olfactory receptor Olr691 [Rattus norvegicus]
olfactory receptor family 4A protein( domain architecture ID 11610412)
olfactory receptor family 4A protein is an odorant receptor belonging to the G-protein coupled receptor 1 family
List of domain hits
Name | Accession | Description | Interval | E-value | |||||
7tmA_OR4A-like | cd15939 | olfactory receptor 4A and related proteins, member of the class A family of ... |
24-289 | 1.11e-143 | |||||
olfactory receptor 4A and related proteins, member of the class A family of seven-transmembrane G protein-coupled receptors; This group includes human olfactory receptor subfamily 4A, 4C, 4P, 4S, 4X and related proteins in other mammals and sauropsids. Olfactory receptors (ORs) play a central role in olfaction, the sense of smell. ORs belong to the class A rhodopsin-like family of G protein-coupled receptors and constitute the largest multigene family in mammals of approximately 1,000 genes. More than 60% of human ORs are non-functional pseudogenes compared to only 20% in mouse. Each OR can recognize structurally similar odorants, and a single odorant can be detected by several ORs. Binding of an odorant to the olfactory receptor induces a conformational change that leads to the activation of the olfactory-specific G protein (Golf). The G protein (Golf and/or Gs) in turn stimulates adenylate cyclase to make cAMP. The cAMP opens cyclic nucleotide-gated ion channels, which allow the influx of calcium and sodium ions, resulting in depolarization of the olfactory receptor neuron and triggering an action potential which transmits this information to the brain. A consensus nomenclature system based on evolutionary divergence is used here to classify the olfactory receptor family. The nomenclature begins with the root name OR, followed by an integer representing a family, a letter denoting a subfamily, and an integer representing the individual gene within the subfamily. : Pssm-ID: 320605 [Multi-domain] Cd Length: 267 Bit Score: 405.44 E-value: 1.11e-143
|
|||||||||
Name | Accession | Description | Interval | E-value | |||||
7tmA_OR4A-like | cd15939 | olfactory receptor 4A and related proteins, member of the class A family of ... |
24-289 | 1.11e-143 | |||||
olfactory receptor 4A and related proteins, member of the class A family of seven-transmembrane G protein-coupled receptors; This group includes human olfactory receptor subfamily 4A, 4C, 4P, 4S, 4X and related proteins in other mammals and sauropsids. Olfactory receptors (ORs) play a central role in olfaction, the sense of smell. ORs belong to the class A rhodopsin-like family of G protein-coupled receptors and constitute the largest multigene family in mammals of approximately 1,000 genes. More than 60% of human ORs are non-functional pseudogenes compared to only 20% in mouse. Each OR can recognize structurally similar odorants, and a single odorant can be detected by several ORs. Binding of an odorant to the olfactory receptor induces a conformational change that leads to the activation of the olfactory-specific G protein (Golf). The G protein (Golf and/or Gs) in turn stimulates adenylate cyclase to make cAMP. The cAMP opens cyclic nucleotide-gated ion channels, which allow the influx of calcium and sodium ions, resulting in depolarization of the olfactory receptor neuron and triggering an action potential which transmits this information to the brain. A consensus nomenclature system based on evolutionary divergence is used here to classify the olfactory receptor family. The nomenclature begins with the root name OR, followed by an integer representing a family, a letter denoting a subfamily, and an integer representing the individual gene within the subfamily. Pssm-ID: 320605 [Multi-domain] Cd Length: 267 Bit Score: 405.44 E-value: 1.11e-143
|
|||||||||
7tm_4 | pfam13853 | Olfactory receptor; The members of this family are transmembrane olfactory receptors. |
29-301 | 5.29e-39 | |||||
Olfactory receptor; The members of this family are transmembrane olfactory receptors. Pssm-ID: 404695 Cd Length: 278 Bit Score: 138.79 E-value: 5.29e-39
|
|||||||||
Name | Accession | Description | Interval | E-value | |||||
7tmA_OR4A-like | cd15939 | olfactory receptor 4A and related proteins, member of the class A family of ... |
24-289 | 1.11e-143 | |||||
olfactory receptor 4A and related proteins, member of the class A family of seven-transmembrane G protein-coupled receptors; This group includes human olfactory receptor subfamily 4A, 4C, 4P, 4S, 4X and related proteins in other mammals and sauropsids. Olfactory receptors (ORs) play a central role in olfaction, the sense of smell. ORs belong to the class A rhodopsin-like family of G protein-coupled receptors and constitute the largest multigene family in mammals of approximately 1,000 genes. More than 60% of human ORs are non-functional pseudogenes compared to only 20% in mouse. Each OR can recognize structurally similar odorants, and a single odorant can be detected by several ORs. Binding of an odorant to the olfactory receptor induces a conformational change that leads to the activation of the olfactory-specific G protein (Golf). The G protein (Golf and/or Gs) in turn stimulates adenylate cyclase to make cAMP. The cAMP opens cyclic nucleotide-gated ion channels, which allow the influx of calcium and sodium ions, resulting in depolarization of the olfactory receptor neuron and triggering an action potential which transmits this information to the brain. A consensus nomenclature system based on evolutionary divergence is used here to classify the olfactory receptor family. The nomenclature begins with the root name OR, followed by an integer representing a family, a letter denoting a subfamily, and an integer representing the individual gene within the subfamily. Pssm-ID: 320605 [Multi-domain] Cd Length: 267 Bit Score: 405.44 E-value: 1.11e-143
|
|||||||||
7tmA_OR4-like | cd15226 | olfactory receptor family 4 and related proteins, member of the class A family of ... |
24-289 | 2.31e-112 | |||||
