signal-regulatory protein gamma isoform 3 precursor [Homo sapiens]
immunoglobulin domain-containing family protein; immunoglobulin domain-containing protein( domain architecture ID 11610743)
immunoglobulin (Ig) domain-containing family protein is a member of a large superfamily containing cell surface antigen receptors, co-receptors and co-stimulatory molecules of the immune system, molecules involved in antigen presentation to lymphocytes, cell adhesion molecules, certain cytokine receptors and intracellular muscle proteins; immunoglobulin domains are typically divided into 4 main classes based on their structures and sequences: the Variable (V), Constant 1 (C1), Constant 2 (C2), and Intermediate (I) sets| immunoglobulin (Ig) domain-containing protein adopts a fold comprised of a sandwich of two beta sheets and may function in cell adhesion and/or pattern recognition
List of domain hits
Name | Accession | Description | Interval | E-value | |||
IgV_SIRP | cd16097 | Immunoglobulin (Ig)-like variable (V) domain of the Signal-Regulatory Protein (SIRP); The ... |
33-143 | 7.02e-80 | |||
Immunoglobulin (Ig)-like variable (V) domain of the Signal-Regulatory Protein (SIRP); The members here are composed of the immunoglobulin (Ig)-like domain of the Signal-Regulatory Protein (SIRP). The SIRPs belong to the "paired receptors" class of membrane proteins that comprise several genes coding for proteins with similar extracellular regions, but very different transmembrane/cytoplasmic regions with different (activating or inhibitory) signaling potentials. They are commonly on NK cells, but are also on many myeloid cells. Their extracellular region contains three immunoglobulin superfamily domains, a single V-set, and two C1-set IgSF domains. Their cytoplasmic tails that contain either ITIMs or transmembrane regions have positively charged residues that allow an association with adaptor proteins, such as DAP12/KARAP, containing ITAMs. There are 3 distinct SIRP members: alpha, beta, and gamma. SIRP alpha (also known as CD172a or SRC homology 2 domain-containing protein tyrosine phosphatase substrate 1/Shps-1) is a membrane receptor that interacts with a ligand CD47 expressed on many cells and gives an inhibitory signal through immunoreceptor tyrosine-based inhibition motifs in the cytoplasmic region that interact with phosphatases SHP-1 and SHP-2. SIRP beta has a short cytoplasmic region and associates with a transmembrane adapter protein DAP12 containing immunoreceptor tyrosine-based activation motifs to give an activating signal. SIRP gamma contains a very short cytoplasmic region lacking obvious signaling motifs, but also binds CD47 with much less affinity. Members of this group contain standard Ig superfamily V-set AGFCC'C"/DEB domain topology. : Pssm-ID: 409516 Cd Length: 111 Bit Score: 236.30 E-value: 7.02e-80
|
|||||||
IgC1_SIRP_domain_2 | cd05772 | Signal-regulatory protein (SIRP) immunoglobulin-like domain 2; member of the C1-set of Ig ... |
145-247 | 6.29e-62 | |||
Signal-regulatory protein (SIRP) immunoglobulin-like domain 2; member of the C1-set of Ig superfamily (IgSF) domains; The members here are composed of the immunoglobulin (Ig)-like domain in Signal-Regulatory Protein (SIRP), domain 2 (C1 repeat 1). The SIRPs belong to the "paired receptors" class of membrane proteins that comprise several genes coding for proteins with similar extracellular regions, but very different transmembrane/cytoplasmic regions with different (activating or inhibitory) signaling potentials. They are commonly on NK cells, but are also on many myeloid cells. Their extracellular region contains three Immunoglobulin superfamily domains, a single V-set and two C1-set IgSF domains. Their cytoplasmic tails contain either ITIMs or transmembrane regions that have positively charged residues that allow an association with adaptor proteins, such as DAP12/KARAP, containing ITAMs. There are 3 distinct SIRP members: alpha, beta, and gamma. SIRP alpha (also known as CD172a or SRC homology 2 domain-containing protein tyrosine phosphatase substrate 1/Shps-1) is a membrane receptor that interacts with a ligand CD47 expressed on many cells and gives an inhibitory signal through immunoreceptor tyrosine-based inhibition motifs in the cytoplasmic region that interact with phosphatases SHP-1 and SHP-2. SIRP beta has a short cytoplasmic region and associates with a transmembrane adapter protein DAP12 containing immunoreceptor tyrosine-based activation motifs to give an activating signal. SIRP gamma contains a very short cytoplasmic region lacking obvious signaling motifs, but also binds CD47, but with much less affinity. : Pssm-ID: 409429 Cd Length: 102 Bit Score: 190.61 E-value: 6.29e-62
|
|||||||
Name | Accession | Description | Interval | E-value | |||
IgV_SIRP | cd16097 | Immunoglobulin (Ig)-like variable (V) domain of the Signal-Regulatory Protein (SIRP); The ... |
33-143 | 7.02e-80 | |||
Immunoglobulin (Ig)-like variable (V) domain of the Signal-Regulatory Protein (SIRP); The members here are composed of the immunoglobulin (Ig)-like domain of the Signal-Regulatory Protein (SIRP). The SIRPs belong to the "paired receptors" class of membrane proteins that comprise several genes coding for proteins with similar extracellular regions, but very different transmembrane/cytoplasmic regions with different (activating or inhibitory) signaling potentials. They are commonly on NK cells, but are also on many myeloid cells. Their extracellular region contains three immunoglobulin superfamily domains, a single V-set, and two C1-set IgSF domains. Their cytoplasmic tails that contain either ITIMs or transmembrane regions have positively charged residues that allow an association with adaptor proteins, such as DAP12/KARAP, containing ITAMs. There are 3 distinct SIRP members: alpha, beta, and gamma. SIRP alpha (also known as CD172a or SRC homology 2 domain-containing protein tyrosine phosphatase substrate 1/Shps-1) is a membrane receptor that interacts with a ligand CD47 expressed on many cells and gives an inhibitory signal through immunoreceptor tyrosine-based inhibition motifs in the cytoplasmic region that interact with phosphatases SHP-1 and SHP-2. SIRP beta has a short cytoplasmic region and associates with a transmembrane adapter protein DAP12 containing immunoreceptor tyrosine-based activation motifs to give an activating signal. SIRP gamma contains a very short cytoplasmic region lacking obvious signaling motifs, but also binds CD47 with much less affinity. Members of this group contain standard Ig superfamily V-set AGFCC'C"/DEB domain topology. Pssm-ID: 409516 Cd Length: 111 Bit Score: 236.30 E-value: 7.02e-80
