 Cd Length: 504 Bit Score: 128.05 E-value: 3.79e-34
|
|||||||||
p450 | pfam00067 | Cytochrome P450; Cytochrome P450s are haem-thiolate proteins involved in the oxidative ... |
39-237 | 7.78e-32 | |||||
Cytochrome P450; Cytochrome P450s are haem-thiolate proteins involved in the oxidative degradation of various compounds. They are particularly well known for their role in the degradation of environmental toxins and mutagens. They can be divided into 4 classes, according to the method by which electrons from NAD(P)H are delivered to the catalytic site. Sequence conservation is relatively low within the family - there are only 3 absolutely conserved residues - but their general topography and structural fold are highly conserved. The conserved core is composed of a coil termed the 'meander', a four-helix bundle, helices J and K, and two sets of beta-sheets. These constitute the haem-binding loop (with an absolutely conserved cysteine that serves as the 5th ligand for the haem iron), the proton-transfer groove and the absolutely conserved EXXR motif in helix K. While prokaryotic P450s are soluble proteins, most eukaryotic P450s are associated with microsomal membranes. their general enzymatic function is to catalyze regiospecific and stereospecific oxidation of non-activated hydrocarbons at physiological temperatures. Pssm-ID: 395020 [Multi-domain] Cd Length: 461 Bit Score: 120.85 E-value: 7.78e-32
|
|||||||||
PLN03112 | PLN03112 | cytochrome P450 family protein; Provisional |
10-240 | 8.08e-32 | |||||
cytochrome P450 family protein; Provisional Pssm-ID: 215583 [Multi-domain] Cd Length: 514 Bit Score: 121.47 E-value: 8.08e-32
|
|||||||||
PLN02183 | PLN02183 | ferulate 5-hydroxylase |
3-241 | 1.14e-27 | |||||
ferulate 5-hydroxylase Pssm-ID: 165828 [Multi-domain] Cd Length: 516 Bit Score: 109.94 E-value: 1.14e-27
|
|||||||||
CYP75 | cd20657 | cytochrome P450 family 75; The cytochrome P450 family 75 (CYP75) play important roles in the ... |
70-240 | 3.34e-27 | |||||
cytochrome P450 family 75; The cytochrome P450 family 75 (CYP75) play important roles in the biosynthesis of colored class of flavonoids, anthocyanins, which confer a diverse range of colors to flowers from orange to red to violet and blue. The number of hydroxyl groups on the B-ring of anthocyanidins, the chromophores and precursors of anthocyanins, impact the anthocyanin color - the more the bluer. The hydroxylation pattern is determined by CYP75 proteins: flavonoid 3'-hydroxylase (F3'H, EC 1.14.14.82) and and flavonoid 3',5'-hydroxylase (F3'5'H, EC 1.14.14.81), which belong to CYP75B and CYP75A subfamilies, respectively. Both enzymes have broad substrate specificity and catalyze the hydroxylation of flavanones, dihydroflavonols, flavonols and flavones. F3'H catalyzes the 3'-hydroxylation of the flavonoid B-ring to the 3',4'-hydroxylated state. F3'5'H catalysis leads to trihydroxylated delphinidin-based anthocyanins that tend to have violet/blue colours. CYP75 belongs to the large cytochrome P450 (P450, CYP) superfamily of heme-containing proteins that catalyze a variety of oxidative reactions of a large number of structurally different endogenous and exogenous compounds in organisms from all major domains of life. CYPs bind their diverse ligands in a buried, hydrophobic active site, which is accessed through a substrate access channel formed by two flexible helices and their connecting loop. Pssm-ID: 410750 [Multi-domain] Cd Length: 438 Bit Score: 107.89 E-value: 3.34e-27
|
|||||||||
PLN03234 | PLN03234 | cytochrome P450 83B1; Provisional |
3-238 | 3.34e-25 | |||||
cytochrome P450 83B1; Provisional Pssm-ID: 178773 [Multi-domain] Cd Length: 499 Bit Score: 103.23 E-value: 3.34e-25
|
|||||||||
PLN02966 | PLN02966 | cytochrome P450 83A1 |
17-238 | 7.02e-24 | |||||
cytochrome P450 83A1 Pssm-ID: 178550 [Multi-domain] Cd Length: 502 Bit Score: 99.44 E-value: 7.02e-24
|
|||||||||
CYP82 | cd20654 | cytochrome P450 family 82; Cytochrome P450 family 82 (CYP82 or Cyp82) genes specifically ... |
70-240 | 4.88e-23 | |||||
cytochrome P450 family 82; Cytochrome P450 family 82 (CYP82 or Cyp82) genes specifically reside in dicots and are usually induced by distinct environmental stresses. Characterized members include: Glycine max CYP82A3 that is induced by infection, salinity and drought stresses, and is involved in the jasmonic acid and ethylene signaling pathway, enhancing plant resistance; Arabidopsis thaliana CYP82G1 that catalyzes the breakdown of the C(20)-precursor (E,E)-geranyllinalool to the insect-induced C(16)-homoterpene (E,E)-4,8,12-trimethyltrideca-1,3,7,11-tetraene (TMTT); and Papaver somniferum CYP82N4, also called methyltetrahydroprotoberberine 14-monooxygenase, and CYP82Y1, also called N-methylcanadine 1-hydroxylase. CYP82N4 catalyzes the conversion of N-methylated protoberberine alkaloids N-methylstylopine and N-methylcanadine into protopine and allocryptopine, respectively, in the biosynthesis of isoquinoline alkaloid sanguinarine. CYP82Y1 catalyzes the 1-hydroxylation of N-methylcanadine to 1-hydroxy-N-methylcanadine, the first committed step in the formation of noscapine. CYP82 belongs to the large cytochrome P450 (P450, CYP) superfamily of heme-containing proteins that catalyze a variety of oxidative reactions of a large number of structurally different endogenous and exogenous compounds in organisms from all major domains of life. CYPs bind their diverse ligands in a buried, hydrophobic active site, which is accessed through a substrate access channel formed by two flexible helices and their connecting loop. Pssm-ID: 410747 [Multi-domain] Cd Length: 447 Bit Score: 96.53 E-value: 4.88e-23
|
|||||||||
CYP93 | cd20655 | cytochrome P450 family 93; The cytochrome P450 family 93 (CYP93) is specifically found in ... |