olfactory receptor family 4 and related proteins, member of the class A family of seven-transmembrane G protein-coupled receptors; This group includes human olfactory receptor family 4 and related proteins in other mammals, sauropsids, and amphibians. Olfactory receptors (ORs) play a central role in olfaction, the sense of smell. ORs belong to the class A rhodopsin-like family of G protein-coupled receptors and constitute the largest multigene family in mammals of approximately 1,000 genes. More than 60% of human ORs are non-functional pseudogenes compared to only 20% in mouse. Each OR can recognize structurally similar odorants, and a single odorant can be detected by several ORs. Binding of an odorant to the olfactory receptor induces a conformational change that leads to the activation of the olfactory-specific G protein (Golf). The G protein (Golf and/or Gs) in turn stimulates adenylate cyclase to make cAMP. The cAMP opens cyclic nucleotide-gated ion channels, which allow the influx of calcium and sodium ions, resulting in depolarization of the olfactory receptor neuron and triggering an action potential which transmits this information to the brain. A consensus nomenclature system based on evolutionary divergence is used here to classify the olfactory receptor family. The nomenclature begins with the root name OR, followed by an integer representing a family, a letter denoting a subfamily, and an integer representing the individual gene within the subfamily. Pssm-ID: 320354 [Multi-domain] Cd Length: 267 Bit Score: 326.08 E-value: 2.31e-112
|
|||||||||
7tmA_OR | cd13954 | olfactory receptors, member of the class A family of seven-transmembrane G protein-coupled ... |
24-289 | 4.19e-108 | |||||
olfactory receptors, member of the class A family of seven-transmembrane G protein-coupled receptors; Olfactory receptors (ORs) play a central role in olfaction, the sense of smell. ORs belong to the class A rhodopsin-like family of G protein-coupled receptors and constitute the largest multigene family in mammals of approximately 1,000 genes. More than 60% of human ORs are non-functional pseudogenes compared to only 20% in mouse. Each OR can recognize structurally similar odorants, and a single odorant can be detected by several ORs. Binding of an odorant to the olfactory receptor induces a conformational change that leads to the activation of the olfactory-specific G protein (Golf). The G protein (Golf and/or Gs) in turn stimulates adenylate cyclase to make cAMP. The cAMP opens cyclic nucleotide-gated ion channels, which allow the influx of calcium and sodium ions, resulting in depolarization of the olfactory receptor neuron and triggering an action potential which transmits this information to the brain. A consensus nomenclature system based on evolutionary divergence is used here to classify the olfactory receptor family. The nomenclature begins with the root name OR, followed by an integer representing a family, a letter denoting a subfamily, and an integer representing the individual gene within the subfamily. Pssm-ID: 320092 [Multi-domain] Cd Length: 270 Bit Score: 315.58 E-value: 4.19e-108
|
|||||||||
7tmA_OR10A-like | cd15225 | olfactory receptor subfamily 10A and related proteins, member of the class A family of ... |
24-296 | 5.19e-106 | |||||
olfactory receptor subfamily 10A and related proteins, member of the class A family of seven-transmembrane G protein-coupled receptors; This group includes human olfactory receptor 10A, 10C, 10H, 10J, 10V, 10R, 10J, 10W, among others, and related proteins in other mammals, sauropsids, and amphibians. Olfactory receptors (ORs) play a central role in olfaction, the sense of smell. ORs belong to the class A rhodopsin-like family of G protein-coupled receptors and constitute the largest multigene family in mammals of approximately 1,000 genes. More than 60% of human ORs are non-functional pseudogenes compared to only 20% in mouse. Each OR can recognize structurally similar odorants, and a single odorant can be detected by several ORs. Binding of an odorant to the olfactory receptor induces a conformational change that leads to the activation of the olfactory-specific G protein (Golf). The G protein (Golf and/or Gs) in turn stimulates adenylate cyclase to make cAMP. The cAMP opens cyclic nucleotide-gated ion channels, which allow the influx of calcium and sodium ions, resulting in depolarization of the olfactory receptor neuron and triggering an action potential which transmits this information to the brain. A consensus nomenclature system based on evolutionary divergence is used here to classify the olfactory receptor family. The nomenclature begins with the root name OR, followed by an integer representing a family, a letter denoting a subfamily, and an integer representing the individual gene within the subfamily. Pssm-ID: 320353 Cd Length: 277 Bit Score: 310.54 E-value: 5.19e-106
|
|||||||||
7tmA_OR5-like | cd15230 | olfactory receptor family 5 and related proteins, member of the class A family of ... |
26-289 | 2.21e-101 | |||||
olfactory receptor family 5 and related proteins, member of the class A family of seven-transmembrane G protein-coupled receptors; This group includes human olfactory receptor family 5, some subfamilies from families 8 and 9, and related proteins in other mammals, sauropsids, and amphibians. Olfactory receptors (ORs) play a central role in olfaction, the sense of smell. ORs belong to the class A rhodopsin-like family of G protein-coupled receptors and constitute the largest multigene family in mammals of approximately 1,000 genes. More than 60% of human ORs are non-functional pseudogenes compared to only about 20% in mouse. Each OR can recognize structurally similar odorants, and a single odorant can be detected by several ORs. Binding of an odorant to the olfactory receptor induces a conformational change that leads to the activation of the olfactory-specific G protein (Golf). The G protein (Golf and/or Gs) in turn stimulates adenylate cyclase to make cAMP. The cAMP opens cyclic nucleotide-gated ion channels, which allow the influx of calcium and sodium ions, resulting in depolarization of the olfactory receptor neuron and triggering an action potential which transmits this information to the brain. A consensus nomenclature system based on evolutionary divergence is used here to classify the olfactory receptor family. The nomenclature begins with the root name OR, followed by an integer representing a family, a letter denoting a subfamily, and an integer representing the individual gene within the subfamily. Pssm-ID: 320358 Cd Length: 270 Bit Score: 298.27 E-value: 2.21e-101
|
|||||||||
7tmA_OR5AP2-like | cd15943 | olfactory receptor subfamily 5AP2 and related proteins, member of the class A family of ... |
9-299 | 3.93e-97 | |||||