|
|||||||
IgC1_SIRP_domain_2 | cd05772 | Signal-regulatory protein (SIRP) immunoglobulin-like domain 2; member of the C1-set of Ig ... |
145-247 | 6.29e-62 | |||
Signal-regulatory protein (SIRP) immunoglobulin-like domain 2; member of the C1-set of Ig superfamily (IgSF) domains; The members here are composed of the immunoglobulin (Ig)-like domain in Signal-Regulatory Protein (SIRP), domain 2 (C1 repeat 1). The SIRPs belong to the "paired receptors" class of membrane proteins that comprise several genes coding for proteins with similar extracellular regions, but very different transmembrane/cytoplasmic regions with different (activating or inhibitory) signaling potentials. They are commonly on NK cells, but are also on many myeloid cells. Their extracellular region contains three Immunoglobulin superfamily domains, a single V-set and two C1-set IgSF domains. Their cytoplasmic tails contain either ITIMs or transmembrane regions that have positively charged residues that allow an association with adaptor proteins, such as DAP12/KARAP, containing ITAMs. There are 3 distinct SIRP members: alpha, beta, and gamma. SIRP alpha (also known as CD172a or SRC homology 2 domain-containing protein tyrosine phosphatase substrate 1/Shps-1) is a membrane receptor that interacts with a ligand CD47 expressed on many cells and gives an inhibitory signal through immunoreceptor tyrosine-based inhibition motifs in the cytoplasmic region that interact with phosphatases SHP-1 and SHP-2. SIRP beta has a short cytoplasmic region and associates with a transmembrane adapter protein DAP12 containing immunoreceptor tyrosine-based activation motifs to give an activating signal. SIRP gamma contains a very short cytoplasmic region lacking obvious signaling motifs, but also binds CD47, but with much less affinity. Pssm-ID: 409429 Cd Length: 102 Bit Score: 190.61 E-value: 6.29e-62
|
|||||||
V-set | pfam07686 | Immunoglobulin V-set domain; This domain is found in antibodies as well as neural protein P0 ... |
36-133 | 1.27e-12 | |||
Immunoglobulin V-set domain; This domain is found in antibodies as well as neural protein P0 and CTL4 amongst others. Pssm-ID: 462230 Cd Length: 109 Bit Score: 62.86 E-value: 1.27e-12
|
|||||||
C1-set | pfam07654 | Immunoglobulin C1-set domain; |
162-233 | 3.60e-10 | |||
Immunoglobulin C1-set domain; Pssm-ID: 462221 Cd Length: 85 Bit Score: 55.33 E-value: 3.60e-10
|
|||||||
IGc1 | smart00407 | Immunoglobulin C-Type; |
163-235 | 5.48e-09 | |||
Immunoglobulin C-Type; Pssm-ID: 214651 Cd Length: 75 Bit Score: 51.93 E-value: 5.48e-09
|
|||||||
IGv | smart00406 | Immunoglobulin V-Type; |
48-119 | 4.00e-08 | |||
Immunoglobulin V-Type; Pssm-ID: 214650 Cd Length: 81 Bit Score: 49.69 E-value: 4.00e-08
|
|||||||
Name | Accession | Description | Interval | E-value | |||
IgV_SIRP | cd16097 | Immunoglobulin (Ig)-like variable (V) domain of the Signal-Regulatory Protein (SIRP); The ... |
33-143 | 7.02e-80 | |||
Immunoglobulin (Ig)-like variable (V) domain of the Signal-Regulatory Protein (SIRP); The members here are composed of the immunoglobulin (Ig)-like domain of the Signal-Regulatory Protein (SIRP). The SIRPs belong to the "paired receptors" class of membrane proteins that comprise several genes coding for proteins with similar extracellular regions, but very different transmembrane/cytoplasmic regions with different (activating or inhibitory) signaling potentials. They are commonly on NK cells, but are also on many myeloid cells. Their extracellular region contains three immunoglobulin superfamily domains, a single V-set, and two C1-set IgSF domains. Their cytoplasmic tails that contain either ITIMs or transmembrane regions have positively charged residues that allow an association with adaptor proteins, such as DAP12/KARAP, containing ITAMs. There are 3 distinct SIRP members: alpha, beta, and gamma. SIRP alpha (also known as CD172a or SRC homology 2 domain-containing protein tyrosine phosphatase substrate 1/Shps-1) is a membrane receptor that interacts with a ligand CD47 expressed on many cells and gives an inhibitory signal through immunoreceptor tyrosine-based inhibition motifs in the cytoplasmic region that interact with phosphatases SHP-1 and SHP-2. SIRP beta has a short cytoplasmic region and associates with a transmembrane adapter protein DAP12 containing immunoreceptor tyrosine-based activation motifs to give an activating signal. SIRP gamma contains a very short cytoplasmic region lacking obvious signaling motifs, but also binds CD47 with much less affinity. Members of this group contain standard Ig superfamily V-set AGFCC'C"/DEB domain topology. Pssm-ID: 409516 Cd Length: 111 Bit Score: 236.30 E-value: 7.02e-80
|
|||||||
IgC1_SIRP_domain_2 | cd05772 | Signal-regulatory protein (SIRP) immunoglobulin-like domain 2; member of the C1-set of Ig ... |
145-247 | 6.29e-62 | |||
Signal-regulatory protein (SIRP) immunoglobulin-like domain 2; member of the C1-set of Ig superfamily (IgSF) domains; The members here are composed of the immunoglobulin (Ig)-like domain in Signal-Regulatory Protein (SIRP), domain 2 (C1 repeat 1). The SIRPs belong to the "paired receptors" class of membrane proteins that comprise several genes coding for proteins with similar extracellular regions, but very different transmembrane/cytoplasmic regions with different (activating or inhibitory) signaling potentials. They are commonly on NK cells, but are also on many myeloid cells. Their extracellular region contains three Immunoglobulin superfamily domains, a single V-set and two C1-set IgSF domains. Their cytoplasmic tails contain either ITIMs or transmembrane regions that have positively charged residues that allow an association with adaptor proteins, such as DAP12/KARAP, containing ITAMs. There are 3 distinct SIRP members: alpha, beta, and gamma. SIRP alpha (also known as CD172a or SRC homology 2 domain-containing protein tyrosine phosphatase substrate 1/Shps-1) is a membrane receptor that interacts with a ligand CD47 expressed on many cells and gives an inhibitory signal through immunoreceptor tyrosine-based inhibition motifs in the cytoplasmic region that interact with phosphatases SHP-1 and SHP-2. SIRP beta has a short cytoplasmic region and associates with a transmembrane adapter protein DAP12 containing immunoreceptor tyrosine-based activation motifs to give an activating signal. SIRP gamma contains a very short cytoplasmic region lacking obvious signaling motifs, but also binds CD47, but with much less affinity. Pssm-ID: 409429 Cd Length: 102 Bit Score: 190.61 E-value: 6.29e-62
|
|||||||
IgV | cd00099 | Immunoglobulin variable domain (IgV); The members here are composed of the immunoglobulin ... |
