stAR-related lipid transfer protein 6 [Mus musculus]
SRPBCC family protein( domain architecture ID 51693)
SRPBCC (START/RHOalphaC/PITP/Bet v1/CoxG/CalC) family protein may have a deep hydrophobic ligand-binding pocket
List of domain hits
Name | Accession | Description | Interval | E-value | ||||
SRPBCC super family | cl14643 | START/RHO_alpha_C/PITP/Bet_v1/CoxG/CalC (SRPBCC) ligand-binding domain superfamily; SRPBCC ... |
1-204 | 1.37e-118 | ||||
START/RHO_alpha_C/PITP/Bet_v1/CoxG/CalC (SRPBCC) ligand-binding domain superfamily; SRPBCC domains have a deep hydrophobic ligand-binding pocket; they bind diverse ligands. Included in this superfamily are the steroidogenic acute regulatory protein (StAR)-related lipid transfer (START) domains of mammalian STARD1-STARD15, and the C-terminal catalytic domains of the alpha oxygenase subunit of Rieske-type non-heme iron aromatic ring-hydroxylating oxygenases (RHOs_alpha_C), as well as the SRPBCC domains of phosphatidylinositol transfer proteins (PITPs), Bet v 1 (the major pollen allergen of white birch, Betula verrucosa), CoxG, CalC, and related proteins. Other members of this superfamily include PYR/PYL/RCAR plant proteins, the aromatase/cyclase (ARO/CYC) domains of proteins such as Streptomyces glaucescens tetracenomycin, and the SRPBCC domains of Streptococcus mutans Smu.440 and related proteins. The actual alignment was detected with superfamily member cd08904: Pssm-ID: 472699 Cd Length: 204 Bit Score: 336.11 E-value: 1.37e-118
|
||||||||
Name | Accession | Description | Interval | E-value | ||||
START_STARD6-like | cd08904 | Lipid-binding START domain of mammalian STARD6 and related proteins; This subgroup includes ... |
1-204 | 1.37e-118 | ||||
Lipid-binding START domain of mammalian STARD6 and related proteins; This subgroup includes the steroidogenic acute regulatory protein (StAR)-related lipid transfer (START) domains of mammalian STARD6 and related domains. It belongs to the START domain family, and in turn to the SRPBCC (START/RHO_alpha_C/PITP/Bet_v1/CoxG/CalC) domain superfamily of proteins that bind hydrophobic ligands. SRPBCC domains have a deep hydrophobic ligand-binding pocket. STARD6 is expressed in male germ cells of normal rats, and in the steroidogenic Leydig cells of perinatal hypothyroid testes. It may play a pivotal role in the steroidogenesis as well as in the spermatogenesis of normal rats. STARD6 has also been detected in the rat nervous system, and may participate in neurosteroid synthesis. Pssm-ID: 176913 Cd Length: 204 Bit Score: 336.11 E-value: 1.37e-118
|
||||||||
START | pfam01852 | START domain; |
8-189 | 1.89e-26 | ||||
START domain; Pssm-ID: 426476 Cd Length: 205 Bit Score: 101.33 E-value: 1.89e-26
|
||||||||
START | smart00234 | in StAR and phosphatidylcholine transfer protein; putative lipid-binding domain in StAR and ... |
23-196 | 7.19e-26 | ||||
in StAR and phosphatidylcholine transfer protein; putative lipid-binding domain in StAR and phosphatidylcholine transfer protein Pssm-ID: 214575 Cd Length: 205 Bit Score: 99.81 E-value: 7.19e-26
|
||||||||
Name | Accession | Description | Interval | E-value | ||||
START_STARD6-like | cd08904 | Lipid-binding START domain of mammalian STARD6 and related proteins; This subgroup includes ... |
1-204 | 1.37e-118 | ||||
Lipid-binding START domain of mammalian STARD6 and related proteins; This subgroup includes the steroidogenic acute regulatory protein (StAR)-related lipid transfer (START) domains of mammalian STARD6 and related domains. It belongs to the START domain family, and in turn to the SRPBCC (START/RHO_alpha_C/PITP/Bet_v1/CoxG/CalC) domain superfamily of proteins that bind hydrophobic ligands. SRPBCC domains have a deep hydrophobic ligand-binding pocket. STARD6 is expressed in male germ cells of normal rats, and in the steroidogenic Leydig cells of perinatal hypothyroid testes. It may play a pivotal role in the steroidogenesis as well as in the spermatogenesis of normal rats. STARD6 has also been detected in the rat nervous system, and may participate in neurosteroid synthesis. Pssm-ID: 176913 Cd Length: 204 Bit Score: 336.11 E-value: 1.37e-118