olfactory receptor subfamily 5AP2 and related proteins, member of the class A family of seven-transmembrane G protein-coupled receptors; This group includes human olfactory receptor subfamily 5AP2 and related proteins in other mammals and sauropsids. Olfactory receptors (ORs) play a central role in olfaction, the sense of smell. ORs belong to the class A rhodopsin-like family of G protein-coupled receptors and constitute the largest multigene family in mammals of approximately 1,000 genes. More than 60% of human ORs are non-functional pseudogenes compared to only about 20% in mouse. Each OR can recognize structurally similar odorants, and a single odorant can be detected by several ORs. Binding of an odorant to the olfactory receptor induces a conformational change that leads to the activation of the olfactory-specific G protein (Golf). The G protein (Golf and/or Gs) in turn stimulates adenylate cyclase to make cAMP. The cAMP opens cyclic nucleotide-gated ion channels, which allow the influx of calcium and sodium ions, resulting in depolarization of the olfactory receptor neuron and triggering an action potential which transmits this information to the brain. A consensus nomenclature system based on evolutionary divergence is used here to classify the olfactory receptor family. The nomenclature begins with the root name OR, followed by an integer representing a family, a letter denoting a subfamily, and an integer representing the individual gene within the subfamily. Pssm-ID: 320609 [Multi-domain] Cd Length: 295 Bit Score: 288.49 E-value: 3.93e-97
|
|||||||||
7tmA_OR4D-like | cd15936 | olfactory receptor 4D and related proteins, member of the class A family of ... |
26-289 | 5.87e-97 | |||||
olfactory receptor 4D and related proteins, member of the class A family of seven-transmembrane G protein-coupled receptors; This group includes human olfactory receptor subfamily 4D and related proteins in other mammals and sauropsids. Olfactory receptors (ORs) play a central role in olfaction, the sense of smell. ORs belong to the class A rhodopsin-like family of G protein-coupled receptors and constitute the largest multigene family in mammals of approximately 1,000 genes. More than 60% of human ORs are non-functional pseudogenes compared to only 20% in mouse. Each OR can recognize structurally similar odorants, and a single odorant can be detected by several ORs. Binding of an odorant to the olfactory receptor induces a conformational change that leads to the activation of the olfactory-specific G protein (Golf). The G protein (Golf and/or Gs) in turn stimulates adenylate cyclase to make cAMP. The cAMP opens cyclic nucleotide-gated ion channels, which allow the influx of calcium and sodium ions, resulting in depolarization of the olfactory receptor neuron and triggering an action potential which transmits this information to the brain. A consensus nomenclature system based on evolutionary divergence is used here to classify the olfactory receptor family. The nomenclature begins with the root name OR, followed by an integer representing a family, a letter denoting a subfamily, and an integer representing the individual gene within the subfamily. Pssm-ID: 320602 [Multi-domain] Cd Length: 267 Bit Score: 286.92 E-value: 5.87e-97
|
|||||||||
7tmA_OR4E-like | cd15940 | olfactory receptor 4E and related proteins, member of the class A family of ... |
26-289 | 4.46e-96 | |||||
olfactory receptor 4E and related proteins, member of the class A family of seven-transmembrane G protein-coupled receptors; This group includes human olfactory receptor subfamily 4E and related proteins in other mammals, sauropsids, and amphibians. Olfactory receptors (ORs) play a central role in olfaction, the sense of smell. ORs belong to the class A rhodopsin-like family of G protein-coupled receptors and constitute the largest multigene family in mammals of approximately 1,000 genes. More than 60% of human ORs are non-functional pseudogenes compared to only 20% in mouse. Each OR can recognize structurally similar odorants, and a single odorant can be detected by several ORs. Binding of an odorant to the olfactory receptor induces a conformational change that leads to the activation of the olfactory-specific G protein (Golf). The G protein (Golf and/or Gs) in turn stimulates adenylate cyclase to make cAMP. The cAMP opens cyclic nucleotide-gated ion channels, which allow the influx of calcium and sodium ions, resulting in depolarization of the olfactory receptor neuron and triggering an action potential which transmits this information to the brain. A consensus nomenclature system based on evolutionary divergence is used here to classify the olfactory receptor family. The nomenclature begins with the root name OR, followed by an integer representing a family, a letter denoting a subfamily, and an integer representing the individual gene within the subfamily. Pssm-ID: 320606 [Multi-domain] Cd Length: 267 Bit Score: 284.72 E-value: 4.46e-96
|
|||||||||
7tmA_OR4Q3-like | cd15935 | olfactory receptor 4Q3 and related proteins, member of the class A family of ... |
23-289 | 8.92e-94 | |||||
olfactory receptor 4Q3 and related proteins, member of the class A family of seven-transmembrane G protein-coupled receptors; This group includes human olfactory receptor 4Q3 and related proteins in other mammals and sauropsids. Olfactory receptors (ORs) play a central role in olfaction, the sense of smell. ORs belong to the class A rhodopsin-like family of G protein-coupled receptors and constitute the largest multigene family in mammals of approximately 1,000 genes. More than 60% of human ORs are non-functional pseudogenes compared to only 20% in mouse. Each OR can recognize structurally similar odorants, and a single odorant can be detected by several ORs. Binding of an odorant to the olfactory receptor induces a conformational change that leads to the activation of the olfactory-specific G protein (Golf). The G protein (Golf and/or Gs) in turn stimulates adenylate cyclase to make cAMP. The cAMP opens cyclic nucleotide-gated ion channels, which allow the influx of calcium and sodium ions, resulting in depolarization of the olfactory receptor neuron and triggering an action potential which transmits this information to the brain. A consensus nomenclature system based on evolutionary divergence is used here to classify the olfactory receptor family. The nomenclature begins with the root name OR, followed by an integer representing a family, a letter denoting a subfamily, and an integer representing the individual gene within the subfamily. Pssm-ID: 320601 [Multi-domain] Cd Length: 268 Bit Score: 278.96 E-value: 8.92e-94
|
|||||||||
7tmA_OR4Q2-like | cd15938 | olfactory receptor 4Q2 and related proteins, member of the class A family of ... |
26-289 | 1.08e-93 | |||||