70-240 | 5.84e-23 | |||||
cytochrome P450 family 93; The cytochrome P450 family 93 (CYP93) is specifically found in flowering plants and could be classified into ten subfamilies, CYP93A-K. CYP93A appears to be the ancestor that was derived in flowering plants, and the remaining subfamiles show lineage-specific distribution: CYP93B and CYP93C are present in dicots; CYP93F is distributed only in Poaceae; CYP93G and CYP93J are monocot-specific; CYP93E is unique to legumes; CYP93H and CYP93K are only found in Aquilegia coerulea; and CYP93D is Brassicaceae-specific. Members of this family include: Glycyrrhiza echinata CYP93B1, also called licodione synthase (EC 1.14.14.140), that catalyzes the formation of licodione and 2-hydroxynaringenin from (2S)-liquiritigenin and (2S)-naringenin, respectively; and Glycine max CYP93A1, also called 3,9-dihydroxypterocarpan 6A-monooxygenase (EC 1.14.14.93), that is involved in the biosynthesis of the phytoalexin glyceollin. CYP93 belongs to the large cytochrome P450 (P450, CYP) superfamily of heme-containing proteins that catalyze a variety of oxidative reactions of a large number of structurally different endogenous and exogenous compounds in organisms from all major domains of life. CYPs bind their diverse ligands in a buried, hydrophobic active site, which is accessed through a substrate access channel formed by two flexible helices and their connecting loop. Pssm-ID: 410748 [Multi-domain] Cd Length: 433 Bit Score: 96.13 E-value: 5.84e-23
|
|||||||||
CYP81 | cd20653 | cytochrome P450 family 81; The only characterized member of the cytochrome P450 family 81 ... |
70-240 | 4.98e-20 | |||||
cytochrome P450 family 81; The only characterized member of the cytochrome P450 family 81 (CYP81 or Cyp81) is CYP81E1, also called isoflavone 2'-hydroxylase, that catalyzes the hydroxylation of isoflavones, daidzein, and formononetin, to yield 2'-hydroxyisoflavones, 2'-hydroxydaidzein, and 2'-hydroxyformononetin, respectively. It is involved in the biosynthesis of isoflavonoid-derived antimicrobial compounds of legumes. CYP81 belongs to the large cytochrome P450 (P450, CYP) superfamily of heme-containing proteins that catalyze a variety of oxidative reactions of a large number of structurally different endogenous and exogenous compounds in organisms from all major domains of life. CYPs bind their diverse ligands in a buried, hydrophobic active site, which is accessed through a substrate access channel formed by two flexible helices and their connecting loop. Pssm-ID: 410746 [Multi-domain] Cd Length: 420 Bit Score: 87.66 E-value: 4.98e-20
|
|||||||||
PLN02655 | PLN02655 | ent-kaurene oxidase |
40-237 | 2.66e-19 | |||||
ent-kaurene oxidase Pssm-ID: 215354 [Multi-domain] Cd Length: 466 Bit Score: 85.95 E-value: 2.66e-19
|
|||||||||
CYP1_2-like | cd20617 | cytochrome P450 families 1 and 2, and similar cytochrome P450s; This model includes cytochrome ... |
70-237 | 1.27e-18 | |||||
cytochrome P450 families 1 and 2, and similar cytochrome P450s; This model includes cytochrome P450 families 1 (CYP1) and 2 (CYP2), CYP17A1, and CYP21 in vertebrates, as well as insect and crustacean CYPs similar to CYP15A1 and CYP306A1. CYP1 and CYP2 enzymes are involved in the metabolism of endogenous and exogenous compounds such as hormones, xenobiotics, and drugs. CYP17A1 catalyzes the conversion of pregnenolone and progesterone to their 17-alpha-hydroxylated products, while CYP21 catalyzes the 21-hydroxylation of steroids such as progesterone and 17-alpha-hydroxyprogesterone (17-alpha-OH-progesterone) to form 11-deoxycorticosterone and 11-deoxycortisol, respectively. Members of this group belongs to the large cytochrome P450 (P450, CYP) superfamily of heme-containing proteins that catalyze a variety of oxidative reactions of a large number of structurally different endogenous and exogenous compounds in organisms from all major domains of life. CYPs bind their diverse ligands in a buried, hydrophobic active site, which is accessed through a substrate access channel formed by two flexible helices and their connecting loop. Pssm-ID: 410710 [Multi-domain] Cd Length: 419 Bit Score: 83.80 E-value: 1.27e-18
|
|||||||||
PLN02394 | PLN02394 | trans-cinnamate 4-monooxygenase |
10-137 | 1.39e-17 | |||||
trans-cinnamate 4-monooxygenase Pssm-ID: 215221 [Multi-domain] Cd Length: 503 Bit Score: 81.32 E-value: 1.39e-17
|
|||||||||
CYP98 | cd20656 | cytochrome P450 family 98; Cytochrome P450 family 98 (CYP98) monooxygenases catalyze the ... |
69-237 | 9.13e-17 | |||||
cytochrome P450 family 98; Cytochrome P450 family 98 (CYP98) monooxygenases catalyze the meta-hydroxylation step in the phenylpropanoid biosynthetic pathway. CYP98A3, also called p-coumaroylshikimate/quinate 3'-hydroxylase, catalyzes 3'-hydroxylation of p-coumaric esters of shikimic/quinic acids to form lignin monomers. CYP98A8, also called p-coumarate 3-hydroxylase, acts redundantly with CYP98A9 as tricoumaroylspermidine meta-hydroxylase. CYP98 belongs to the large cytochrome P450 (P450, CYP) superfamily of heme-containing proteins that catalyze a variety of oxidative reactions of a large number of structurally different endogenous and exogenous compounds in organisms from all major domains of life. CYPs bind their diverse ligands in a buried, hydrophobic active site, which is accessed through a substrate access channel formed by two flexible helices and their connecting loop. Pssm-ID: 410749 [Multi-domain] Cd Length: 432 Bit Score: 78.68 E-value: 9.13e-17
|
|||||||||
CYP77_89 | cd11075 | cytochrome P450 families 77 and 89, and similar cytochrome P450s; This group includes ... |
68-235 | 1.12e-15 | |||||