|
||||||||
START_STARD4_5_6-like | cd08867 | Lipid-binding START domain of mammalian STARD4, -5, -6, and related proteins; This subfamily ... |
1-204 | 5.15e-97 | ||||
Lipid-binding START domain of mammalian STARD4, -5, -6, and related proteins; This subfamily includes the steroidogenic acute regulatory protein (StAR)-related lipid transfer (START) domains of mammalian STARD4, -5, and -6. The START domain family belongs to the SRPBCC (START/RHO_alpha_C/PITP/Bet_v1/CoxG/CalC) domain superfamily of proteins that bind hydrophobic ligands. SRPBCC domains have a deep hydrophobic ligand-binding pocket. STARD4 plays an important role in steroidogenesis, trafficking cholesterol into mitochondria. It specifically binds cholesterol, and demonstrates limited binding to another sterol, 7a-hydroxycholesterol. STARD4 and STARD5 are ubiquitously expressed, with highest levels in liver and kidney. STRAD5 functions in the kidney within the proximal tubule cells where it is associated with the Endoplasmic Reticulum (ER), and may participate in ER-associated cholesterol transport. It binds cholesterol and 25-hydroxycholesterol. Expression of the gene encoding STARD5 is increased by ER stress, and its mRNA and protein levels are elevated in a type I diabetic mouse model of human diabetic nephropathy. STARD6 is expressed in male germ cells of normal rats, and in the steroidogenic Leydig cells of perinatal hypothyroid testes. It may play a pivotal role in the steroidogenesis as well as in the spermatogenesis of normal rats. STARD6 has also been detected in the rat nervous system, and may participate in neurosteroid synthesis. Pssm-ID: 176876 Cd Length: 206 Bit Score: 281.66 E-value: 5.15e-97
|
||||||||
START_STARD5-like | cd08903 | Lipid-binding START domain of mammalian STARD5 and related proteins; This subgroup includes ... |
1-204 | 6.50e-59 | ||||
Lipid-binding START domain of mammalian STARD5 and related proteins; This subgroup includes the steroidogenic acute regulatory protein (StAR)-related lipid transfer (START) domains of mammalian STARD5, and related domains. It belongs to the START domain family, and in turn to the SRPBCC (START/RHO_alpha_C/PITP/Bet_v1/CoxG/CalC) domain superfamily of proteins that bind hydrophobic ligands. SRPBCC domains have a deep hydrophobic ligand-binding pocket. STARD5 is ubiquitously expressed, with highest levels in liver and kidney. STARD5 functions in the kidney within the proximal tubule cells where it is associated with the Endoplasmic Reticulum (ER), and may participate in ER-associated cholesterol transport. It binds cholesterol and 25-hydroxycholesterol. Expression of the gene encoding STARD5 is increased by ER stress, and its mRNA and protein levels are elevated in a type I diabetic mouse model of human diabetic nephropathy. Pssm-ID: 176912 Cd Length: 208 Bit Score: 185.04 E-value: 6.50e-59
|
||||||||
START | cd00177 | Lipid-binding START domain of mammalian STARD1-STARD15 and related proteins; This family ... |
12-200 | 1.08e-36 | ||||