olfactory receptor 4Q2 and related proteins, member of the class A family of seven-transmembrane G protein-coupled receptors; This group includes human olfactory receptor 4Q2 and related proteins in other mammals and sauropsids. Olfactory receptors (ORs) play a central role in olfaction, the sense of smell. ORs belong to the class A rhodopsin-like family of G protein-coupled receptors and constitute the largest multigene family in mammals of approximately 1,000 genes. More than 60% of human ORs are non-functional pseudogenes compared to only 20% in mouse. Each OR can recognize structurally similar odorants, and a single odorant can be detected by several ORs. Binding of an odorant to the olfactory receptor induces a conformational change that leads to the activation of the olfactory-specific G protein (Golf). The G protein (Golf and/or Gs) in turn stimulates adenylate cyclase to make cAMP. The cAMP opens cyclic nucleotide-gated ion channels, which allow the influx of calcium and sodium ions, resulting in depolarization of the olfactory receptor neuron and triggering an action potential which transmits this information to the brain. A consensus nomenclature system based on evolutionary divergence is used here to classify the olfactory receptor family. The nomenclature begins with the root name OR, followed by an integer representing a family, a letter denoting a subfamily, and an integer representing the individual gene within the subfamily. Pssm-ID: 320604 [Multi-domain] Cd Length: 265 Bit Score: 278.68 E-value: 1.08e-93
|
|||||||||
7tmA_OR5A1-like | cd15417 | olfactory receptor subfamily 5A1 and related proteins, member of the class A family of ... |
26-298 | 7.03e-92 | |||||
olfactory receptor subfamily 5A1 and related proteins, member of the class A family of seven-transmembrane G protein-coupled receptors; This group includes human olfactory receptor subfamily 5A1, 5A2, 5AN1, and related proteins in other mammals and sauropsids. Olfactory receptors (ORs) play a central role in olfaction, the sense of smell. ORs belong to the class A rhodopsin-like family of G protein-coupled receptors and constitute the largest multigene family in mammals of approximately 1,000 genes. More than 60% of human ORs are non-functional pseudogenes compared to only about 20% in mouse. Each OR can recognize structurally similar odorants, and a single odorant can be detected by several ORs. Binding of an odorant to the olfactory receptor induces a conformational change that leads to the activation of the olfactory-specific G protein (Golf). The G protein (Golf and/or Gs) in turn stimulates adenylate cyclase to make cAMP. The cAMP opens cyclic nucleotide-gated ion channels, which allow the influx of calcium and sodium ions, resulting in depolarization of the olfactory receptor neuron and triggering an action potential which transmits this information to the brain. A consensus nomenclature system based on evolutionary divergence is used here to classify the olfactory receptor family. The nomenclature begins with the root name OR, followed by an integer representing a family, a letter denoting a subfamily, and an integer representing the individual gene within the subfamily. Pssm-ID: 320539 Cd Length: 279 Bit Score: 274.52 E-value: 7.03e-92
|
|||||||||
7tmA_OR5V1-like | cd15231 | olfactory receptor subfamily 5V1 and related proteins, member of the class A family of ... |
24-296 | 1.32e-91 | |||||
olfactory receptor subfamily 5V1 and related proteins, member of the class A family of seven-transmembrane G protein-coupled receptors; This group includes human olfactory receptor subfamily 5V1 and related proteins in other mammals, sauropsids, and amphibians. Olfactory receptors (ORs) play a central role in olfaction, the sense of smell. ORs belong to the class A rhodopsin-like family of G protein-coupled receptors and constitute the largest multigene family in mammals of approximately 1,000 genes. More than 60% of human ORs are non-functional pseudogenes compared to only about 20% in mouse. Each OR can recognize structurally similar odorants, and a single odorant can be detected by several ORs. Binding of an odorant to the olfactory receptor induces a conformational change that leads to the activation of the olfactory-specific G protein (Golf). The G protein (Golf and/or Gs) in turn stimulates adenylate cyclase to make cAMP. The cAMP opens cyclic nucleotide-gated ion channels, which allow the influx of calcium and sodium ions, resulting in depolarization of the olfactory receptor neuron and triggering an action potential which transmits this information to the brain. A consensus nomenclature system based on evolutionary divergence is used here to classify the olfactory receptor family. The nomenclature begins with the root name OR, followed by an integer representing a family, a letter denoting a subfamily, and an integer representing the individual gene within the subfamily. Pssm-ID: 320359 [Multi-domain] Cd Length: 277 Bit Score: 273.76 E-value: 1.32e-91
|
|||||||||
7tmA_OR5AK3-like | cd15408 | olfactory receptor subfamily 5AK3, 5AU1, and related proteins, member of the class A family of ... |
10-293 | 7.71e-91 | |||||
olfactory receptor subfamily 5AK3, 5AU1, and related proteins, member of the class A family of seven-transmembrane G protein-coupled receptors; This group includes human olfactory receptor subfamily 5AK3, 5AU1, and related proteins in other mammals and sauropsids. Olfactory receptors (ORs) play a central role in olfaction, the sense of smell. ORs belong to the class A rhodopsin-like family of G protein-coupled receptors and constitute the largest multigene family in mammals of approximately 1,000 genes. More than 60% of human ORs are non-functional pseudogenes compared to only about 20% in mouse. Each OR can recognize structurally similar odorants, and a single odorant can be detected by several ORs. Binding of an odorant to the olfactory receptor induces a conformational change that leads to the activation of the olfactory-specific G protein (Golf). The G protein (Golf and/or Gs) in turn stimulates adenylate cyclase to make cAMP. The cAMP opens cyclic nucleotide-gated ion channels, which allow the influx of calcium and sodium ions, resulting in depolarization of the olfactory receptor neuron and triggering an action potential which transmits this information to the brain. A consensus nomenclature system based on evolutionary divergence is used here to classify the olfactory receptor family. The nomenclature begins with the root name OR, followed by an integer representing a family, a letter denoting a subfamily, and an integer representing the individual gene within the subfamily. Pssm-ID: 320530 Cd Length: 287 Bit Score: 272.27 E-value: 7.71e-91
|
|||||||||
7tmA_OR1A-like | cd15235 | olfactory receptor subfamily 1A and related proteins, member of the class A family of ... |
24-296 | 3.05e-90 | |||||