cytochrome P450 families 77 and 89, and similar cytochrome P450s; This group includes cytochrome P450 families 73 (CYP77) and 89 (CYP89), which are sister families that share a common ancestor. CYP89, present only in angiosperms, is younger than CYP77, which is already found in lycopods; thus, CYP89 may have evolved from CYP77 after duplication and divergence. Also included in this group is ent-kaurene oxidase, called CYP701A3 in Arabidopsis thaliana and CYP701B1 in Physcomitrella patens, that catalyzes the oxidation of ent-kaurene to form ent-kaurenoic acid. CYP701A3 is sensitive to inhibitor uniconazole-P while CYP701B1 is not. This CYP77/89 group belongs to the large cytochrome P450 (P450, CYP) superfamily of heme-containing proteins that catalyze a variety of oxidative reactions of a large number of structurally different endogenous and exogenous compounds in organisms from all major domains of life. CYPs bind their diverse ligands in a buried, hydrophobic active site, which is accessed through a substrate access channel formed by two flexible helices and their connecting loop. Pssm-ID: 410698 [Multi-domain] Cd Length: 433 Bit Score: 75.36 E-value: 1.12e-15
|
|||||||||
PLN00168 | PLN00168 | Cytochrome P450; Provisional |
7-163 | 9.02e-15 | |||||
Cytochrome P450; Provisional Pssm-ID: 215086 [Multi-domain] Cd Length: 519 Bit Score: 73.06 E-value: 9.02e-15
|
|||||||||
CYP79 | cd20658 | cytochrome P450 family 79; Cytochrome P450 family 79 (CYP79) enzymes catalyze the first ... |
76-240 | 2.17e-13 | |||||
cytochrome P450 family 79; Cytochrome P450 family 79 (CYP79) enzymes catalyze the first committed step in the biosynthesis of the core structure of glucosinolates, the conversion of amino acids to the corresponding aldoximes. Glucosinolates are amino acid-derived natural plant products that function in the defense against herbivores and microorganisms. Arabidopsis thaliana contains seven family members: CYP79B2 and CYP79B3, which metabolize trytophan; CYP79F1 and CYP79F2, which metabolize chain-elongated methionine derivatives with respectively 1-6 or 5-6 additional methylene groups in the side chain; CYP79A2 that metabolizes phenylalanine; and CYP79C1 and CYP79C2, with unknown function. CYP79 belongs to the large cytochrome P450 (P450, CYP) superfamily of heme-containing proteins that catalyze a variety of oxidative reactions of a large number of structurally different endogenous and exogenous compounds in organisms from all major domains of life. CYPs bind their diverse ligands in a buried, hydrophobic active site, which is accessed through a substrate access channel formed by two flexible helices and their connecting loop. Pssm-ID: 410751 [Multi-domain] Cd Length: 444 Bit Score: 68.93 E-value: 2.17e-13
|
|||||||||
CYP64-like | cd11065 | cytochrome P450 family 64-like fungal cytochrome P450s; This group includes Aspergillus flavus ... |
69-237 | 6.15e-13 | |||||
cytochrome P450 family 64-like fungal cytochrome P450s; This group includes Aspergillus flavus cytochrome P450 64 (CYP64), also called O-methylsterigmatocystin (OMST) oxidoreductase or aflatoxin B synthase or aflatoxin biosynthesis protein Q, and similar fungal cytochrome P450s. CYP64 converts OMST to aflatoxin B1 and converts dihydro-O-methylsterigmatocystin (DHOMST) to aflatoxin B2 in the aflatoxin biosynthesis pathway. The CYP64-like subfamily belongs to the large cytochrome P450 (P450, CYP) superfamily of heme-containing proteins that catalyze a variety of oxidative reactions of a large number of structurally different endogenous and exogenous compounds in organisms from all major domains of life. CYPs bind their diverse ligands in a buried, hydrophobic active site, which is accessed through a substrate access channel formed by two flexible helices and their connecting loop. Pssm-ID: 410688 [Multi-domain] Cd Length: 425 Bit Score: 67.22 E-value: 6.15e-13
|
|||||||||
CYP78 | cd11076 | cytochrome P450 family 78; Characterized cytochrome P450 family 78 (CYP78 or Cyp78) proteins ... |
71-240 | 2.00e-12 | |||||
cytochrome P450 family 78; Characterized cytochrome P450 family 78 (CYP78 or Cyp78) proteins include: CYP78A5, which is expressed in leaf, flora and embryo, and has been reported to stimulate plant organ growth in Arabidopsis thaliana and to regulate plant architecture, ripening time, and fruit mass in tomato; Glycine max CYP78A10 that functions in regulating seed size/weight and pod number; and Physcomitrella patens CYP78A27 or CYP78A28, which together, are essential in bud formation. The CYP78 family belongs to the large cytochrome P450 (P450, CYP) superfamily of heme-containing proteins that catalyze a variety of oxidative reactions of a large number of structurally different endogenous and exogenous compounds in organisms from all major domains of life. CYPs bind their diverse ligands in a buried, hydrophobic active site, which is accessed through a substrate access channel formed by two flexible helices and their connecting loop. Pssm-ID: 410699 [Multi-domain] Cd Length: 426 Bit Score: 65.81 E-value: 2.00e-12
|
|||||||||
PLN03018 | PLN03018 | homomethionine N-hydroxylase |
7-195 | 3.96e-12 | |||||
homomethionine N-hydroxylase Pssm-ID: 178592 [Multi-domain] Cd Length: 534 Bit Score: 65.03 E-value: 3.96e-12
|
|||||||||
CYP17A1-like | cd11027 | cytochrome P450 family 17, subfamily A, polypeptide 1, and similar cytochrome P450s; This ... |
69-237 | 4.93e-12 | |||||