Lipid-binding START domain of mammalian STARD1-STARD15 and related proteins; This family includes the steroidogenic acute regulatory protein (StAR)-related lipid transfer (START) domains of mammalian STARD1-STARD15, and related domains, such as the START domain of the Arabidopsis homeobox protein GLABRA 2. The mammalian STARDs are grouped into 8 subfamilies. This family belongs to the SRPBCC (START/RHO_alpha_C/PITP/Bet_v1/CoxG/CalC) domain superfamily of proteins that bind hydrophobic ligands. SRPBCC domains have a deep hydrophobic ligand-binding pocket. For some members of this family, specific lipids that bind in this pocket are known; these include cholesterol (STARD1/STARD3/ STARD4/STARD5), 25-hydroxycholesterol (STARD5), phosphatidylcholine (STARD2/ STARD7/STARD10), phosphatidylethanolamine (STARD10) and ceramides (STARD11). The START domain is found either alone or in association with other domains. Mammalian STARDs participate in the control of various cellular processes including lipid trafficking between intracellular compartments, lipid metabolism, and modulation of signaling events. Mutation or altered expression of STARDs is linked to diseases such as cancer, genetic disorders, and autoimmune disease. The Arabidopsis homeobox protein GLABRA 2 suppresses root hair formation in hairless epidermal root cells. Pssm-ID: 176851 [Multi-domain] Cd Length: 193 Bit Score: 127.45 E-value: 1.08e-36
|
||||||||
START_STARD1_3_like | cd08868 | Cholesterol-binding START domain of mammalian STARD1, -3 and related proteins; This subfamily ... |
5-205 | 1.07e-34 | ||||
Cholesterol-binding START domain of mammalian STARD1, -3 and related proteins; This subfamily includes the steroidogenic acute regulatory protein (StAR)-related lipid transfer (START) domains of STARD1 (also known as StAR) and STARD3 (also known as metastatic lymph node 64/MLN64). The START domain family belongs to the SRPBCC (START/RHO_alpha_C/PITP/Bet_v1/CoxG/CalC) domain superfamily of proteins that bind hydrophobic ligands. SRPBCC domains have a deep hydrophobic ligand-binding pocket. This STARD1-like subfamily has a high affinity for cholesterol. STARD1/StAR can reduce macrophage lipid content and inflammatory status. It plays an essential role in steroidogenic tissues: transferring the steroid precursor, cholesterol, from the outer to the inner mitochondrial membrane, across the aqueous space. Mutations in the gene encoding STARD1/StAR can cause lipid congenital adrenal hyperplasia (CAH), an autosomal recessive disorder characterized by a steroid synthesis deficiency and an accumulation of cholesterol in the adrenal glands and the gonads. STARD3 may function in trafficking endosomal cholesterol to a cytosolic acceptor or membrane. In addition to having a cytoplasmic START cholesterol-binding domain, STARD3 also contains an N-terminal MENTAL cholesterol-binding and protein-protein interaction domain. The MENTAL domain contains transmembrane helices and anchors MLN64 to endosome membranes. The gene encoding STARD3 is overexpressed in about 25% of breast cancers. Pssm-ID: 176877 Cd Length: 208 Bit Score: 122.85 E-value: 1.07e-34
|
||||||||
START_STARD4-like | cd08902 | Lipid-binding START domain of mammalian STARD4 and related proteins; This subgroup includes ... |
2-204 | 4.50e-34 | ||||
Lipid-binding START domain of mammalian STARD4 and related proteins; This subgroup includes the steroidogenic acute regulatory protein (StAR)-related lipid transfer (START) domains of mammalian STARD4 and related domains. It belongs to the START domain family, and in turn to the SRPBCC (START/RHO_alpha_C/PITP/Bet_v1/CoxG/CalC) domain superfamily of proteins that bind hydrophobic ligands. SRPBCC domains have a deep hydrophobic ligand-binding pocket. STARD4 plays an important role in steroidogenesis, trafficking cholesterol into mitochondria. It specifically binds cholesterol, and demonstrates limited binding to another sterol, 7alpha-hydroxycholesterol. STARD4 is ubiquitously expressed, with highest levels in liver and kidney. Pssm-ID: 176911 Cd Length: 202 Bit Score: 121.21 E-value: 4.50e-34
|