34-139 | 2.24e-22 | |||
Immunoglobulin variable domain (IgV); The members here are composed of the immunoglobulin variable domain (IgV). The IgV family contains the standard Ig superfamily V-set AGFCC'C"/DEB domain topology, and are components of immunoglobulin (Ig) and T cell receptors. The basic structure of Ig molecules is a tetramer of two light chains and two heavy chains linked by disulfide bonds. In Ig, each chain is composed of one variable domain (IgV) and one or more constant domains (IgC); these names reflect the fact that the variability in sequences is higher in the variable domain than in the constant domain. Within the variable domain, there are regions of even more variability called the hypervariable or complementarity-determining regions (CDRs) which are responsible for antigen binding. A predominant feature of most Ig domains is the disulfide bridge connecting 2 beta-sheets with a tryptophan residue packed against the disulfide bond. Ig superfamily (IgSF) domains can be divided into 4 main classes based on their structures and sequences: the Variable (V), Constant 1 (C1), Constant 2 (C2), and Intermediate (I) sets. Typically, the V-set domains have A, B, E and, D strands in one sheet and A', G, F, C, C', and C" strands in the other. Pssm-ID: 409355 [Multi-domain] Cd Length: 111 Bit Score: 88.93 E-value: 2.24e-22
|
|||||||
IgC1 | cd00098 | Immunoglobulin Constant-1 (C1)-set domain; The members here are composed of C1-set domains, ... |
149-234 | 3.42e-17 | |||
Immunoglobulin Constant-1 (C1)-set domain; The members here are composed of C1-set domains, classical Ig-like domains resembling the antibody constant domain. Members of the IgC1 family are components of immunoglobulin, T-cell receptors, CD1 cell surface glycoproteins, secretory glycoproteins A/C, and major histocompatibility complex (MHC) class I/II molecules. In immunoglobulins, each chain is composed of one variable domain (IgV) and one or more IgC domains. These names reflect the fact that the variability in sequences is higher in the variable domain than in the constant domain. The IgV domain is responsible for antigen binding, while the IgC domain is involved in oligomerization and molecular interactions. The structures in C1-set are smaller than those in the V-set; they have one beta sheet that is formed by strands A, B, E, and D and the other strands by G, F, C, and C'. Pssm-ID: 409354 Cd Length: 95 Bit Score: 74.80 E-value: 3.42e-17
|
|||||||
V-set | pfam07686 | Immunoglobulin V-set domain; This domain is found in antibodies as well as neural protein P0 ... |
36-133 | 1.27e-12 | |||
Immunoglobulin V-set domain; This domain is found in antibodies as well as neural protein P0 and CTL4 amongst others. Pssm-ID: 462230 Cd Length: 109 Bit Score: 62.86 E-value: 1.27e-12
|
|||||||
C1-set | pfam07654 | Immunoglobulin C1-set domain; |
162-233 | 3.60e-10 | |||
Immunoglobulin C1-set domain; Pssm-ID: 462221 Cd Length: 85 Bit Score: 55.33 E-value: 3.60e-10
|
|||||||
IgC1_CH2_Mu | cd16093 | CH2 domain (second constant Ig domain of the heavy chain) in immunoglobulin mu chain; member ... |
161-230 | 5.81e-10 | |||
CH2 domain (second constant Ig domain of the heavy chain) in immunoglobulin mu chain; member of the C1-set of Ig superfamily (IgSF) domains; The members here are composed of the second immunoglobulin constant domain (IgC) of mu heavy chains. This domain is found on the Fc fragment. The basic structure of Ig molecules is a tetramer of two light chains and two heavy chains linked by disulfide bonds. There are two types of light chains: kappa and lambda; each is composed of a constant domain and a variable domain. There are five types of heavy chains: alpha, delta, epsilon, gamma, and mu, all consisting of a variable domain (VH) with three (alpha, delta and gamma) or four (epsilon and mu) constant domains (CH1 to CH4). Ig molecules are modular proteins, in which the variable and constant domains have clear, conserved sequence patterns. Pssm-ID: 409513 Cd Length: 99 Bit Score: 55.09 E-value: 5.81e-10
|
|||||||
IGc1 | smart00407 | Immunoglobulin C-Type; |
163-235 | 5.48e-09 | |||
Immunoglobulin C-Type; Pssm-ID: 214651 Cd Length: 75 Bit Score: 51.93 E-value: 5.48e-09
|
|||||||
IGv | smart00406 | Immunoglobulin V-Type; |
48-119 | 4.00e-08 | |||
Immunoglobulin V-Type; Pssm-ID: 214650 Cd Length: 81 Bit Score: 49.69 E-value: 4.00e-08
|
|||||||
IgC1_CH3_IgAGD_CH4_IgAEM | cd05768 | CH3 domain (third constant Ig domain of the heavy chain) in immunoglobulin heavy alpha, gamma, ... |
161-239 | 3.03e-07 | |||
CH3 domain (third constant Ig domain of the heavy chain) in immunoglobulin heavy alpha, gamma, and delta chains, and CH4 domain (fourth constant Ig domain of the heavy chain) in immunoglobulin heavy alpha, epsilon, and mu chains; member of the C1-set of I; The members here are composed of the third and fourth immunoglobulin constant domain (IgC) of alpha, delta, gamma and alpha, epsilon, and mu heavy chains, respectively. This domain is found on the Fc fragment. The basic structure of Ig molecules is a tetramer of two light chains and two heavy chains linked by disulfide bonds. There are two types of light chains: kappa and lambda; each is composed of a constant domain and a variable domain. There are five types of heavy chains: alpha, delta, epsilon, gamma, and mu, all consisting of a variable domain (VH) with three (alpha, delta and gamma) or four (epsilon and mu) constant domains (CH1 to CH4). Ig molecules are modular proteins, in which the variable and constant domains have clear, conserved sequence patterns. Pssm-ID: 409425 Cd Length: 105 Bit Score: 47.72 E-value: 3.03e-07
|
|||||||
IG_like | smart00410 | Immunoglobulin like; IG domains that cannot be classified into one of IGv1, IGc1, IGc2, IG. |
41-120 | 3.82e-07 | |||
Immunoglobulin like; IG domains that cannot be classified into one of IGv1, IGc1, IGc2, IG. Pssm-ID: 214653 [Multi-domain] Cd Length: 85 Bit Score: 47.11 E-value: 3.82e-07
|
|||||||
ig | pfam00047 | Immunoglobulin domain; Members of the immunoglobulin superfamily are found in hundreds of ... |
36-134 | 1.18e-06 | |||
Immunoglobulin domain; Members of the immunoglobulin superfamily are found in hundreds of proteins of different functions. Examples include antibodies, the giant muscle kinase titin and receptor tyrosine kinases. Immunoglobulin-like domains may be involved in protein-protein and protein-ligand interactions. Pssm-ID: 395002 Cd Length: 86 Bit Score: 45.65 E-value: 1.18e-06
|
|||||||
IgV_L_kappa | cd04980 | Immunoglobulin (Ig) light chain, kappa type, variable (V) domain; The members here are ... |
32-123 | 6.49e-06 | |||