olfactory receptor subfamily 1A and related proteins, member of the class A family of seven-transmembrane G protein-coupled receptors; This group includes human olfactory receptor subfamily 1A, 1B, 1K, 1L, 1Q and related proteins in other mammals, sauropsids, and amphibians. Olfactory receptors (ORs) play a central role in olfaction, the sense of smell. ORs belong to the class A rhodopsin-like family of G protein-coupled receptors and constitute the largest multigene family in mammals of approximately 1,000 genes. More than 60% of human ORs are non-functional pseudogenes compared to only about 20% in mouse. Each OR can recognize structurally similar odorants, and a single odorant can be detected by several ORs. Binding of an odorant to the olfactory receptor induces a conformational change that leads to the activation of the olfactory-specific G protein (Golf). The G protein (Golf and/or Gs) in turn stimulates adenylate cyclase to make cAMP. The cAMP opens cyclic nucleotide-gated ion channels, which allow the influx of calcium and sodium ions, resulting in depolarization of the olfactory receptor neuron and triggering an action potential which transmits this information to the brain. A consensus nomenclature system based on evolutionary divergence is used here to classify the olfactory receptor family. The nomenclature begins with the root name OR, followed by an integer representing a family, a letter denoting a subfamily, and an integer representing the individual gene within the subfamily. Pssm-ID: 320363 [Multi-domain] Cd Length: 278 Bit Score: 270.25 E-value: 3.05e-90
|
|||||||||
7tmA_OR8S1-like | cd15229 | olfactory receptor subfamily 8S1 and related proteins, member of the class A family of ... |
26-296 | 3.94e-90 | |||||
olfactory receptor subfamily 8S1 and related proteins, member of the class A family of seven-transmembrane G protein-coupled receptors; This group includes human olfactory receptor 8S1 and related proteins in other mammals, sauropsids, and amphibians. Olfactory receptors (ORs) play a central role in olfaction, the sense of smell. ORs belong to the class A rhodopsin-like family of G protein-coupled receptors and constitute the largest multigene family in mammals of approximately 1,000 genes. More than 60% of human ORs are non-functional pseudogenes compared to only 20% in mouse. Each OR can recognize structurally similar odorants, and a single odorant can be detected by several ORs. Binding of an odorant to the olfactory receptor induces a conformational change that leads to the activation of the olfactory-specific G protein (Golf). The G protein (Golf and/or Gs) in turn stimulates adenylate cyclase to make cAMP. The cAMP opens cyclic nucleotide-gated ion channels, which allow the influx of calcium and sodium ions, resulting in depolarization of the olfactory receptor neuron and triggering an action potential which transmits this information to the brain. A consensus nomenclature system based on evolutionary divergence is used here to classify the olfactory receptor family. The nomenclature begins with the root name OR, followed by an integer representing a family, a letter denoting a subfamily, and an integer representing the individual gene within the subfamily. Pssm-ID: 320357 [Multi-domain] Cd Length: 277 Bit Score: 270.24 E-value: 3.94e-90
|
|||||||||
7tmA_OR11A-like | cd15911 | olfactory receptor subfamily 11A and related proteins, member of the class A family of ... |
23-289 | 1.15e-87 | |||||
olfactory receptor subfamily 11A and related proteins, member of the class A family of seven-transmembrane G protein-coupled receptors; This group includes human olfactory receptor 11A and related proteins in other mammals, sauropsids, and amphibians. Olfactory receptors (ORs) play a central role in olfaction, the sense of smell. ORs belong to the class A rhodopsin-like family of G protein-coupled receptors and constitute the largest multigene family in mammals of approximately 1,000 genes. More than 60% of human ORs are non-functional pseudogenes compared to only about 20% in mouse. Each OR can recognize structurally similar odorants, and a single odorant can be detected by several ORs. Binding of an odorant to the olfactory receptor induces a conformational change that leads to the activation of the olfactory-specific G protein (Golf). The G protein (Golf and/or Gs) in turn stimulates adenylate cyclase to make cAMP. The cAMP opens cyclic nucleotide-gated ion channels, which allow the influx of calcium and sodium ions, resulting in depolarization of the olfactory receptor neuron and triggering an action potential which transmits this information to the brain. A consensus nomenclature system based on evolutionary divergence is used here to classify the olfactory receptor family. The nomenclature begins with the root name OR, followed by an integer representing a family, a letter denoting a subfamily, and an integer representing the individual gene within the subfamily. Pssm-ID: 320577 Cd Length: 270 Bit Score: 263.58 E-value: 1.15e-87
|
|||||||||
7tmA_OR8H-like | cd15411 | olfactory receptor subfamily 8H and related proteins, member of the class A family of ... |
26-298 | 3.06e-86 | |||||
olfactory receptor subfamily 8H and related proteins, member of the class A family of seven-transmembrane G protein-coupled receptors; This group includes human olfactory receptor subfamily 8H, 8I, 5F and related proteins in other mammals and sauropsids. Olfactory receptors (ORs) play a central role in olfaction, the sense of smell. ORs belong to the class A rhodopsin-like family of G protein-coupled receptors and constitute the largest multigene family in mammals of approximately 1,000 genes. More than 60% of human ORs are non-functional pseudogenes compared to only about 20% in mouse. Each OR can recognize structurally similar odorants, and a single odorant can be detected by several ORs. Binding of an odorant to the olfactory receptor induces a conformational change that leads to the activation of the olfactory-specific G protein (Golf). The G protein (Golf and/or Gs) in turn stimulates adenylate cyclase to make cAMP. The cAMP opens cyclic nucleotide-gated ion channels, which allow the influx of calcium and sodium ions, resulting in depolarization of the olfactory receptor neuron and triggering an action potential which transmits this information to the brain. A consensus nomenclature system based on evolutionary divergence is used here to classify the olfactory receptor family. The nomenclature begins with the root name OR, followed by an integer representing a family, a letter denoting a subfamily, and an integer representing the individual gene within the subfamily. Pssm-ID: 320533 [Multi-domain] Cd Length: 279 Bit Score: 260.33 E-value: 3.06e-86