||||||||
START | pfam01852 | START domain; |
8-189 | 1.89e-26 | ||||
START domain; Pssm-ID: 426476 Cd Length: 205 Bit Score: 101.33 E-value: 1.89e-26
|
||||||||
START | smart00234 | in StAR and phosphatidylcholine transfer protein; putative lipid-binding domain in StAR and ... |
23-196 | 7.19e-26 | ||||
in StAR and phosphatidylcholine transfer protein; putative lipid-binding domain in StAR and phosphatidylcholine transfer protein Pssm-ID: 214575 Cd Length: 205 Bit Score: 99.81 E-value: 7.19e-26
|
||||||||
START_STARD3-like | cd08906 | Cholesterol-binding START domain of mammalian STARD3 and related proteins; This subgroup ... |
12-204 | 1.35e-24 | ||||
Cholesterol-binding START domain of mammalian STARD3 and related proteins; This subgroup includes the steroidogenic acute regulatory protein (StAR)-related lipid transfer (START) domains of STARD3 (also known as metastatic lymph node 64/MLN64) and related proteins. It belongs to the START domain family, and in turn to the SRPBCC (START/RHO_alpha_C/PITP/Bet_v1/CoxG/CalC) domain superfamily of proteins that bind hydrophobic ligands. SRPBCC domains have a deep hydrophobic ligand-binding pocket. STARD3 has a high affinity for cholesterol. It may function in trafficking endosomal cholesterol to a cytosolic acceptor or membrane. In addition to having a cytoplasmic START cholesterol-binding domain, STARD3 also contains an N-terminal MENTAL cholesterol-binding and protein-protein interaction domain. The MENTAL domain contains transmembrane helices and anchors MLN64 to endosome membranes. The gene encoding STARD3 is overexpressed in about 25% of breast cancers. Pssm-ID: 176915 Cd Length: 209 Bit Score: 96.47 E-value: 1.35e-24
|
||||||||
START_STARD1-like | cd08905 | Cholesterol-binding START domain of mammalian STARD1 and related proteins; This subgroup ... |
1-195 | 6.95e-18 | ||||
Cholesterol-binding START domain of mammalian STARD1 and related proteins; This subgroup includes the steroidogenic acute regulatory protein (StAR)-related lipid transfer (START) domains of STARD1 (also known as StAR) and related proteins. It belongs to the START domain family, and in turn to the SRPBCC (START/RHO_alpha_C/PITP/Bet_v1/CoxG/CalC) domain superfamily of proteins that bind hydrophobic ligands. SRPBCC domains have a deep hydrophobic ligand-binding pocket. STARD1 has a high affinity for cholesterol. It can reduce macrophage lipid content and inflammatory status. It plays an essential role in steroidogenic tissues: transferring the steroid precursor, cholesterol, from the outer to the inner mitochondrial membrane, across the aqueous space. Mutations in the gene encoding STARD1/StAR can cause lipid congenital adrenal hyperplasia (CAH), an autosomal recessive disorder characterized by a steroid synthesis deficiency and an accumulation of cholesterol in the adrenal glands and the gonads. Pssm-ID: 176914 Cd Length: 209 Bit Score: 78.72 E-value: 6.95e-18
|
||||||||
START_STARD10-like | cd08871 | Lipid-binding START domain of mammalian STARD10 and related proteins; This subfamily includes ... |
19-188 | 1.39e-12 | ||||
Lipid-binding START domain of mammalian STARD10 and related proteins; This subfamily includes the steroidogenic acute regulatory protein (StAR)-related lipid transfer (START) domains of mammalian STARD10 (also known as CGI-52, PTCP-like, and SDCCAG28). The START domain family belongs to the SRPBCC (START/RHO_alpha_C/PITP/Bet_v1/CoxG/CalC) domain superfamily of proteins that bind hydrophobic ligands. SRPBCC domains have a deep hydrophobic ligand-binding pocket. STARD10 binds phophatidylcholine and phosphatidylethanolamine. This protein is widely expressed and is synthesized constitutively in many organs. It may function in the liver in the export of phospholipids