Immunoglobulin (Ig) light chain, kappa type, variable (V) domain; The members here are composed of the immunoglobulin (Ig) light chain, kappa type, variable (V) domain. This group contains the standard Ig superfamily V-set AGFCC'C"/DEB domain topology. The basic structure of Ig molecules is a tetramer of two light chains and two heavy chains linked by disulfide bonds. There are two types of light chains: kappa and lambda, each composed of a constant domain (CL) and a variable domain (VL). There are five types of heavy chains (alpha, gamma, delta, epsilon, and mu), which determines the type of immunoglobulin formed: IgA, IgG, IgD, IgE, and IgM, respectively. In higher vertebrates, there are two types of light chain, designated kappa and lambda, which seem to be functionally identical, and can associate with any of the heavy chains. Pssm-ID: 409369 Cd Length: 106 Bit Score: 43.92 E-value: 6.49e-06
|
|||||||
IgC1_MHC_II_beta | cd05766 | Class II major histocompatibility complex (MHC) beta chain immunoglobulin domain; member of ... |
160-239 | 8.17e-06 | |||
Class II major histocompatibility complex (MHC) beta chain immunoglobulin domain; member of the C1-set of Ig superfamily (IgSF) domains; The members here are composed of the immunoglobulin (Ig) domain of major histocompatibility complex (MHC) class II beta chain. MHC class II molecules play a key role in the initiation of the antigen-specific immune reponse. These molecules have been shown to be expressed constitutively on the cell surface of professional antigen-presenting cells (APCs), including B-lymphocytes, monocytes, and macrophages in both humans and mice. The expression of these molecules has been shown to be induced in nonprofessional APCs such as keratinocyctes and they are also expressed on the surface of activated human T cells and on T cells from other species. The MHC II molecules present antigenic peptides to CD4(+) T-lymphocytes. These peptides derive mostly from proteolytic processing via the endocytic pathway of antigens internalized by the APC. These peptides bind to the MHC class II molecules in the endosome before they are transported to the cell surface. MHC class II molecules are heterodimers, comprised of two similarly-sized membrane-spanning chains, alpha and beta. Each chain has two globular domains (N- and C-terminal) and a membrane-anchoring transmembrane segment. The two chains form a compact four-domain structure. The peptide-binding site is a cleft in the structure. Pssm-ID: 409423 Cd Length: 96 Bit Score: 43.48 E-value: 8.17e-06
|
|||||||
IgC1_Tapasin_R | cd05771 | Tapasin-R immunoglobulin-like domain; member of the C1-set of Ig superfamily (IgSF) domains; ... |
150-239 | 1.29e-05 | |||
Tapasin-R immunoglobulin-like domain; member of the C1-set of Ig superfamily (IgSF) domains; The members here are composed of the immunoglobulin-like domain on Tapasin-R. Tapasin is a V-C1 (variable-constant) immunoglobulin superfamily molecule present in the endoplasmic reticulum (ER), where it links MHC class I molecules to the transporter associated with antigen processing (TAP). Tapasin-R is a tapasin-related protein that contains similar structural motifs to Tapasin, with some marked differences, especially in the V domain, transmembrane and cytoplasmic regions. The majority of Tapasin-R is located within the ER; however, there may be some expression of Tapasin-R at the cell surface. Tapasin-R lacks an obvious ER retention signal. Pssm-ID: 409428 Cd Length: 100 Bit Score: 43.25 E-value: 1.29e-05
|
|||||||
IgC1_L | cd07699 | Immunoglobulin light chain Constant domain; member of the C1-set of Ig superfamily (IgSF) ... |
148-233 | 3.09e-05 | |||
Immunoglobulin light chain Constant domain; member of the C1-set of Ig superfamily (IgSF) domains; The members here are composed of the immunoglobulin (Ig) light chain constant (C) domain. The basic structure of Ig molecules is a tetramer of two light chains and two heavy chains linked by disulfide bonds. In Ig, each chain is composed of one variable domain (IgV) and one or more constant domains (IgC); these names reflect the fact that the variability in sequences is higher in the variable domain than in the constant domain. There are five types of heavy chains (alpha, gamma, delta, epsilon, and mu), which determine the type of immunoglobulin: IgA, IgG, IgD, IgE, and IgM, respectively. In higher vertebrates, there are two types of light chain, designated kappa and lambda, which seem to be functionally identical, and can associate with any of the heavy chains. Pssm-ID: 409496 Cd Length: 99 Bit Score: 42.06 E-value: 3.09e-05
|
|||||||
IgV_TCR_alpha | cd04983 | Immunoglobulin (Ig) variable (V) domain of T-cell receptor (TCR) alpha chain and similar ... |
35-138 | 3.27e-05 | |||
Immunoglobulin (Ig) variable (V) domain of T-cell receptor (TCR) alpha chain and similar proteins; The members here are composed of the immunoglobulin (Ig) variable domain of the alpha chain of alpha/beta T-cell antigen receptors (TCRs). TCRs mediate antigen recognition by T lymphocytes, and are composed of alpha and beta, or gamma and delta polypeptide chains with variable (V) and constant (C) regions. This group represents the variable domain of the alpha chain of TCRs and also includes the variable domain of delta chains of TCRs. Alpha/beta TCRs recognize antigen as peptide fragments presented by major histocompatibility complex (MHC) molecules. The variable domain of TCRs is responsible for antigen recognition, and is located at the N-terminus of the receptor. Gamma/delta TCRs recognize intact protein antigens directly without antigen processing and recognize MHC independently of the bound peptide. Members of this group contain standard Ig superfamily V-set AGFCC'C"/DEB domain topology. Pssm-ID: 409372 [Multi-domain] Cd Length: 109 Bit Score: 42.26 E-value: 3.27e-05
|
|||||||
IgV_P0-like | cd05715 | Immunoglobulin (Ig)-like domain of protein zero (P0) and similar proteins; The members here ... |
39-119 | 4.62e-05 | |||
