NCBI Home Page NCBI Site Search page NCBI Guide that lists and describes the NCBI resources
Conserved domains on  [gi|302058299|ref|NP_001180460|]
View 

transmembrane protein 116 isoform 1 [Homo sapiens]

Protein Classification

G protein-coupled receptor family protein( domain architecture ID 705710)

G protein-coupled receptor family protein is a seven-transmembrane G protein-coupled receptor (7TM-GPCR) family protein which typically transmits an extracellular signal into the cell by the conformational rearrangement of the 7TM helices and by the subsequent binding and activation of an intracellular heterotrimeric G protein; GPCR ligands include light-sensitive compounds, odors, pheromones, hormones, and neurotransmitters

Graphical summary

 Zoom to residue level

show extra options »

Show site features     Horizontal zoom: ×

List of domain hits

Name Accession Description Interval E-value
7tm_GPCRs super family cl28897
seven-transmembrane G protein-coupled receptor superfamily; This hierarchical evolutionary ...
178-285 1.32e-03

seven-transmembrane G protein-coupled receptor superfamily; This hierarchical evolutionary model represents the seven-transmembrane (7TM) receptors, often referred to as G protein-coupled receptors (GPCRs), which transmit physiological signals from the outside of the cell to the inside via G proteins. GPCRs constitute the largest known superfamily of transmembrane receptors across the three kingdoms of life that respond to a wide variety of extracellular stimuli including peptides, lipids, neurotransmitters, amino acids, hormones, and sensory stimuli such as light, smell and taste. All GPCRs share a common structural architecture comprising of seven-transmembrane (TM) alpha-helices interconnected by three extracellular and three intracellular loops. A general feature of GPCR signaling is agonist-induced conformational changes in the receptors, leading to activation of the heterotrimeric G proteins, which consist of the guanine nucleotide-binding G-alpha subunit and the dimeric G-beta-gamma subunits. The activated G proteins then bind to and activate numerous downstream effector proteins, which generate second messengers that mediate a broad range of cellular and physiological processes. However, some 7TM receptors, such as the type 1 microbial rhodopsins, do not activate G proteins. Based on sequence similarity, GPCRs can be divided into six major classes: class A (the rhodopsin-like family), class B (the Methuselah-like, adhesion and secretin-like receptor family), class C (the metabotropic glutamate receptor family), class D (the fungal mating pheromone receptors), class E (the cAMP receptor family), and class F (the frizzled/smoothened receptor family). Nearly 800 human GPCR genes have been identified and are involved essentially in all major physiological processes. Approximately 40% of clinically marketed drugs mediate their effects through modulation of GPCR function for the treatment of a variety of human diseases including bacterial infections.


The actual alignment was detected with superfamily member cd14940:

Pssm-ID: 475119 [Multi-domain]  Cd Length: 256  Bit Score: 39.64  E-value: 1.32e-03
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 302058299 178 FYG--IAIFLGSFVLSLLTimvllirAQTLYKKFVKstgflGSEQWAVIHIVDQ-RVRFYPVAFFCCWGPAVILMIIKLT 254
Cdd:cd14940  153 FYGpfFIIFGISAVLVGLT-------SHYTYQVIHN-----WVSDNKDLHKTYQfKLVNYIIVFLLCWIFAVINRIQNAL 220
                         90       100       110
                 ....*....|....*....|....*....|.
gi 302058299 255 KPQDTklhmALYVLQALTATSQGLLNCGVYG 285
Cdd:cd14940  221 NPFPF----ALNLLHTYLSPSHGFYASVVFI 247
 
Name Accession Description Interval E-value
7tmE_cAMP_R_Slime_mold cd14940
slime mold cyclic AMP receptor, member of the class E family of seven-transmembrane G ...
178-285 1.32e-03

slime mold cyclic AMP receptor, member of the class E family of seven-transmembrane G protein-coupled receptors; This family represents the class E of seven-transmembrane G-protein coupled receptors found in soil-living amoebas, commonly referred to as slime molds. The class E family includes cAMP receptors (cAR1-4) and cAMP receptors-like proteins (CrlA-C) from Dictyostelium discoideum, and their highly homologous cAMP receptors (TasA and TasB) from Polysphondylium pallidum. So far, four subtypes of cAMP receptors (cAR1-4) have been identified that play an essential role in the detection and transmit of the periodic extracellular cAMP waves that regulate chemotactic cell movement during Dictyostelium development, from the unicellular amoeba aggregate into many multicellular slugs and then differentiate into a sporocarp, a fruiting body with cells specialized for different functions. These four subtypes differ in their expression levels and patterns during development. cAR1 is high-affinity receptor that is the first one to be expressed highly during early aggregation and continues to be expressed at low levels during later developmental stages. cAR1 detects extracellular cAMP and is coupled to G-alpha2 protein. Cells lacking cAR1 fail to aggregate, demonstrating that cAR1 is responsible for aggregation. During later aggregation the high-affinity cAR3 receptor is expressed at low levels. Nonetheless, cells lacking cAR3 do not show an obviously altered pattern of development and are still able to aggregate into fruiting bodies. In contrast, cAR2 and cAR4 are low affinity receptors expressed predominantly after aggregation in pre-stalk cells. cAR2 is essential for normal tip formation and deletion of the receptor arrests development at the mound stage. On the other hand, CAR4 regulates axial patterning and cellular differentiation, and deletion of the receptor results in defects during culmination. Furthermore, three cAMP receptor-like proteins (CrlA-C) were identified in Dictyostelium that show limited sequence similarity to the cAMP receptors. Of these CrlA is thought to be required for normal cell growth and tip formation in developing aggregates.