|
|||||||||
7tmA_OR2T-like | cd15421 | olfactory receptor subfamily 2T and related proteins, member of the class A family of ... |
28-296 | 3.44e-86 | |||||
olfactory receptor subfamily 2T and related proteins, member of the class A family of seven-transmembrane G protein-coupled receptors; This group includes human olfactory receptor subfamilies 2T, 2M, 2L, 2V, 2Z, 2AE, 2AG, 2AK, 2AJ, and related proteins in other mammals and sauropsids. Olfactory receptors (ORs) play a central role in olfaction, the sense of smell. ORs belong to the class A rhodopsin-like family of G protein-coupled receptors and constitute the largest multigene family in mammals of approximately 1,000 genes. More than 60% of human ORs are non-functional pseudogenes compared to only about 20% in mouse. Each OR can recognize structurally similar odorants, and a single odorant can be detected by several ORs. Binding of an odorant to the olfactory receptor induces a conformational change that leads to the activation of the olfactory-specific G protein (Golf). The G protein (Golf and/or Gs) in turn stimulates adenylate cyclase to make cAMP. The cAMP opens cyclic nucleotide-gated ion channels, which allow the influx of calcium and sodium ions, resulting in depolarization of the olfactory receptor neuron and triggering an action potential which transmits this information to the brain. A consensus nomenclature system based on evolutionary divergence is used here to classify the olfactory receptor family. The nomenclature begins with the root name OR, followed by an integer representing a family, a letter denoting a subfamily, and an integer representing the individual gene within the subfamily. Pssm-ID: 320543 Cd Length: 277 Bit Score: 260.18 E-value: 3.44e-86
|
|||||||||
7tmA_OR13-like | cd15232 | olfactory receptor family 13 and related proteins, member of the class A family of ... |
23-289 | 8.32e-86 | |||||
olfactory receptor family 13 and related proteins, member of the class A family of seven-transmembrane G protein-coupled receptors; This group includes human olfactory receptor family 13 (subfamilies 13A1 and 13G1) and related proteins in other mammals and sauropsids. Olfactory receptors (ORs) play a central role in olfaction, the sense of smell. ORs belong to the class A rhodopsin-like family of G protein-coupled receptors and constitute the largest multigene family in mammals of approximately 1,000 genes. More than 60% of human ORs are non-functional pseudogenes compared to only about 20% in mouse. Each OR can recognize structurally similar odorants, and a single odorant can be detected by several ORs. Binding of an odorant to the olfactory receptor induces a conformational change that leads to the activation of the olfactory-specific G protein (Golf). The G protein (Golf and/or Gs) in turn stimulates adenylate cyclase to make cAMP. The cAMP opens cyclic nucleotide-gated ion channels, which allow the influx of calcium and sodium ions, resulting in depolarization of the olfactory receptor neuron and triggering an action potential which transmits this information to the brain. A consensus nomenclature system based on evolutionary divergence is used here to classify the olfactory receptor family. The nomenclature begins with the root name OR, followed by an integer representing a family, a letter denoting a subfamily, and an integer representing the individual gene within the subfamily. Pssm-ID: 320360 [Multi-domain] Cd Length: 270 Bit Score: 258.73 E-value: 8.32e-86
|
|||||||||
7tmA_OR1_7-like | cd15918 | olfactory receptor families 1, 7, and related proteins, member of the class A family of ... |
23-289 | 1.06e-85 | |||||
olfactory receptor families 1, 7, and related proteins, member of the class A family of seven-transmembrane G protein-coupled receptors; This group includes human olfactory receptor families 1 and 7, and related proteins in other mammals, sauropsids, and amphibians. Olfactory receptors (ORs) play a central role in olfaction, the sense of smell. ORs belong to the class A rhodopsin-like family of G protein-coupled receptors and constitute the largest multigene family in mammals of approximately 1,000 genes. More than 60% of human ORs are non-functional pseudogenes compared to only about 20% in mouse. Each OR can recognize structurally similar odorants, and a single odorant can be detected by several ORs. Binding of an odorant to the olfactory receptor induces a conformational change that leads to the activation of the olfactory-specific G protein (Golf). The G protein (Golf and/or Gs) in turn stimulates adenylate cyclase to make cAMP. The cAMP opens cyclic nucleotide-gated ion channels, which allow the influx of calcium and sodium ions, resulting in depolarization of the olfactory receptor neuron and triggering an action potential which transmits this information to the brain. A consensus nomenclature system based on evolutionary divergence is used here to classify the olfactory receptor family. The nomenclature begins with the root name OR, followed by an integer representing a family, a letter denoting a subfamily, and an integer representing the individual gene within the subfamily. Pssm-ID: 320584 [Multi-domain] Cd Length: 270 Bit Score: 258.70 E-value: 1.06e-85
|
|||||||||
7tmA_OR5D-like | cd15410 | olfactory receptor subfamily 5D and related proteins, member of the class A family of ... |
10-299 | 1.75e-85 | |||||
olfactory receptor subfamily 5D and related proteins, member of the class A family of seven-transmembrane G protein-coupled receptors; This group includes human olfactory receptor subfamily 5D, 5L, 5W, and related proteins in other mammals and sauropsids. Olfactory receptors (ORs) play a central role in olfaction, the sense of smell. ORs belong to the class A rhodopsin-like family of G protein-coupled receptors and constitute the largest multigene family in mammals of approximately 1,000 genes. More than 60% of human ORs are non-functional pseudogenes compared to only about 20% in mouse. Each OR can recognize structurally similar odorants, and a single odorant can be detected by several ORs. Binding of an odorant to the olfactory receptor induces a conformational change that leads to the activation of the olfactory-specific G protein (Golf). The G protein (Golf and/or Gs) in turn stimulates adenylate cyclase to make cAMP. The cAMP opens cyclic nucleotide-gated ion channels, which allow the influx of calcium and sodium ions, resulting in depolarization of the olfactory receptor neuron and triggering an action potential which transmits this information to the brain. A consensus nomenclature system based on evolutionary divergence is used here to classify the olfactory receptor family. The nomenclature begins with the root name OR, followed by an integer representing a family, a letter denoting a subfamily, and an integer representing the individual gene within the subfamily. Pssm-ID: 320532 Cd Length: 294 Bit Score: 258.74 E-value: 1.75e-85
