lipocalin/fatty-acid binding family protein similar to Arabidopsis thaliana chloroplastic violaxanthin de-epoxidase, which catalyzes the two-step mono de-epoxidation reaction
VDE lipocalin domain; This family represents a conserved region approximately 150 residues ...
119-360
2.80e-149
VDE lipocalin domain; This family represents a conserved region approximately 150 residues long within plant violaxanthin de-epoxidase (VDE). In higher plants, violaxanthin de-epoxidase forms part of a conserved system that dissipates excess energy as heat in the light-harvesting complexes of photosystem II (PSII), thus protecting them from photo-inhibitory damage.
Pssm-ID: 462099 [Multi-domain] Cd Length: 240 Bit Score: 424.82 E-value: 2.80e-149
lipocalin domain of violaxanthin deepoxidase and similar proteins; Plant violaxanthin ...
191-366
2.25e-132
lipocalin domain of violaxanthin deepoxidase and similar proteins; Plant violaxanthin de-epoxidase (VDE, EC 1.23.5.1) participates in the xanthophyll cycle for controlling the concentration of zeaxanthin in chloroplasts. It catalyzes the conversion of violaxanthin to antheraxanthin and zeaxanthin in strong light, and plays a central role in adjusting photosynthetic activity to changing light conditions. In addition, maize VDE has been shown to interact with sugarcane mosaic virus helper component-proteinase, HC-(SCMV), and to attenuate the RNA silencing suppression activity of the latter. VDE belongs to the lipocalin/cytosolic fatty-acid binding protein family which have a large beta-barrel ligand-binding cavity. Lipocalins are mainly low molecular weight extracellular proteins that bind principally small hydrophobic ligands, and form covalent or non-covalent complexes with soluble macromolecules, as well as membrane bound-receptors. They participate in processes such as ligand transport, modulation of cell growth and metabolism, regulation of immune response, smell reception, tissue development and animal behavior. Cytosolic fatty-acid binding proteins, also bind hydrophobic ligands in a non-covalent, reversible manner, and have been implicated in intracellular uptake, transport and storage of hydrophobic ligands, regulation of lipid metabolism and sequestration of excess toxic fatty acids, as well as in signaling, gene expression, inflammation, cell growth and proliferation, and cancer development.
Pssm-ID: 381195 Cd Length: 177 Bit Score: 379.19 E-value: 2.25e-132
VDE lipocalin domain; This family represents a conserved region approximately 150 residues ...
119-360
2.80e-149
VDE lipocalin domain; This family represents a conserved region approximately 150 residues long within plant violaxanthin de-epoxidase (VDE). In higher plants, violaxanthin de-epoxidase forms part of a conserved system that dissipates excess energy as heat in the light-harvesting complexes of photosystem II (PSII), thus protecting them from photo-inhibitory damage.
Pssm-ID: 462099 [Multi-domain] Cd Length: 240 Bit Score: 424.82 E-value: 2.80e-149
lipocalin domain of violaxanthin deepoxidase and similar proteins; Plant violaxanthin ...
191-366
2.25e-132
lipocalin domain of violaxanthin deepoxidase and similar proteins; Plant violaxanthin de-epoxidase (VDE, EC 1.23.5.1) participates in the xanthophyll cycle for controlling the concentration of zeaxanthin in chloroplasts. It catalyzes the conversion of violaxanthin to antheraxanthin and zeaxanthin in strong light, and plays a central role in adjusting photosynthetic activity to changing light conditions. In addition, maize VDE has been shown to interact with sugarcane mosaic virus helper component-proteinase, HC-(SCMV), and to attenuate the RNA silencing suppression activity of the latter. VDE belongs to the lipocalin/cytosolic fatty-acid binding protein family which have a large beta-barrel ligand-binding cavity. Lipocalins are mainly low molecular weight extracellular proteins that bind principally small hydrophobic ligands, and form covalent or non-covalent complexes with soluble macromolecules, as well as membrane bound-receptors. They participate in processes such as ligand transport, modulation of cell growth and metabolism, regulation of immune response, smell reception, tissue development and animal behavior. Cytosolic fatty-acid binding proteins, also bind hydrophobic ligands in a non-covalent, reversible manner, and have been implicated in intracellular uptake, transport and storage of hydrophobic ligands, regulation of lipid metabolism and sequestration of excess toxic fatty acids, as well as in signaling, gene expression, inflammation, cell growth and proliferation, and cancer development.
Pssm-ID: 381195 Cd Length: 177 Bit Score: 379.19 E-value: 2.25e-132
lipocalin/cytosolic fatty acid-binding protein family; Lipocalins are diverse, mainly low ...