Immunoglobulin (Ig)-like domain of protein zero (P0) and similar proteins; The members here are composed of the immunoglobulin (Ig) domain of protein zero (P0), a myelin membrane adhesion molecule. P0 accounts for over 50% of the total protein in peripheral nervous system (PNS) myelin. P0 is a single-pass transmembrane glycoprotein with a highly basic intracellular domain and an extracellular Ig domain. The extracellular domain of P0 (P0-ED) is similar to the Ig variable domain, carrying one acceptor sequence for N-linked glycosylation. P0 plays a role in membrane adhesion in the spiral wraps of the myelin sheath. The intracellular domain is thought to mediate membrane apposition of the cytoplasmic faces and may, through electrostatic interactions, interact directly with lipid headgroups. It is thought that homophilic interactions of the P0 extracellular domain mediate membrane juxtaposition in the extracellular space of PNS myelin. This group also contains the Ig domain of sodium channel subunit beta-2 (SCN2B), and of epithelial V-like antigen 1 (EVA). EVA, also known as myelin protein zero-like 2, is an adhesion molecule, which may play a role in structural organization of the thymus and early lymphocyte development. SCN2B subunits play a role in determining sodium channel density and function in neurons,and in control of electrical excitability in the brain. Pssm-ID: 409380 Cd Length: 117 Bit Score: 42.03 E-value: 4.62e-05
|
|||||||
IgI_2_Necl-1-4 | cd05761 | Second immunoglobulin (Ig)-like domain of the nectin-like molecules Necl-1 - Necl-4; member of ... |
142-239 | 6.26e-05 | |||
Second immunoglobulin (Ig)-like domain of the nectin-like molecules Necl-1 - Necl-4; member of the I-set of Ig superfamily domains; The members here are composed of the second immunoglobulin (Ig)-like domain of the nectin-like molecules Necl-1 (also known as cell adhesion molecule 3 or CADM3), Necl-2 (also known as CADM1), Necl-3 (also known as CADM2) and Necl-4 (also known as CADM4). These nectin-like molecules have similar domain structures to those of nectins. At least five nectin-like molecules have been identified (Necl-1 through Necl-5). These have an extracellular region containing three Ig-like domains, one transmembrane region, and one cytoplasmic region. The N-terminal Ig-like domain of the extracellular region belongs to the V-type subfamily of Ig domains, is essential to cell-cell adhesion, and plays a part in the interaction with the envelope glycoprotein D of various viruses. Necl-1 and Necl-2 have Ca(2+)-independent homophilic and heterophilic cell-cell adhesion activity. Necl-1 is specifically expressed in neural tissue and is important to the formation of synapses, axon bundles, and myelinated axons. Necl-2 is expressed in a wide variety of tissues, and is a putative tumour suppressor gene, which is downregulated in aggressive neuroblastoma. Necl-3 has been shown to accumulate in tissues of the central and peripheral nervous system, where it is expressed in ependymal cells and myelinated axons. It is observed at the interface between the axon shaft and the myelin sheath. Necl-4 is expressed on Schwann cells, and plays a key part in initiating peripheral nervous system (PNS) myelination. Necl-4 participates in cell-cell adhesion and is proposed to play a role in tumor suppression. Pssm-ID: 409418 Cd Length: 102 Bit Score: 41.26 E-value: 6.26e-05
|
|||||||
IgC1_MHC_I_alpha3 | cd07698 | Class I major histocompatibility complex (MHC) alpha chain, alpha3 immunoglobulin domain; ... |
157-190 | 6.49e-05 | |||
Class I major histocompatibility complex (MHC) alpha chain, alpha3 immunoglobulin domain; member of the C1-set of Ig superfamily (IgSF) domains; The members here are composed of the immunoglobulin (Ig) domain of major histocompatibility complex (MHC) class I alpha chain. Class I MHC proteins bind antigenic peptide fragments and present them to CD8+ T lymphocytes. Class I molecules consist of a transmembrane alpha chain and a small chain called the beta-2-microglobulin. The alpha chain contains three extracellular domains, two of which fold together to form the peptide-binding cleft (alpha1 and alpha2), and one which has an Ig fold (alpha3). Peptide binding to class I molecules occurs in the endoplasmic reticulum (ER) and involves both chaperones and dedicated factors to assist in peptide loading. Class I MHC molecules are expressed on most nucleated cells. Pssm-ID: 409495 Cd Length: 92 Bit Score: 40.68 E-value: 6.49e-05
|
|||||||
IgC1_MHC_II_beta_HLA-DM | cd21002 | Class II major histocompatibility complex (MHC) beta chain immunoglobulin domain of ... |
156-239 | 9.67e-05 | |||
Class II major histocompatibility complex (MHC) beta chain immunoglobulin domain of histocompatibility antigen (HLA) DM; member of the C1-set of Ig superfamily (IgSF) domains; The members here are composed of the Class II major histocompatibility complex (MHC) beta chain immunoglobulin domain of histocompatibility antigen (HLA) DM. Human HLA-DM plays a critical role in antigen presentation to CD4 T cells by catalyzing the exchange of peptides bound to MHC class II molecules. Type 1 diabetes is correlated with DM activation and it is also implicated in viral infections such as herpes simplex virus, celiac disease, multiple sclerosis, other autoimmune diseases, and leukemia. MHC class II molecules play a key role in the initiation of the antigen-specific immune reponse. These molecules have been shown to be expressed constitutively on the cell surface of professional antigen-presenting cells (APCs), including B-lymphocytes, monocytes, and macrophages in both humans and mice. The expression of these molecules has been shown to be induced in nonprofessional APCs such as keratinocyctes, and they are expressed on the surface of activated human T cells and on T cells from other species. The MHC II molecules present antigenic peptides to CD4(+) T-lymphocytes. These peptides derive mostly from proteolytic processing via the endocytic pathway, of antigens internalized by the APC. These peptides bind to the MHC class II molecules in the endosome before they are transported to the cell surface. MHC class II molecules are heterodimers, comprised of two similarly-sized membrane-spanning chains, alpha and beta. Each chain had two globular domains (N- and C-terminal), and a membrane-anchoring transmembrane segment. The two chains form a compact four-domain structure. The peptide-binding site is a cleft in the structure. Pssm-ID: 409593 Cd Length: 97 Bit Score: 40.68 E-value: 9.67e-05
|
|||||||
IgC1_CD1 | cd21029 | Immunoglobulin domain of Cluster of Differentiation (CD) 1; member of the C1-set of Ig ... |
145-236 | 2.14e-04 | |||