cytochrome P450 family 17, subfamily A, polypeptide 1, and similar cytochrome P450s; This subfamily contains cytochrome P450 17A1 (CYP17A1 or Cyp17a1), cytochrome P450 21 (CYP21 or Cyp21) and similar proteins. CYP17A1, also called cytochrome P450c17, steroid 17-alpha-hydroxylase (EC 1.14.14.19)/17,20 lyase (EC 1.14.14.32), or 17-alpha-hydroxyprogesterone aldolase, catalyzes the conversion of pregnenolone and progesterone to their 17-alpha-hydroxylated products and subsequently to dehydroepiandrosterone (DHEA) and androstenedione; it catalyzes both the 17-alpha-hydroxylation and the 17,20-lyase reaction. This subfamily also contains CYP21, also called steroid 21-hydroxylase (EC 1.14.14.16) or cytochrome P-450c21 or CYP21A2, catalyzes the 21-hydroxylation of steroids and is required for the adrenal synthesis of mineralocorticoids and glucocorticoids. The CYP17A1-like subfamily belongs to the large cytochrome P450 (P450, CYP) superfamily of heme-containing proteins that catalyze a variety of oxidative reactions of a large number of structurally different endogenous and exogenous compounds in organisms from all major domains of life. CYPs bind their diverse ligands in a buried, hydrophobic active site, which is accessed through a substrate access channel formed by two flexible helices and their connecting loop. Pssm-ID: 410653 [Multi-domain] Cd Length: 428 Bit Score: 64.54 E-value: 4.93e-12
|
|||||||||
PTZ00404 | PTZ00404 | cytochrome P450; Provisional |
40-240 | 2.25e-10 | |||||
cytochrome P450; Provisional Pssm-ID: 173595 [Multi-domain] Cd Length: 482 Bit Score: 59.74 E-value: 2.25e-10
|
|||||||||
CYP2 | cd11026 | cytochrome P450 family 2; The cytochrome P450 family 2 (CYP2 or Cyp2) is one of the largest, ... |
69-201 | 2.68e-10 | |||||
cytochrome P450 family 2; The cytochrome P450 family 2 (CYP2 or Cyp2) is one of the largest, most diverse CYP families in vertebrates. It includes many subfamilies across vertebrate species but not all subfamilies are found in multiple vertebrate taxonomic classes. The CYP2U and CYP2R genes are present in the vertebrate ancestor and are shared across all vertebrate classes, whereas some subfamilies are lineage-specific, such as CYP2B and CYP2S in mammals. CYP2 enzymes play important roles in drug metabolism. The CYP2 family belongs to the large cytochrome P450 (P450, CYP) superfamily of heme-containing proteins that catalyze a variety of oxidative reactions of a large number of structurally different endogenous and exogenous compounds in organisms from all major domains of life. CYPs bind their diverse ligands in a buried, hydrophobic active site, which is accessed through a substrate access channel formed by two flexible helices and their connecting loop. Pssm-ID: 410652 [Multi-domain] Cd Length: 425 Bit Score: 59.50 E-value: 2.68e-10
|
|||||||||
PLN02971 | PLN02971 | tryptophan N-hydroxylase |
7-239 | 2.34e-09 | |||||
tryptophan N-hydroxylase Pssm-ID: 166612 [Multi-domain] Cd Length: 543 Bit Score: 56.97 E-value: 2.34e-09
|
|||||||||
CYP17A1 | cd20673 | cytochrome P450 family 17, subfamily A, polypeptide 1; Cytochrome P450 17A1 (CYP17A1 or ... |
69-237 | 1.60e-08 | |||||
cytochrome P450 family 17, subfamily A, polypeptide 1; Cytochrome P450 17A1 (CYP17A1 or Cyp17a1), also called cytochrome P450c17, steroid 17-alpha-hydroxylase (EC 1.14.14.19)/17,20 lyase (EC 1.14.14.32), or 17-alpha-hydroxyprogesterone aldolase, catalyzes the conversion of pregnenolone and progesterone to their 17-alpha-hydroxylated products and subsequently to dehydroepiandrosterone (DHEA) and androstenedione. It is a dual enzyme that catalyzes both the 17-alpha-hydroxylation and the 17,20-lyase reactions. Severe mutations on the enzyme cause combined 17-hydroxylase/17,20-lyase deficiency (17OHD); patients with 17OHD synthesize 11-deoxycorticosterone (DOC) which causes hypertension and hypokalemia. Loss of 17,20-lyase activity precludes sex steroid synthesis and leads to sexual infantilism. Included in this group is a second 17A P450 from teleost fish, CYP17A2, that is more efficient in pregnenolone 17-alpha-hydroxylation than CYP17A1, but does not catalyze the lyase reaction. CYP17A1 belongs to the large cytochrome P450 (P450, CYP) superfamily of heme-containing proteins that catalyze a variety of oxidative reactions of a large number of structurally different endogenous and exogenous compounds in organisms from all major domains of life. CYPs bind their diverse ligands in a buried, hydrophobic active site, which is accessed through a substrate access channel formed by two flexible helices and their connecting loop. Pssm-ID: 410766 [Multi-domain] Cd Length: 432 Bit Score: 54.25 E-value: 1.60e-08
|
|||||||||
cytochrome_P450 | cd00302 | cytochrome P450 (CYP) superfamily; Cytochrome P450 (P450, CYP) is a large superfamily of ... |
70-200 | 1.96e-08 | |||||
cytochrome P450 (CYP) superfamily; Cytochrome P450 (P450, CYP) is a large superfamily of heme-containing proteins that catalyze a variety of oxidative reactions of a large number of structurally different endogenous and exogenous compounds in organisms from all major domains of life. CYPs with > 40% sequence identity are members of the same family. There are approximately 2250 CYP families: mammals, insects, plants, fungi, bacteria, and archaea have around 18, 208, 277, 805, 591, and 14 families, respectively. CYPs bind their diverse ligands in a buried, hydrophobic active site, which is accessed through a substrate access channel formed by two flexible helices and their connecting loop. Their monooxygenase activity relies on the reductive scission of molecular oxygen bound to the P450 heme iron, and the delivery of two electrons to the heme iron during the catalytic cycle. CYPs use a variety of redox partners, such as the eukaryotic diflavin enzyme NADPH-cytochrome P450 oxidoreductase and the bacterial/mitochondrial NAD(P)H-ferredoxin reductase and ferredoxin partners. Some CYPs are naturally linked to their redox partners and others have evolved to bypass requirements for redox partners, and instead react directly with hydrogen peroxide or NAD(P)H to facilitate oxidative or reductive catalysis. Pssm-ID: 410651 [Multi-domain] Cd Length: 391 Bit Score: 54.06 E-value: 1.96e-08
|
|||||||||