Pssm-ID: 320094 [Multi-domain]  Cd Length: 256  Bit Score: 39.64  E-value: 1.32e-03
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 302058299 178 FYG--IAIFLGSFVLSLLTimvllirAQTLYKKFVKstgflGSEQWAVIHIVDQ-RVRFYPVAFFCCWGPAVILMIIKLT 254
Cdd:cd14940  153 FYGpfFIIFGISAVLVGLT-------SHYTYQVIHN-----WVSDNKDLHKTYQfKLVNYIIVFLLCWIFAVINRIQNAL 220
                         90       100       110
                 ....*....|....*....|....*....|.
gi 302058299 255 KPQDTklhmALYVLQALTATSQGLLNCGVYG 285
Cdd:cd14940  221 NPFPF----ALNLLHTYLSPSHGFYASVVFI 247
 
Name Accession Description Interval E-value
7tmE_cAMP_R_Slime_mold cd14940
slime mold cyclic AMP receptor, member of the class E family of seven-transmembrane G ...
178-285 1.32e-03

slime mold cyclic AMP receptor, member of the class E family of seven-transmembrane G protein-coupled receptors; This family represents the class E of seven-transmembrane G-protein coupled receptors found in soil-living amoebas, commonly referred to as slime molds. The class E family includes cAMP receptors (cAR1-4) and cAMP receptors-like proteins (CrlA-C) from Dictyostelium discoideum, and their highly homologous cAMP receptors (TasA and TasB) from Polysphondylium pallidum. So far, four subtypes of cAMP receptors (cAR1-4) have been identified that play an essential role in the detection and transmit of the periodic extracellular cAMP waves that regulate chemotactic cell movement during Dictyostelium development, from the unicellular amoeba aggregate into many multicellular slugs and then differentiate into a sporocarp, a fruiting body with cells specialized for different functions. These four subtypes differ in their expression levels and patterns during development. cAR1 is high-affinity receptor that is the first one to be expressed highly during early aggregation and continues to be expressed at low levels during later developmental stages. cAR1 detects extracellular cAMP and is coupled to G-alpha2 protein. Cells lacking cAR1 fail to aggregate, demonstrating that cAR1 is responsible for aggregation. During later aggregation the high-affinity cAR3 receptor is expressed at low levels. Nonetheless, cells lacking cAR3 do not show an obviously altered pattern of development and are still able to aggregate into fruiting bodies. In contrast, cAR2 and cAR4 are low affinity receptors expressed predominantly after aggregation in pre-stalk cells. cAR2 is essential for normal tip formation and deletion of the receptor arrests development at the mound stage. On the other hand, CAR4 regulates axial patterning and cellular differentiation, and deletion of the receptor results in defects during culmination. Furthermore, three cAMP receptor-like proteins (CrlA-C) were identified in Dictyostelium that show limited sequence similarity to the cAMP receptors. Of these CrlA is thought to be required for normal cell growth and tip formation in developing aggregates.


Pssm-ID: 320094 [Multi-domain]  Cd Length: 256  Bit Score: 39.64  E-value: 1.32e-03
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 302058299 178 FYG--IAIFLGSFVLSLLTimvllirAQTLYKKFVKstgflGSEQWAVIHIVDQ-RVRFYPVAFFCCWGPAVILMIIKLT 254
Cdd:cd14940  153 FYGpfFIIFGISAVLVGLT-------SHYTYQVIHN-----WVSDNKDLHKTYQfKLVNYIIVFLLCWIFAVINRIQNAL 220
                         90       100       110
                 ....*....|....*....|....*....|.
gi 302058299 255 KPQDTklhmALYVLQALTATSQGLLNCGVYG 285
Cdd:cd14940  221 NPFPF----ALNLLHTYLSPSHGFYASVVFI 247
 
Blast search parameters
Data Source: Precalculated data, version = cdd.v.3.21
Preset Options:Database: CDSEARCH/cdd   Low complexity filter: no  Composition Based Adjustment: yes   E-value threshold: 0.01

References:

  • Wang J et al. (2023), "The conserved domain database in 2023", Nucleic Acids Res.51(D)384-8.
  • Lu S et al. (2020), "The conserved domain database in 2020", Nucleic Acids Res.48(D)265-8.
  • Marchler-Bauer A et al. (2017), "CDD/SPARCLE: functional classification of proteins via subfamily domain architectures.", Nucleic Acids Res.45(D)200-3.
Help | Disclaimer | Write to the Help Desk
NCBI | NLM | NIH