Immunoglobulin domain of Cluster of Differentiation (CD) 1; member of the C1-set of Ig superfamily (IgSF) domains; The members here are composed of the immunoglobulin domain of Cluster of Differentiation (CD) 1. CD1 family of transmembrane glycoproteins, are structurally related to the major histocompatibility complex (MHC) proteins and form heterodimers with beta-2-microglobulin. They mediate the presentation of primarily lipid and glycolipid antigens of self or microbial origin to T cells. The human genome contains five CD1 family genes (CD1a, CD1b, CD1c, CD1d, and CD1e) organized in a cluster on chromosome 1. The CD1 family members are thought to differ in their cellular localization and specificity for particular lipid ligands. CD1a localizes to the plasma membrane and to recycling vesicles of the early endocytic system. Alternative splicing results in multiple transcript variants. Immunoglobulin (Ig) domain of major histocompatibility complex (MHC) class I alpha chain. Class I MHC proteins bind antigenic peptide fragments and present them to CD8+ T lymphocytes. Class I molecules consist of a transmembrane alpha chain and a small chain called the beta-2-microglobulin. The alpha chain contains three extracellular domains, two of which fold together to form the peptide-binding cleft (alpha1 and alpha2), and one which has an Ig fold (alpha3). Peptide binding to class I molecules occurs in the endoplasmic reticulum (ER) and involves both chaperones and dedicated factors to assist in peptide loading. Class I MHC molecules are expressed on most nucleated cells. C1-set Ig domains have one beta sheet that is formed by strands A, B, E, and D and the other strands by G, F, C, and C'. Pssm-ID: 409620 Cd Length: 93 Bit Score: 39.61 E-value: 2.14e-04
|
|||||||
IgV_EVA1 | cd05880 | Immunoglobulin (Ig)-like domain of epithelial V-like antigen (EVA) 1; The members here are ... |
46-135 | 2.40e-04 | |||
Immunoglobulin (Ig)-like domain of epithelial V-like antigen (EVA) 1; The members here are composed of the immunoglobulin (Ig) domain of epithelial V-like antigen 1 (EVA 1). EVA is also known as myelin protein zero-like 2. EVA is an adhesion molecule and may play a role in the structural organization of the thymus and early lymphocyte development. Pssm-ID: 409464 Cd Length: 116 Bit Score: 39.81 E-value: 2.40e-04
|
|||||||
IgV_1_PVR_like | cd05718 | First immunoglobulin variable (IgV) domain of poliovirus receptor (PVR, also known as CD155 ... |
44-126 | 2.68e-04 | |||
First immunoglobulin variable (IgV) domain of poliovirus receptor (PVR, also known as CD155 and necl-5), and similar domains; The members here are composed of the first immunoglobulin (Ig) domain of poliovirus receptor (PVR, also known as CD155 and nectin-like protein 5 (necl-5)). Poliovirus (PV) binds to its cellular receptor (PVR/CD155) to initiate infection. CD155 is a membrane-anchored, single-span glycoprotein; its extracellular region has three Ig-like domains. There are four different isotypes of CD155 (referred to as alpha, beta, gamma, and delta), that result from alternate splicing of the CD155 mRNA, and have identical extracellular domains. CD155-beta and CD155-gamma are secreted; CD155-alpha and CD155-delta are membrane-bound and function as PV receptors. The virus recognition site is contained in the amino-terminal domain, D1. Having the virus attachment site on the receptor distal from the plasma membrane may be important for successful initiation of infection of cells by the virus. CD155 binds in the poliovirus "canyon" with a footprint similar to that of the intercellular adhesion molecule-1 receptor on human rhinoviruses. This group also includes the first Ig-like domain of nectin-1 (also known as poliovirus receptor related protein(PVRL)1; CD111), nectin-3 (also known as PVRL 3), nectin-4 (also known as PVRL4; LNIR receptor)and DNAX accessory molecule 1 (DNAM-1; CD226). Pssm-ID: 409383 Cd Length: 113 Bit Score: 39.74 E-value: 2.68e-04
|
|||||||
IgI_2_Necl-3 | cd05884 | Second immunoglobulin (Ig)-like domain of nectin-like molecule-3 (Necl-3); member of the I-set ... |
146-237 | 2.74e-04 | |||
Second immunoglobulin (Ig)-like domain of nectin-like molecule-3 (Necl-3); member of the I-set of Ig superfamily domains; The members here are composed of the second immunoglobulin (Ig)-like domain of nectin-like molecule-3 (Necl-3; also known as cell adhesion molecule 2 (CADM2)). Nectin-like molecules have similar domain structures to those of nectins. At least five nectin-like molecules have been identified (Necl-1 through Necl-5). These have an extracellular region containing three Ig-like domains, one transmembrane region, and one cytoplasmic region. Necl-3 has been shown to accumulate in tissues of the central and peripheral nervous system where it is expressed in ependymal cells and myelinated axons. It is observed at the interface between the axon shaft and the myelin sheath. Ig domains are likely to participate in ligand binding and recognition. Pssm-ID: 409467 Cd Length: 104 Bit Score: 39.53 E-value: 2.74e-04
|
|||||||
IgC1_CH1_IgADEGM | cd04985 | CH1 domain (first constant Ig domain of the heavy chain) in immunoglobulin heavy alpha, delta, ... |
148-230 | 5.59e-04 | |||
CH1 domain (first constant Ig domain of the heavy chain) in immunoglobulin heavy alpha, delta, epsilon, gamma, and mu chains; member of the C1-set of Ig superfamily (IgSF) domains; The members here are composed of the first immunoglobulin constant-1 set domain of alpha, delta, epsilon, gamma, and mu heavy chains. This domain is found on the Fab antigen-binding fragment. The basic structure of Ig molecules is a tetramer of two light chains and two heavy chains linked by disulfide bonds. There are two types of light chains: kappa and lambda; each is composed of a constant domain and a variable domain. There are five types of heavy chains: alpha, delta, epsilon, gamma, and mu, all consisting of a variable domain (VH) with three (alpha, delta and gamma) or four (epsilon and mu) constant domains (CH1 to CH4). Ig molecules are modular proteins, in which the variable and constant domains have clear, conserved sequence patterns. This group belongs to the C1-set of IgSF domains, which are classical Ig-like domains resembling the antibody constant domain. C1-set domains are found almost exclusively in molecules involved in the immune system, such as in immunoglobulin light and heavy chains, in the major histocompatibility complex (MHC) class I and II complex molecules, and in various T-cell receptors. Pssm-ID: 409374 Cd Length: 98 Bit Score: 38.34 E-value: 5.59e-04
|
|||||||
I-set | pfam07679 | Immunoglobulin I-set domain; |
33-120 | 6.53e-04 | |||
Immunoglobulin I-set domain; Pssm-ID: 400151 [Multi-domain] Cd Length: 90 Bit Score: 38.01 E-value: 6.53e-04
|
|||||||
IgC1_SIRP_domain_3 | cd16085 | Signal-regulatory protein (SIRP) immunoglobulin-like domain 3; member of the C1-set of Ig ... |
158-199 | 9.74e-04 | |||