CypX | COG2124 | Cytochrome P450 [Secondary metabolites biosynthesis, transport and catabolism, Defense ... |
56-150 | 2.63e-08 | |||||
Cytochrome P450 [Secondary metabolites biosynthesis, transport and catabolism, Defense mechanisms]; Cytochrome P450 is part of the Pathway/BioSystem: Biotin biosynthesis Pssm-ID: 441727 [Multi-domain] Cd Length: 400 Bit Score: 53.74 E-value: 2.63e-08
|
|||||||||
PLN02196 | PLN02196 | abscisic acid 8'-hydroxylase |
1-117 | 1.46e-07 | |||||
abscisic acid 8'-hydroxylase Pssm-ID: 177847 [Multi-domain] Cd Length: 463 Bit Score: 51.47 E-value: 1.46e-07
|
|||||||||
CYP2W1 | cd20671 | cytochrome P450 family 2, subfamily W, polypeptide 1; Cytochrome P450 2W1 (CYP2W1) is ... |
69-171 | 1.13e-06 | |||||
cytochrome P450 family 2, subfamily W, polypeptide 1; Cytochrome P450 2W1 (CYP2W1) is expressed during development of the gastrointestinal tract, is silenced after birth in the intestine and colon by epigenetic modifications, but is activated following demethylation in colorectal cancer (CRC). Its expression levels in CRC correlate with the degree of malignancy, are higher in metastases and are predictive of survival. Thus, it is an attractive tumor-specific diagnostic and therapeutic target. CYP2W1 belongs to family 2 of the large cytochrome P450 (P450, CYP) superfamily of heme-containing proteins that catalyze a variety of oxidative reactions of a large number of structurally different endogenous and exogenous compounds in organisms from all major domains of life. CYPs bind their diverse ligands in a buried, hydrophobic active site, which is accessed through a substrate access channel formed by two flexible helices and their connecting loop. Pssm-ID: 410764 [Multi-domain] Cd Length: 422 Bit Score: 48.64 E-value: 1.13e-06
|
|||||||||
CYP2K | cd20664 | cytochrome P450 family 2, subfamily K; Members of CYP2K are present in fish, birds, and ... |
69-236 | 2.40e-06 | |||||
cytochrome P450 family 2, subfamily K; Members of CYP2K are present in fish, birds, and amphibians. CYP2K6 from zebrafish has been shown to catalyze the conversion of aflatoxin B1 (AFB1) to its cytotoxic derivative AFB1 exo-8,9-epoxide, while its ortholog in rainbow trout CYP2K1 is also capable of oxidizing lauric acid. In birds, CYP2K is one of the largest CYP2 subfamilies. The CYP2K subfamily belongs to the large cytochrome P450 (P450, CYP) superfamily of heme-containing proteins that catalyze a variety of oxidative reactions of a large number of structurally different endogenous and exogenous compounds in organisms from all major domains of life. CYPs bind their diverse ligands in a buried, hydrophobic active site, which is accessed through a substrate access channel formed by two flexible helices and their connecting loop. Pssm-ID: 410757 [Multi-domain] Cd Length: 424 Bit Score: 47.88 E-value: 2.40e-06
|
|||||||||
CYP306A1-like | cd20652 | cytochrome P450 306A1 and similar cytochrome P450s; This subfamily is composed of insect and ... |
70-237 | 2.69e-06 | |||||
cytochrome P450 306A1 and similar cytochrome P450s; This subfamily is composed of insect and crustacean cytochrome P450s including insect cytochrome P450 306A1 (CYP306A1 or Cyp306a1) and CYP18A1. CYP306A1 functions as a carbon 25-hydroxylase and has an essential role in ecdysteroid biosynthesis during insect development. CYP18A1 is a 26-hydroxylase and plays a key role in steroid hormone inactivation. The CYP306A1-like subfamily belongs to the large cytochrome P450 (P450, CYP) superfamily of heme-containing proteins that catalyze a variety of oxidative reactions of a large number of structurally different endogenous and exogenous compounds in organisms from all major domains of life. CYPs bind their diverse ligands in a buried, hydrophobic active site, which is accessed through a substrate access channel formed by two flexible helices and their connecting loop. Pssm-ID: 410745 [Multi-domain] Cd Length: 432 Bit Score: 47.79 E-value: 2.69e-06
|
|||||||||
CYP24A1-like | cd11054 | cytochrome P450 family 24 subfamily A, polypeptide 1 and similar cytochrome P450s; This family ... |
67-232 | 3.11e-06 | |||||
cytochrome P450 family 24 subfamily A, polypeptide 1 and similar cytochrome P450s; This family is composed of vertebrate cytochrome P450 24A1 (CYP24A1) and similar proteins including several Drosophila proteins such as CYP315A1 (also called protein shadow) and CYP314A1 (also called ecdysone 20-monooxygenase), and vertebrate CYP11 and CYP27 subfamilies. Both CYP314A1 and CYP315A1, which has ecdysteroid C2-hydroxylase activity, are involved in the metabolism of insect hormones. CYP24A1 and CYP27B1 have roles in calcium homeostasis and metabolism, and the regulation of vitamin D. CYP24A1 catabolizes calcitriol (1,25(OH)2D), the physiologically active vitamin D hormone, by catalyzing its hydroxylation, while CYP27B1 is a calcidiol 1-monooxygenase that coverts 25-hydroxyvitamin D3 to calcitriol. The CYP24A1-like family belongs to the large cytochrome P450 (P450, CYP) superfamily of heme-containing proteins that catalyze a variety of oxidative reactions of a large number of structurally different endogenous and exogenous compounds in organisms from all major domains of life. CYPs bind their diverse ligands in a buried, hydrophobic active site, which is accessed through a substrate access channel formed by two flexible helices and their connecting loop. Pssm-ID: 410677 [Multi-domain] Cd Length: 426 Bit Score: 47.52 E-value: 3.11e-06
|
|||||||||
CYP1 | cd11028 | cytochrome P450 family 1; The cytochrome P450 family 1 (CYP1 or Cyp1) is composed of three ... |
69-237 | 9.29e-06 | |||||