|
|||||||||
7tmA_OR6C-like | cd15912 | olfactory receptor subfamily 6C and related proteins, member of the class A family of ... |
24-289 | 1.91e-85 | |||||
olfactory receptor subfamily 6C and related proteins, member of the class A family of seven-transmembrane G protein-coupled receptors; This group includes human olfactory receptor 6C, 6X, 6J, 6T, 6V, 6M, 9A, and related proteins in other mammals, sauropsids, and amphibians. Olfactory receptors (ORs) play a central role in olfaction, the sense of smell. ORs belong to the class A rhodopsin-like family of G protein-coupled receptors and constitute the largest multigene family in mammals of approximately 1,000 genes. More than 60% of human ORs are non-functional pseudogenes compared to only about 20% in mouse. Each OR can recognize structurally similar odorants, and a single odorant can be detected by several ORs. Binding of an odorant to the olfactory receptor induces a conformational change that leads to the activation of the olfactory-specific G protein (Golf). The G protein (Golf and/or Gs) in turn stimulates adenylate cyclase to make cAMP. The cAMP opens cyclic nucleotide-gated ion channels, which allow the influx of calcium and sodium ions, resulting in depolarization of the olfactory receptor neuron and triggering an action potential which transmits this information to the brain. A consensus nomenclature system based on evolutionary divergence is used here to classify the olfactory receptor family. The nomenclature begins with the root name OR, followed by an integer representing a family, a letter denoting a subfamily, and an integer representing the individual gene within the subfamily. Pssm-ID: 320578 Cd Length: 270 Bit Score: 257.80 E-value: 1.91e-85
|
|||||||||
7tmA_OR14-like | cd15227 | olfactory receptor family 14 and related proteins, member of the class A family of ... |
24-289 | 3.50e-85 | |||||
olfactory receptor family 14 and related proteins, member of the class A family of seven-transmembrane G protein-coupled receptors; This group includes human olfactory receptor family 14 and related proteins in other mammals, sauropsids, and amphibians. Olfactory receptors (ORs) play a central role in olfaction, the sense of smell. ORs belong to the class A rhodopsin-like family of G protein-coupled receptors and constitute the largest multigene family in mammals of approximately 1,000 genes. More than 60% of human ORs are non-functional pseudogenes compared to only 20% in mouse. Each OR can recognize structurally similar odorants, and a single odorant can be detected by several ORs. Binding of an odorant to the olfactory receptor induces a conformational change that leads to the activation of the olfactory-specific G protein (Golf). The G protein (Golf and/or Gs) in turn stimulates adenylate cyclase to make cAMP. The cAMP opens cyclic nucleotide-gated ion channels, which allow the influx of calcium and sodium ions, resulting in depolarization of the olfactory receptor neuron and triggering an action potential which transmits this information to the brain. A consensus nomenclature system based on evolutionary divergence is used here to classify the olfactory receptor family. The nomenclature begins with the root name OR, followed by an integer representing a family, a letter denoting a subfamily, and an integer representing the individual gene within the subfamily. Pssm-ID: 320355 Cd Length: 270 Bit Score: 257.00 E-value: 3.50e-85
|
|||||||||
7tmA_OR2-like | cd15237 | olfactory receptor family 2 and related proteins, member of the class A family of ... |
23-289 | 4.02e-85 | |||||
olfactory receptor family 2 and related proteins, member of the class A family of seven-transmembrane G protein-coupled receptors; This group includes human olfactory receptor families 2 and 13, and related proteins in other mammals, sauropsids, and amphibians. Olfactory receptors (ORs) play a central role in olfaction, the sense of smell. ORs belong to the class A rhodopsin-like family of G protein-coupled receptors and constitute the largest multigene family in mammals of approximately 1,000 genes. More than 60% of human ORs are non-functional pseudogenes compared to only about 20% in mouse. Each OR can recognize structurally similar odorants, and a single odorant can be detected by several ORs. Binding of an odorant to the olfactory receptor induces a conformational change that leads to the activation of the olfactory-specific G protein (Golf). The G protein (Golf and/or Gs) in turn stimulates adenylate cyclase to make cAMP. The cAMP opens cyclic nucleotide-gated ion channels, which allow the influx of calcium and sodium ions, resulting in depolarization of the olfactory receptor neuron and triggering an action potential which transmits this information to the brain. A consensus nomenclature system based on evolutionary divergence is used here to classify the olfactory receptor family. The nomenclature begins with the root name OR, followed by an integer representing a family, a letter denoting a subfamily, and an integer representing the individual gene within the subfamily. Pssm-ID: 320365 [Multi-domain] Cd Length: 270 Bit Score: 257.20 E-value: 4.02e-85
|
|||||||||
7tmA_OR4N-like | cd15937 | olfactory receptor 4N, 4M, and related proteins, member of the class A family of ... |
24-289 | 1.12e-84 | |||||
olfactory receptor 4N, 4M, and related proteins, member of the class A family of seven-transmembrane G protein-coupled receptors; This group includes human olfactory receptor subfamily 4N, 4M, and related proteins in other mammals and sauropsids. Olfactory receptors (ORs) play a central role in olfaction, the sense of smell. ORs belong to the class A rhodopsin-like family of G protein-coupled receptors and constitute the largest multigene family in mammals of approximately 1,000 genes. More than 60% of human ORs are non-functional pseudogenes compared to only 20% in mouse. Each OR can recognize structurally similar odorants, and a single odorant can be detected by several ORs. Binding of an odorant to the olfactory receptor induces a conformational change that leads to the activation of the olfactory-specific G protein (Golf). The G protein (Golf and/or Gs) in turn stimulates adenylate cyclase to make cAMP. The cAMP opens cyclic nucleotide-gated ion channels, which allow the influx of calcium and sodium ions, resulting in depolarization of the olfactory receptor neuron and triggering an action potential which transmits this information to the brain. A consensus nomenclature system based on evolutionary divergence is used here to classify the olfactory receptor family. The nomenclature begins with the root name OR, followed by an integer representing a family, a letter denoting a subfamily, and an integer representing the individual gene within the subfamily. Pssm-ID: 320603 Cd Length: 267 Bit Score: 255.82 E-value: 1.12e-84