211-329
7.11e-08
lipocalin/cytosolic fatty acid-binding protein family; Lipocalins are diverse, mainly low molecular weight extracellular proteins that bind principally small hydrophobic ligands, and form covalent or non-covalent complexes with soluble macromolecules as well as membrane bound-receptors. They have a large beta-barrel ligand-binding cavity. Members include retinol-binding protein, retinoic acid-binding protein, complement protein C8 gamma, Can f 2, apolipoprotein D, extracellular fatty acid-binding protein, beta-lactoglobulin, oderant-binding protein, and bacterial lipocalin Blc. Lipocalins are involved in many important processes such as ligand transport, modulation of cell growth and metabolism, regulation of immune response, smell reception, tissue development and animal behavior. Cytosolic fatty acid-binding proteins also bind hydrophobic ligands in a non-covalent, reversible manner, and are involved in protection and shuttling of fatty acids within the cell, and in acquisition and removal of fatty acids from intracellular sites.
Pssm-ID: 381182 Cd Length: 109 Bit Score: 50.62 E-value: 7.11e-08
Database: CDSEARCH/cdd Low complexity filter: no Composition Based Adjustment: yes E-value threshold: 0.01
References:
Wang J et al. (2023), "The conserved domain database in 2023", Nucleic Acids Res.51(D)384-8.
Lu S et al. (2020), "The conserved domain database in 2020", Nucleic Acids Res.48(D)265-8.
Marchler-Bauer A et al. (2017), "CDD/SPARCLE: functional classification of proteins via subfamily domain architectures.", Nucleic Acids Res.45(D)200-3.
of the residues that compose this conserved feature have been mapped to the query sequence.
Click on the triangle to view details about the feature, including a multiple sequence alignment
of your query sequence and the protein sequences used to curate the domain model,
where hash marks (#) above the aligned sequences show the location of the conserved feature residues.
The thumbnail image, if present, provides an approximate view of the feature's location in 3 dimensions.
Click on the triangle for interactive 3D structure viewing options.
Functional characterization of the conserved domain architecture found on the query.
Click here to see more details.
This image shows a graphical summary of conserved domains identified on the query sequence.
The Show Concise/Full Display button at the top of the page can be used to select the desired level of detail: only top scoring hits
(labeled illustration) or all hits
(labeled illustration).
Domains are color coded according to superfamilies
to which they have been assigned. Hits with scores that pass a domain-specific threshold
(specific hits) are drawn in bright colors.
Others (non-specific hits) and
superfamily placeholders are drawn in pastel colors.
if a domain or superfamily has been annotated with functional sites (conserved features),
they are mapped to the query sequence and indicated through sets of triangles
with the same color and shade of the domain or superfamily that provides the annotation. Mouse over the colored bars or triangles to see descriptions of the domains and features.
click on the bars or triangles to view your query sequence embedded in a multiple sequence alignment of the proteins used to develop the corresponding domain model.
The table lists conserved domains identified on the query sequence. Click on the plus sign (+) on the left to display full descriptions, alignments, and scores.
Click on the domain model's accession number to view the multiple sequence alignment of the proteins used to develop the corresponding domain model.
To view your query sequence embedded in that multiple sequence alignment, click on the colored bars in the Graphical Summary portion of the search results page,
or click on the triangles, if present, that represent functional sites (conserved features)
mapped to the query sequence.
Concise Display shows only the best scoring domain model, in each hit category listed below except non-specific hits, for each region on the query sequence.
(labeled illustration) Standard Display shows only the best scoring domain model from each source, in each hit category listed below for each region on the query sequence.
(labeled illustration) Full Display shows all domain models, in each hit category below, that meet or exceed the RPS-BLAST threshold for statistical significance.
(labeled illustration) Four types of hits can be shown, as available,
for each region on the query sequence:
specific hits meet or exceed a domain-specific e-value threshold
(illustrated example)
and represent a very high confidence that the query sequence belongs to the same protein family as the sequences use to create the domain model
non-specific hits
meet or exceed the RPS-BLAST threshold for statistical significance (default E-value cutoff of 0.01, or an E-value selected by user via the
advanced search options)
the domain superfamily to which the specific and non-specific hits belong
multi-domain models that were computationally detected and are likely to contain multiple single domains
Retrieve proteins that contain one or more of the domains present in the query sequence, using the Conserved Domain Architecture Retrieval Tool
(CDART).
Modify your query to search against a different database and/or use advanced search options