cytochrome P450 family 1; The cytochrome P450 family 1 (CYP1 or Cyp1) is composed of three functional human members: CYP1A1, CYP1A2 and CYP1B1, which are regulated by the aryl hydrocarbon receptor (AhR), ligand-activated transcriptional factor that dimerizes with AhR nuclear translocator (ARNT). CYP1 enzymes are involved in the metabolism of endogenous hormones, xenobiotics, and drugs. Included in the CYP1 family is CYP1D1 (cytochrome P450 family 1, subfamily D, polypeptide 1), which is not expressed in humans as its gene is pseudogenized due to five nonsense mutations in the putative coding region, but is functional in in other organisms including cynomolgus monkey. Zebrafish CYP1D1 expression is not regulated by AhR. The CYP1 family belongs to the large cytochrome P450 (P450, CYP) superfamily of heme-containing proteins that catalyze a variety of oxidative reactions of a large number of structurally different endogenous and exogenous compounds in organisms from all major domains of life. CYPs bind their diverse ligands in a buried, hydrophobic active site, which is accessed through a substrate access channel formed by two flexible helices and their connecting loop. Pssm-ID: 410654 [Multi-domain] Cd Length: 430 Bit Score: 46.14 E-value: 9.29e-06
|
|||||||||
CYP73 | cd11074 | cytochrome P450 family 73; Cytochrome P450 family 73 (CYP73 pr Cyp73), also called ... |
67-137 | 1.03e-05 | |||||
cytochrome P450 family 73; Cytochrome P450 family 73 (CYP73 pr Cyp73), also called trans-cinnamate 4-monooxygenase (EC 1.14.14.91) or cinnamic acid 4-hydroxylase, catalyzes the regiospecific 4-hydroxylation of cinnamic acid to form precursors of lignin and many other phenolic compounds. It controls the general phenylpropanoid pathway, and controls carbon flux to pigments essential for pollination or UV protection. CYP73 belongs to the large cytochrome P450 (P450, CYP) superfamily of heme-containing proteins that catalyze a variety of oxidative reactions of a large number of structurally different endogenous and exogenous compounds in organisms from all major domains of life. CYPs bind their diverse ligands in a buried, hydrophobic active site, which is accessed through a substrate access channel formed by two flexible helices and their connecting loop. Pssm-ID: 410697 [Multi-domain] Cd Length: 434 Bit Score: 45.93 E-value: 1.03e-05
|
|||||||||
CYP27B1 | cd20648 | cytochrome P450 family 27, subfamily B, polypeptide 1, also called calcidiol 1-monooxygenase; ... |
69-200 | 1.11e-05 | |||||
cytochrome P450 family 27, subfamily B, polypeptide 1, also called calcidiol 1-monooxygenase; Cytochrome p450 27B1 (CYP27B1) is also called calcidiol 1-monooxygenase (EC 1.14.15.18), 25-hydroxyvitamin D(3) 1-alpha-hydroxylase (VD3 1A hydroxylase), 25-hydroxyvitamin D-1 alpha hydroxylase, 25-OHD-1 alpha-hydroxylase, 25-hydroxycholecalciferol 1-hydroxylase, or 25-hydroxycholecalciferol 1-monooxygenase. It catalyzes the conversion of 25-hydroxyvitamin D3 (25(OH)D3) to 1-alpha,25-dihydroxyvitamin D3 (1,25(OH)2D3 or calcitriol), and of 24,25-dihydroxyvitamin D3 (24,25(OH)(2)D3) to 1-alpha,24,25-trihydroxyvitamin D3 (1alpha,24,25(OH)(3)D3). It is also active with 25-hydroxy-24-oxo-vitamin D3, and has an important role in normal bone growth, calcium metabolism, and tissue differentiation. CYP27B1 belongs to the large cytochrome P450 (P450, CYP) superfamily of heme-containing proteins that catalyze a variety of oxidative reactions of a large number of structurally different endogenous and exogenous compounds in organisms from all major domains of life. CYPs bind their diverse ligands in a buried, hydrophobic active site, which is accessed through a substrate access channel formed by two flexible helices and their connecting loop. Pssm-ID: 410741 [Multi-domain] Cd Length: 430 Bit Score: 45.90 E-value: 1.11e-05
|
|||||||||
CYP2G | cd20670 | cytochrome P450 family 2, subfamily G; CYP2G1 is uniquely expressed in the olfactory mucosa of ... |
69-195 | 1.57e-05 | |||||
cytochrome P450 family 2, subfamily G; CYP2G1 is uniquely expressed in the olfactory mucosa of rats and rabbits and may have important functions for the olfactory chemosensory system. It is involved in the metabolism of sex steroids and xenobiotic compounds. In cynomolgus monkeys, CYP2G2 is a functional drug-metabolizing enzyme in nasal mucosa. In humans, two different CYP2G genes, CYP2GP1 and CYP2GP2, are pseudogenes because of loss-of-function deletions/mutations. The CYP2G subfamily belongs to the large cytochrome P450 (P450, CYP) superfamily of heme-containing proteins that catalyze a variety of oxidative reactions of a large number of structurally different endogenous and exogenous compounds in organisms from all major domains of life. CYPs bind their diverse ligands in a buried, hydrophobic active site, which is accessed through a substrate access channel formed by two flexible helices and their connecting loop. Pssm-ID: 410763 [Multi-domain] Cd Length: 425 Bit Score: 45.30 E-value: 1.57e-05
|
|||||||||
CYP132-like | cd20620 | cytochrome P450 family 132 and similar cytochrome P450s; This subfamily is composed of ... |
70-200 | 5.82e-05 | |||||
cytochrome P450 family 132 and similar cytochrome P450s; This subfamily is composed of Mycobacterium tuberculosis cytochrome P450 132 (CYP132) and similar proteins. The function of CYP132 is as yet unknown. CYP132 belongs to the large cytochrome P450 (P450, CYP) superfamily of heme-containing proteins that catalyze a variety of oxidative reactions of a large number of structurally different endogenous and exogenous compounds in organisms from all major domains of life. CYPs bind their diverse ligands in a buried, hydrophobic active site, which is accessed through a substrate access channel formed by two flexible helices and their connecting loop. Pssm-ID: 410713 [Multi-domain] Cd Length: 406 Bit Score: 43.34 E-value: 5.82e-05
|
|||||||||
CYP5A1 | cd20649 | cytochrome P450 family 5, subfamily A, polypeptide 1, also called thromboxane-A synthase; ... |