into bile. It is concentrated in the sperm flagellum, and may play a role in energy metabolism. In the mammary gland it may participate in the enrichment of lipids in milk, and be a potential marker of differentiation. Its expression is induced in this gland during gestation and lactation. It is overexpressed in mammary tumors from Neu/ErbB2 transgenic mice, in several breast carcinoma cell lines, and in 35% of primary human breast cancers, and may cooperate with c-erbB receptor signaling in breast oncogenesis. It is a potential marker of disease outcome in breast cancer; loss of STARD10 expression in breast cancer strongly predicts an aggressive disease course. The lipid transfer activity of STRAD10 is downregulated by phosphorylation of its Ser284 by CK2 (casein kinase 2). Pssm-ID: 176880 Cd Length: 222 Bit Score: 64.58 E-value: 1.39e-12
|
||||||||
START_STARD14_15-like | cd08873 | Lipid-binding START domain of mammalian STARDT14, -15, and related proteins; This subfamily ... |
22-198 | 3.26e-08 | ||||
Lipid-binding START domain of mammalian STARDT14, -15, and related proteins; This subfamily includes the steroidogenic acute regulatory protein (StAR)-related lipid transfer (START) domains of mammalian brown fat-inducible STARD14 (also known as Acyl-Coenzyme A Thioesterase 11 or ACOT11, BFIT, THEA, THEM1, KIAA0707, and MGC25974), STARD15/ACOT12 (also known as cytoplasmic acetyl-CoA hydrolase/CACH, THEAL, and MGC105114), and related domains. The START domain family belongs to the SRPBCC (START/RHO_alpha_C/PITP/Bet_v1/CoxG/CalC) domain superfamily of proteins that bind hydrophobic ligands. SRPBCC domains have a deep hydrophobic ligand-binding pocket. STARD14/ACOT11 and STARD15/ACOT12 are type II acetyl-CoA thioesterases; they catalyze the hydrolysis of acyl-CoAs to free fatty acid and CoASH. Human STARD14 displays acetyl-CoA thioesterase activity towards medium(C12)- and long(C16)-chain fatty acyl-CoA substrates. Rat CACH hydrolyzes acetyl-CoA to acetate and CoA. In addition to having a START domain, STARD14 and STARD15 each have two tandem copies of the hotdog domain. There are two splice variants of human STARD14, named BFIT1 and BFIT2, which differ in their C-termini. Human BFIT2 is equivalent to mouse mBFIT/Acot11, whose transcription is increased two fold in obesity-resistant mice compared with obesity-prone mice. Human STARD15 may have roles in cholesterol metabolism and in beta-oxidation. Pssm-ID: 176882 Cd Length: 235 Bit Score: 52.60 E-value: 3.26e-08
|
||||||||
START_STARD14-like | cd08913 | Lipid-binding START domain of mammalian STARDT14 and related proteins; This subgroup includes ... |
15-177 | 1.38e-06 | ||||
Lipid-binding START domain of mammalian STARDT14 and related proteins; This subgroup includes the steroidogenic acute regulatory protein (StAR)-related lipid transfer (START) domains of mammalian brown fat-inducible STARD14 (also known as Acyl-Coenzyme A Thioesterase 11 or ACOT11, BFIT, THEA, THEM1, KIAA0707, and MGC25974) and related proteins. It belongs to the START domain family, and in turn to the SRPBCC (START/RHO_alpha_C/PITP/Bet_v1/CoxG/CalC) domain superfamily of proteins that bind hydrophobic ligands. SRPBCC domains have a deep hydrophobic ligand-binding pocket. STARD14/ACOT11 is a type II acetyl-CoA thioesterase; it catalyzes the hydrolysis of acyl-CoAs to free fatty acid and CoASH. Human STARD14 displays acetyl-CoA thioesterase activity towards medium(C12)- and long(C16)-chain fatty acyl-CoA substrates. In addition to having a START domain, most proteins in this subgroup have two tandem copies of the hotdog domain. There are two splice variants of human STARD14, named BFIT1 and BFIT2, which differ in their C-termini. Human BFIT2 is equivalent to mouse mBFIT/Acot11, whose transcription is increased two fold in obesity-resistant mice compared with obesity-prone mice. Pssm-ID: 176921 Cd Length: 240 Bit Score: 47.55 E-value: 1.38e-06