Signal-regulatory protein (SIRP) immunoglobulin-like domain 3; member of the C1-set of Ig superfamily (IgSF) domains; The members here are composed of the immunoglobulin (Ig)-like domain in Signal-Regulatory Protein (SIRP), domain 3 (C1 repeat 2). The SIRPs belong to the "paired receptors" class of membrane proteins that comprise several genes coding for proteins with similar extracellular regions but very different transmembrane/cytoplasmic regions with different (activating or inhibitory) signaling potentials. They are commonly on NK cells, but are also on many myeloid cells. Their extracellular region contains three Immunoglobulin superfamily domains a single V-set and two C1-set IgSF domains. Their cytoplasmic tails that contain either ITIMs or transmembrane regions that have positively charged residues that allow an association with adaptor proteins, such as DAP12/KARAP, containing ITAMs. There are 3 distinct SIRP members: alpha, beta, and gamma. SIRP alpha (also known as CD172a or SRC homology 2 domain-containing protein tyrosine phosphatase substrate 1/Shps-1) is a membrane receptor that interacts with a ligand CD47 expressed on many cells and gives an inhibitory signal through immunoreceptor tyrosine-based inhibition motifs in the cytoplasmic region that interact with phosphatases SHP-1 and SHP-2. SIRP beta has a short cytoplasmic region and associates with a transmembrane adapter protein DAP12 containing immunoreceptor tyrosine-based activation motifs to give an activating signal. SIRP gamma contains a very short cytoplasmic region lacking obvious signaling motifs but also binds CD47, but with much less affinity. Pssm-ID: 409507 Cd Length: 96 Bit Score: 37.79 E-value: 9.74e-04
|
|||||||
Ig_3 | pfam13927 | Immunoglobulin domain; This family contains immunoglobulin-like domains. |
43-120 | 9.76e-04 | |||
Immunoglobulin domain; This family contains immunoglobulin-like domains. Pssm-ID: 464046 [Multi-domain] Cd Length: 78 Bit Score: 37.16 E-value: 9.76e-04
|
|||||||
IgC1_MHC_Ia_RT1-Aa | cd21015 | Class Ia major histocompatibility complex (MHC) immunoglobulin domain of RT1-Aa; member of the ... |
146-230 | 1.05e-03 | |||
Class Ia major histocompatibility complex (MHC) immunoglobulin domain of RT1-Aa; member of the C1-set of Ig superfamily (IgSF) domains; The members here are composed of the Class Ia major histocompatibility complex (MHC) immunoglobulin domain of RT1-Aa. While most mammalian species transport these peptides into the ER via a single allele of TAP, rats have evolved different TAPs, TAP-A and TAP-B, RT1-Aa and RT1-A1c, which are associated with TAP-A and TAP-B. The rat MHC class Ia molecule RT1-Aa has the unusual capacity to bind long peptides ending in arginine, such as MTF-E, a thirteen-residue, maternally transmitted minor histocompatibility antigen. Class I MHC proteins bind antigenic peptide fragments and present them to CD8+ T lymphocytes. Class I molecules consist of a transmembrane alpha chain and a small chain called the beta-2-microglobulin. The alpha chain contains three extracellular domains, two of which fold together to form the peptide-binding cleft (alpha1 and alpha2), and one which has an Ig fold (alpha3). Peptide binding to class I molecules occurs in the endoplasmic reticulum (ER) and involves both chaperones and dedicated factors to assist in peptide loading. Class I MHC molecules are expressed on most nucleated cells. Pssm-ID: 409606 Cd Length: 95 Bit Score: 37.44 E-value: 1.05e-03
|
|||||||
IgC1_MHC_Ia_H-2Kb | cd21019 | Class Ia major histocompatibility complex (MHC) immunoglobulin domain of H-2Kb; member of the ... |
154-237 | 1.29e-03 | |||
Class Ia major histocompatibility complex (MHC) immunoglobulin domain of H-2Kb; member of the C1-set of Ig superfamily (IgSF) domains; The members here are composed of the Class Ia major histocompatibility complex (MHC) immunoglobulin domain of H-2Kb. H-2Kb is an alloantigen for the 2C T cell receptor (TCR). H-2Kb forms a complex with beta-2-microglobulin, and a peptide, including VSV-8 (RGYVYNGL), SEV-9 (FAPGNYPAL), and OVA-8 (SIINFEKL). Comparison of the OVA-8, VSV-8, and SEV-9 complexes with H-2Kb indicates that four side chains (Lys-66, Glu-152, Arg-155, and Trp-167) adopt peptide-specific conformations. H-2Kb paralogs include H-2Db, H-2Kbml and H-2KbI1s. Class I MHC proteins bind antigenic peptide fragments and present them to CD8+ T lymphocytes. Class I molecules consist of a transmembrane alpha chain and a small chain called the beta-2-microglobulin. The alpha chain contains three extracellular domains, two of which fold together to form the peptide-binding cleft (alpha1 and alpha2), and one which has an Ig fold (alpha3). Peptide binding to class I molecules occurs in the endoplasmic reticulum (ER) and involves both chaperones and dedicated factors to assist in peptide loading. Class I MHC molecules are expressed on most nucleated cells. Pssm-ID: 409610 Cd Length: 94 Bit Score: 37.40 E-value: 1.29e-03
|
|||||||
IgI_2_Necl-1 | cd07705 | Second immunoglobulin (Ig)-like domain of nectin-like molcule-1 (Necl-1); member of the I-set ... |
146-235 | 1.37e-03 | |||
Second immunoglobulin (Ig)-like domain of nectin-like molcule-1 (Necl-1); member of the I-set of Ig superfamily domains; The members here are composed of the second immunoglobulin (Ig)-like domain of nectin-like molcule-1 (Necl-1; also known as cell adhesion molecule3 (CADM3)). These nectin-like molecules have similar domain structures to those of nectins. At least five nectin-like molecules have been identified (Necl-1 through Necl-5). These have an extracellular region containing three Ig-like domains, one transmembrane region, and one cytoplasmic region. The N-terminal Ig-like domain of the extracellular region belongs to the V-type subfamily of Ig domains is essential to cell-cell adhesion and plays a part in the interaction with the envelope glycoprotein D of various viruses. Necl-1 and Necl-2 have Ca(2+)-independent homophilic and heterophilic cell-cell adhesion activity. Necl-1 is specifically expressed in neural tissue and is important to the formation of synapses, axon bundles, and myelinated axons. Necl-2 is expressed in a wide variety of tissues and is a putative tumour suppressor gene which is downregulated in aggressive neuroblastoma. Ig domains are likely to participate in ligand binding and recognition. Pssm-ID: 409502 Cd Length: 103 Bit Score: 37.26 E-value: 1.37e-03
|
|||||||
IgV_TCR_gamma | cd04982 | Immunoglobulin (Ig) variable (V) domain of T-cell receptor (TCR) gamma chain; The members here ... |
36-126 | 1.38e-03 | |||