68-204 | 9.66e-05 | |||||
cytochrome P450 family 5, subfamily A, polypeptide 1, also called thromboxane-A synthase; Cytochrome P450 5A1 (CYP5A1), also called thromboxane-A synthase (EC 5.3.99.5) or thromboxane synthetase, converts prostaglandin H2 into thromboxane A2, a biologically active metabolite of arachidonic acid that has been implicated in stroke, asthma, and various cardiovascular diseases, due to its acute and chronic effects in promoting platelet aggregation, vasoconstriction, bronchoconstriction, and proliferation. CYP5A1 belongs to the large cytochrome P450 (P450, CYP) superfamily of heme-containing proteins that catalyze a variety of oxidative reactions of a large number of structurally different endogenous and exogenous compounds in organisms from all major domains of life. CYPs bind their diverse ligands in a buried, hydrophobic active site, which is accessed through a substrate access channel formed by two flexible helices and their connecting loop. Pssm-ID: 410742 [Multi-domain] Cd Length: 457 Bit Score: 42.90 E-value: 9.66e-05
|
|||||||||
CYP2C-like | cd20665 | cytochrome P450 family 2, subfamily C, and similar cytochrome P450s; This CYP2C-like group ... |
69-142 | 1.27e-04 | |||||
cytochrome P450 family 2, subfamily C, and similar cytochrome P450s; This CYP2C-like group includes CYP2C, and similar CYPs including mammalian CYP2E1, also called 4-nitrophenol 2-hydroxylase, as well as chicken CYP2H1 and CYP2H2. The CYP2C subfamily is composed of four human members (CYP2C8, CYP2C9, CYP2C18, CYP2C19) that metabolize approximately 20% of clinically used drugs, and all four exhibit genetic polymorphisms that results in toxicity or altered efficacy of some drugs in affected individuals. CYP2E1 participates in the metabolism of endogenous substrates, including acetone and fatty acids, and exogenous compounds such as anesthetics, ethanol, nicotine, acetaminophen, aspartame, and chlorzoxazone, among others. The CYP2C-like subfamily belongs to the large cytochrome P450 (P450, CYP) superfamily of heme-containing proteins that catalyze a variety of oxidative reactions of a large number of structurally different endogenous and exogenous compounds in organisms from all major domains of life. CYPs bind their diverse ligands in a buried, hydrophobic active site, which is accessed through a substrate access channel formed by two flexible helices and their connecting loop. Pssm-ID: 410758 [Multi-domain] Cd Length: 425 Bit Score: 42.63 E-value: 1.27e-04
|
|||||||||
CYP1D1 | cd20677 | cytochrome P450 family 1, subfamily D, polypeptide 1; The cytochrome P450 1D1 (CYP1D1) gene is ... |
69-240 | 1.57e-04 | |||||
cytochrome P450 family 1, subfamily D, polypeptide 1; The cytochrome P450 1D1 (CYP1D1) gene is pseudogenized in humans because of five nonsense mutations in the putative coding region. However, in other organisms including cynomolgus monkey, CYP1D1 is a functional drug-metabolizing enzyme that is highly expressed in the liver. CYP1D1 belongs to the large cytochrome P450 (P450, CYP) superfamily of heme-containing proteins that catalyze a variety of oxidative reactions of a large number of structurally different endogenous and exogenous compounds in organisms from all major domains of life. CYPs bind their diverse ligands in a buried, hydrophobic active site, which is accessed through a substrate access channel formed by two flexible helices and their connecting loop. Pssm-ID: 410770 [Multi-domain] Cd Length: 435 Bit Score: 42.39 E-value: 1.57e-04
|
|||||||||
CYP1B1-like | cd20675 | cytochrome P450 family 1, subfamily B, polypeptide 1 and similar cytochrome P450s; Cytochrome ... |
69-195 | 4.04e-04 | |||||
cytochrome P450 family 1, subfamily B, polypeptide 1 and similar cytochrome P450s; Cytochrome P450 1B1 (CYP1B1) is expressed in liver and extrahepatic tissues where it carries out the metabolism of numerous xenobiotics, including metabolic activation of polycyclic aromatic hydrocarbons. It is also important in regulating endogenous metabolic pathways, including the metabolism of steroid hormones, fatty acids, melatonin, and vitamins. CYP1B1 is overexpressed in a wide variety of tumors and is associated with angiogenesis. It is also associated with adipogenesis, obesity, hypertension, and atherosclerosis. It is therefore a target for the treatment of metabolic diseases and cancer. Also included in this subfamily are CYP1C proteins from fish, birds and amphibians. The CYP1B1-like subfamily belongs to the large cytochrome P450 (P450, CYP) superfamily of heme-containing proteins that catalyze a variety of oxidative reactions of a large number of structurally different endogenous and exogenous compounds in organisms from all major domains of life. CYPs bind their diverse ligands in a buried, hydrophobic active site, which is accessed through a substrate access channel formed by two flexible helices and their connecting loop. Pssm-ID: 410768 [Multi-domain] Cd Length: 434 Bit Score: 41.14 E-value: 4.04e-04
|
|||||||||
CYP2D | cd20663 | cytochrome P450 family 2, subfamily D; Members of CYP2D are present in mammals, birds, ... |
69-142 | 4.17e-04 | |||||
cytochrome P450 family 2, subfamily D; Members of CYP2D are present in mammals, birds, reptiles, and amphibians. The hominin CYP2D subfamily consists of a functional CYP2D6 and two paralogs, CYP2D7 and CYP2D8, that are often not functional in some species. Human CYP2D6 has a high affinity for alkaloids and can detoxify them. It is also responsible for metabolizing about 25% of commonly used drugs, such as antidepressants, beta-blockers, and antiarrhythmics. The CYP2D subfamily belongs to the large cytochrome P450 (P450, CYP) superfamily of heme-containing proteins that catalyze a variety of oxidative reactions of a large number of structurally different endogenous and exogenous compounds in organisms from all major domains of life. CYPs bind their diverse ligands in a buried, hydrophobic active site, which is accessed through a substrate access channel formed by two flexible helices and their connecting loop. Pssm-ID: 410756 [Multi-domain] Cd Length: 428 Bit Score: 40.83 E-value: 4.17e-04