|
||||||||
START_STARD9-like | cd08874 | C-terminal START domain of mammalian STARD9, and related domains; lipid binding; This ... |
19-196 | 5.90e-06 | ||||
C-terminal START domain of mammalian STARD9, and related domains; lipid binding; This subfamily includes the steroidogenic acute regulatory protein (StAR)-related lipid transfer (START) domains of mammalian STARD9 (also known as KIAA1300), and related domains. The START domain family belongs to the SRPBCC (START/RHO_alpha_C /PITP /Bet_v1/CoxG/CalC) domain superfamily of proteins that bind hydrophobic ligands. SRPBCC domains have a deep hydrophobic ligand-binding pocket. Some members of this subfamily have N-terminal kinesin motor domains. STARD9 interacts with supervillin, a protein important for efficient cytokinesis, perhaps playing a role in coordinating microtubule motors with actin and myosin II functions at membranes. The human gene encoding STARD9 lies within a target region for LGMD2A, an autosomal recessive form of limb-girdle muscular dystrophy. Pssm-ID: 176883 Cd Length: 205 Bit Score: 45.67 E-value: 5.90e-06
|
||||||||
START_STARD11-like | cd08872 | Ceramide-binding START domain of mammalian STARD11 and related domains; This subfamily ... |
50-145 | 9.99e-05 | ||||
Ceramide-binding START domain of mammalian STARD11 and related domains; This subfamily includes the steroidogenic acute regulatory protein (StAR)-related lipid transfer (START) domains of mammalian STARD11 and related domains. The START domain family belongs to the SRPBCC (START/RHO_alpha_C/PITP/Bet_v1/CoxG/CalC) domain superfamily of proteins that bind hydrophobic ligands. SRPBCC domains have a deep hydrophobic ligand-binding pocket. STARD11 can mediate transfer of the natural ceramide isomers, dihydroceramide and phytoceramide, as well as ceramides having C14, C16, C18, and C20 chains. They can also transfer diacylglycerol, but with a lower efficiency. STARD11 is synthesized from two major transcripts: a larger one encoding Goodpasture antigen-binding protein (GPBP)/ceramide transporter long form (CERTL); and a smaller one encoding GPBPdelta26/CERT, which is deleted for 26 amino acids. Both splicing variants mediate ceramide transfer from the ER to the Golgi, in a non-vesicular manner. It is likely that these two carry out different functions in specific sub-cellular locations. These proteins have roles in brain homeostasis and disease processes. GPBP/CERTL exists in multiple isoforms originating from alternative translation initiation sites and post-translational modifications. Goodpasture syndrome is a human disorder caused by antibodies directed against the a3-chain of collagen type IV. GPBP/CERTL binds and phosphorylates this antigen. The human gene encoding STARD11 is referred to as COL4A3BP referring to its collagen binding function. It is unknown whether the ceramide-transfer function of GPBP/CERTL is related to this collagen interaction. The expression of GPBP/CERTL is elevated in these and other spontaneous autoimmune disorders including cutaneous lupus erythematosus, pemphigoid, and lichen planus. GPBL/CERTL contains an N-terminal pleckstrin homology domain (PH), which targets the protein to the Golgi, a middle region containing two serine-rich domains (SR1, SR2), a FFAT (two phenylalanine amino acids in an acidic tract) motif which is involved in endoplasmic reticulum targeting, and this C-terminal SMART domain. The shorter splicing variant, CERT, lacks the SR2 domain. Pssm-ID: 176881 Cd Length: 235 Bit Score: 42.33 E-value: 9.99e-05
|
||||||||
Blast search parameters | ||||
|