Immunoglobulin (Ig) variable (V) domain of T-cell receptor (TCR) gamma chain; The members here are composed of the immunoglobulin (Ig) variable (V) domain of the gamma chain of gamma/delta T-cell receptors (TCRs). TCRs mediate antigen recognition by T lymphocytes, and are heterodimers consisting of alpha and beta chains or gamma and delta chains. Each chain contains a variable (V) and a constant (C) region. The majority of T cells contain alpha/beta TCRs, but a small subset contain gamma/delta TCRs. Alpha/beta TCRs recognize antigens as peptide fragments presented by major histocompatibility complex (MHC) molecules. Gamma/delta TCRs recognize intact protein antigens directly without antigen processing and recognize MHC independently of the bound peptide. Gamma/delta T cells can also be stimulated by non-peptide antigens such as small phosphate- or amine-containing compounds. The variable domain of gamma/delta TCRs is responsible for antigen recognition and is located at the N-terminus of the receptor. Members of this group contain the standard Ig superfamily V-set AGFCC'C"/DEB domain topology. Pssm-ID: 409371 Cd Length: 117 Bit Score: 37.73 E-value: 1.38e-03
|
|||||||
IgC1_MHC_Ib_T10_T22_like | cd21016 | Class Ib major histocompatibility complex (MHC) immunoglobulin domain of T10, T22, and similar ... |
154-190 | 2.73e-03 | |||
Class Ib major histocompatibility complex (MHC) immunoglobulin domain of T10, T22, and similar proteins; member of the C1-set of Ig superfamily (IgSF) domains; The members here are composed of the Class Ib major histocompatibility complex (MHC) immunoglobulin domain of the murine H-2T-encoded T10, T22, and similar proteins. T10 and T22 are highly related nonclassical major histocompatibility complex (MHC) class Ib proteins that bind to certain gammadelta T cell receptors (TCRs) in the absence of other components. Classical MHC class I (class Ia) molecules participate in immune responses by presenting peptide antigens to cytolytic alpha beta T cells. Many nonclassical MHC class I (class Ib) molecules have distinct antigen-binding capabilities, suggesting that they have evolved for specific tasks that are distinct from those of MHC class Ia. Members of the IgC family are components of immunoglobulin, T-cell receptors, CD1 cell surface glycoproteins, secretory glycoproteins A/C, and major histocompatibility complex (MHC) class I/II molecules. In immunoglobulins, each chain is composed of one variable domain (IgV) and one or more IgC domains. These names reflect the fact that the variability in sequences is higher in the variable domain than in the constant domain. The IgV domain is responsible for antigen binding, and the IgC domain is involved in oligomerization and molecular interactions. Pssm-ID: 409607 Cd Length: 97 Bit Score: 36.62 E-value: 2.73e-03
|
|||||||
IgV_MOG_like | cd05713 | Immunoglobulin (Ig)-like domain of myelin oligodendrocyte glycoprotein (MOG); The members here ... |
33-126 | 5.64e-03 | |||
Immunoglobulin (Ig)-like domain of myelin oligodendrocyte glycoprotein (MOG); The members here are composed of the immunoglobulin (Ig)-like domain of myelin oligodendrocyte glycoprotein (MOG). MOG, a minor component of the myelin sheath, is an important CNS-specific autoantigen, linked to the pathogenesis of multiple sclerosis (MS) and experimental autoimmune encephalomyelitis (EAE). It is a transmembrane protein having an extracellular Ig domain. MOG is expressed in the CNS on the outermost lamellae of the myelin sheath, and on the surface of oligodendrocytes, and may participate in the completion, compaction, and/or maintenance of myelin. This group also includes butyrophilin (BTN). BTN is the most abundant protein in bovine milk-fat globule membrane (MFGM). Pssm-ID: 409378 Cd Length: 114 Bit Score: 36.02 E-value: 5.64e-03
|
|||||||
IgC1_MHC_Ia_H-2Dd | cd21020 | Class Ia major histocompatibility complex (MHC) immunoglobulin domain of H2-Dd; member of the ... |
154-230 | 5.85e-03 | |||
Class Ia major histocompatibility complex (MHC) immunoglobulin domain of H2-Dd; member of the C1-set of Ig superfamily (IgSF) domains; The members here are composed of the Class Ia major histocompatibility complex (MHC) immunoglobulin domain of H2-Dd. Mouse MHC is composed of 11 subclasses. It includes the classical MHC class I (MHC-Ia) that comprises H-2D, H-2K and H-2L subclasses, the non-classical MHC class I (MHCIb) that comprises H-2Q, H-2M and H-2T subclasses, the classical MHC class II (MHC-IIa) that includes H-2A(I-A) and H-2E(I-E) subclasses, and the non-classical MHC class II (MHC-IIb) comprises H-2M and H-2O. H-2K, H-2D, and H-2L are 80 to 90% homologous at the amino acid level yet appear to be involved in different recognition reactions and are differentially expressed on lymphoid cells. Class I MHC proteins bind antigenic peptide fragments and present them to CD8+ T lymphocytes. Class I molecules consist of a transmembrane alpha chain and a small chain called the beta-2-microglobulin. The alpha chain contains three extracellular domains, two of which fold together to form the peptide-binding cleft (alpha1 and alpha2), and one which has an Ig fold (alpha3). Peptide binding to class I molecules occurs in the endoplasmic reticulum (ER) and involves both chaperones and dedicated factors to assist in peptide loading. Class I MHC molecules are expressed on most nucleated cells. Pssm-ID: 409611 Cd Length: 95 Bit Score: 35.50 E-value: 5.85e-03
|
|||||||
IgC1_CH1_IgM | cd21819 | CH1 domain (first constant Ig domain of the heavy chain) in immunoglobulin heavy mu chain; ... |
163-230 | 6.33e-03 | |||
CH1 domain (first constant Ig domain of the heavy chain) in immunoglobulin heavy mu chain; member of the C1-set of Ig superfamily (IgSF) domains; The members here are composed of the first immunoglobulin constant-1 set domain of mu chains. It belongs to a family composed of the first immunoglobulin constant-1 set domain of alpha, delta, epsilon, gamma, and mu heavy chains. This domain is found on the Fab antigen-binding fragment. The basic structure of Ig molecules is a tetramer of two light chains and two heavy chains linked by disulfide bonds. There are two types of light chains: kappa and lambda; each is composed of a constant domain and a variable domain. There are five types of heavy chains: alpha, delta, epsilon, gamma, and mu, all consisting of a variable domain (VH) with three (alpha, delta and gamma) or four (epsilon and mu) constant domains (CH1 to CH4). Ig molecules are modular proteins, in which the variable and constant domains have clear, conserved sequence patterns. This group belongs to the C1-set of IgSF domains, which are classical Ig-like domains resembling the antibody constant domain. C1-set domains are found almost exclusively in molecules involved in the immune system, such as in immunoglobulin light and heavy chains, in the major histocompatibility complex (MHC) class I and II complex molecules, and in various T-cell receptors. Pssm-ID: 409624 Cd Length: 95 Bit Score: 35.38 E-value: 6.33e-03
|
|||||||
Blast search parameters | ||||
|