|
|||||||||
PLN02987 | PLN02987 | Cytochrome P450, family 90, subfamily A |
8-107 | 5.58e-04 | |||||
Cytochrome P450, family 90, subfamily A Pssm-ID: 166628 [Multi-domain] Cd Length: 472 Bit Score: 40.73 E-value: 5.58e-04
|
|||||||||
CYP90-like | cd11043 | plant cytochrome P450s similar to cytochrome P450 family 90, subfamily A, polypeptide 1, ... |
67-198 | 1.33e-03 | |||||
plant cytochrome P450s similar to cytochrome P450 family 90, subfamily A, polypeptide 1, cytochrome P450 family 90, subfamily B, polypeptide 1, and cytochrome P450 family 90, subfamily D, polypeptide 2; This family is composed of plant cytochrome P450s including: Arabidopsis thaliana cytochrome P450s 85A1 (CYP85A1 or brassinosteroid-6-oxidase 1), 90A1 (CYP90A1), 88A3 (CYP88A3 or ent-kaurenoic acid oxidase 1), 90B1 (CYP90B1 or Dwarf4 or steroid 22-alpha-hydroxylase), and 90C1 (CYP90C1 or 3-epi-6-deoxocathasterone 23-monooxygenase); Oryza sativa cytochrome P450s 90D2 (CYP90D2 or C6-oxidase), 87A3 (CYP87A3), and 724B1 (CYP724B1 or dwarf protein 11); and Taxus cuspidata cytochrome P450 725A2 (CYP725A2 or taxane 13-alpha-hydroxylase). These enzymes are monooxygenases that catalyze oxidation reactions involved in steroid or hormone biosynthesis. CYP85A1, CYP90D2, and CYP90C1 are involved in brassinosteroids biosynthesis, while CYP88A3 catalyzes three successive oxidations of ent-kaurenoic acid, which is a key step in the synthesis of gibberellins. This family belongs to the large cytochrome P450 (P450, CYP) superfamily of heme-containing proteins that catalyze a variety of oxidative reactions of a large number of structurally different endogenous and exogenous compounds in organisms from all major domains of life. CYPs bind their diverse ligands in a buried, hydrophobic active site, which is accessed through a substrate access channel formed by two flexible helices and their connecting loop. Pssm-ID: 410669 [Multi-domain] Cd Length: 408 Bit Score: 39.47 E-value: 1.33e-03
|
|||||||||
CYP2B | cd20672 | cytochrome P450 family 2, subfamily B; The human cytochrome P450 family 2, subfamily B (CYP2B) ... |
69-142 | 1.57e-03 | |||||
cytochrome P450 family 2, subfamily B; The human cytochrome P450 family 2, subfamily B (CYP2B) consists of only one functional member CYP2B6, which shows broad substrate specificity and plays a key role in the metabolism of many clinical drugs, environmental toxins, and endogenous compounds. Rodents have multiple functional CYP2B proteins; mouse subfamily members include CYP2B9, 2B10, 2B13, 2B19, and 2B23. CYP2B enzymes are highly inducible by chemicals that interact with the constitutive androstane receptor (CAR) and/or pregnane X receptor (PXR), such as rifampicin and phenobarbital. The CYP2B subfamily belongs to the large cytochrome P450 (P450, CYP) superfamily of heme-containing proteins that catalyze a variety of oxidative reactions of a large number of structurally different endogenous and exogenous compounds in organisms from all major domains of life. CYPs bind their diverse ligands in a buried, hydrophobic active site, which is accessed through a substrate access channel formed by two flexible helices and their connecting loop. Pssm-ID: 410765 [Multi-domain] Cd Length: 425 Bit Score: 38.99 E-value: 1.57e-03
|
|||||||||
CYP_FUM15-like | cd11069 | Fusarium verticillioides cytochrome P450 monooxygenase FUM15, and similar cytochrome P450s; ... |
69-201 | 1.89e-03 | |||||
Fusarium verticillioides cytochrome P450 monooxygenase FUM15, and similar cytochrome P450s; Fusarium verticillioides cytochrome P450 monooxygenase FUM15, is also called fumonisin biosynthesis cluster protein 15. The FUM15 gene is part of the gene cluster that mediates the biosynthesis of fumonisins B1, B2, B3, and B4, which are carcinogenic mycotoxins. This FUM15-like subfamily belongs to the large cytochrome P450 (P450, CYP) superfamily of heme-containing proteins that catalyze a variety of oxidative reactions of a large number of structurally different endogenous and exogenous compounds in organisms from all major domains of life. CYPs bind their diverse ligands in a buried, hydrophobic active site, which is accessed through a substrate access channel formed by two flexible helices and their connecting loop. Pssm-ID: 410692 [Multi-domain] Cd Length: 437 Bit Score: 38.79 E-value: 1.89e-03
|
|||||||||
CYP136-like | cd11045 | putative cytochrome P450 family 136 and similar cytochrome P450s; This group is composed of ... |
64-103 | 2.07e-03 | |||||
putative cytochrome P450 family 136 and similar cytochrome P450s; This group is composed of Mycobacterium tuberculosis putative cytochrome P450 136 (CYP136) and similar proteins. It belongs to the large cytochrome P450 (P450, CYP) superfamily of heme-containing proteins that catalyze a variety of oxidative reactions of a large number of structurally different endogenous and exogenous compounds in organisms from all major domains of life. CYPs bind their diverse ligands in a buried, hydrophobic active site, which is accessed through a substrate access channel formed by two flexible helices and their connecting loop. Pssm-ID: 410671 [Multi-domain] Cd Length: 407 Bit Score: 38.84 E-value: 2.07e-03
|
|||||||||
PLN02302 | PLN02302 | ent-kaurenoic acid oxidase |
38-200 | 5.45e-03 | |||||
ent-kaurenoic acid oxidase Pssm-ID: 215171 [Multi-domain] Cd Length: 490 Bit Score: 37.39 E-value: 5.45e-03
|
|||||||||
Blast search parameters | ||||
|