|
|||||||||
7tmA_OR5C1-like | cd15945 | olfactory receptor subfamily 5C1 and related proteins, member of the class A family of ... |
10-298 | 3.73e-84 | |||||
olfactory receptor subfamily 5C1 and related proteins, member of the class A family of seven-transmembrane G protein-coupled receptors; This group includes human olfactory receptor subfamily 5C1 and related proteins in other mammals and sauropsids. Olfactory receptors (ORs) play a central role in olfaction, the sense of smell. ORs belong to the class A rhodopsin-like family of G protein-coupled receptors and constitute the largest multigene family in mammals of approximately 1,000 genes. More than 60% of human ORs are non-functional pseudogenes compared to only about 20% in mouse. Each OR can recognize structurally similar odorants, and a single odorant can be detected by several ORs. Binding of an odorant to the olfactory receptor induces a conformational change that leads to the activation of the olfactory-specific G protein (Golf). The G protein (Golf and/or Gs) in turn stimulates adenylate cyclase to make cAMP. The cAMP opens cyclic nucleotide-gated ion channels, which allow the influx of calcium and sodium ions, resulting in depolarization of the olfactory receptor neuron and triggering an action potential which transmits this information to the brain. A consensus nomenclature system based on evolutionary divergence is used here to classify the olfactory receptor family. The nomenclature begins with the root name OR, followed by an integer representing a family, a letter denoting a subfamily, and an integer representing the individual gene within the subfamily. Pssm-ID: 320611 Cd Length: 292 Bit Score: 255.44 E-value: 3.73e-84
|
|||||||||
7tmA_OR5P-like | cd15416 | olfactory receptor subfamily 5P and related proteins, member of the class A family of ... |
26-298 | 2.67e-83 | |||||
olfactory receptor subfamily 5P and related proteins, member of the class A family of seven-transmembrane G protein-coupled receptors; This group includes human olfactory receptor subfamily 5P and related proteins in other mammals and sauropsids. Olfactory receptors (ORs) play a central role in olfaction, the sense of smell. ORs belong to the class A rhodopsin-like family of G protein-coupled receptors and constitute the largest multigene family in mammals of approximately 1,000 genes. More than 60% of human ORs are non-functional pseudogenes compared to only about 20% in mouse. Each OR can recognize structurally similar odorants, and a single odorant can be detected by several ORs. Binding of an odorant to the olfactory receptor induces a conformational change that leads to the activation of the olfactory-specific G protein (Golf). The G protein (Golf and/or Gs) in turn stimulates adenylate cyclase to make cAMP. The cAMP opens cyclic nucleotide-gated ion channels, which allow the influx of calcium and sodium ions, resulting in depolarization of the olfactory receptor neuron and triggering an action potential which transmits this information to the brain. A consensus nomenclature system based on evolutionary divergence is used here to classify the olfactory receptor family. The nomenclature begins with the root name OR, followed by an integer representing a family, a letter denoting a subfamily, and an integer representing the individual gene within the subfamily. Pssm-ID: 320538 [Multi-domain] Cd Length: 279 Bit Score: 252.67 E-value: 2.67e-83
|
|||||||||
7tmA_OR8K-like | cd15413 | olfactory receptor subfamily 8K and related proteins, member of the class A family of ... |
25-298 | 6.44e-83 | |||||
olfactory receptor subfamily 8K and related proteins, member of the class A family of seven-transmembrane G protein-coupled receptors; This group includes human olfactory receptor subfamily 8K, 8U, 8J, 5R, 5AL and related proteins in other mammals and sauropsids. Olfactory receptors (ORs) play a central role in olfaction, the sense of smell. ORs belong to the class A rhodopsin-like family of G protein-coupled receptors and constitute the largest multigene family in mammals of approximately 1,000 genes. More than 60% of human ORs are non-functional pseudogenes compared to only about 20% in mouse. Each OR can recognize structurally similar odorants, and a single odorant can be detected by several ORs. Binding of an odorant to the olfactory receptor induces a conformational change that leads to the activation of the olfactory-specific G protein (Golf). The G protein (Golf and/or Gs) in turn stimulates adenylate cyclase to make cAMP. The cAMP opens cyclic nucleotide-gated ion channels, which allow the influx of calcium and sodium ions, resulting in depolarization of the olfactory receptor neuron and triggering an action potential which transmits this information to the brain. A consensus nomenclature system based on evolutionary divergence is used here to classify the olfactory receptor family. The nomenclature begins with the root name OR, followed by an integer representing a family, a letter denoting a subfamily, and an integer representing the individual gene within the subfamily. Pssm-ID: 320535 Cd Length: 279 Bit Score: 251.86 E-value: 6.44e-83
|
|||||||||
7tmA_OR9K2-like | cd15419 | olfactory receptor subfamily 9K2 and related proteins, member of the class A family of ... |
24-298 | 9.00e-83 | |||||
olfactory receptor subfamily 9K2 and related proteins, member of the class A family of seven-transmembrane G protein-coupled receptors; This group includes transmembrane olfactory receptor subfamily 9K2 and related proteins in other mammals and sauropsids. Olfactory receptors (ORs) play a central role in olfaction, the sense of smell. ORs belong to the class A rhodopsin-like family of G protein-coupled receptors and constitute the largest multigene family in mammals of approximately 1,000 genes. More than 60% of human ORs are non-functional pseudogenes compared to only about 20% in mouse. Each OR can recognize structurally similar odorants, and a single odorant can be detected by several ORs. Binding of an odorant to the olfactory receptor induces a conformational change that leads to the activation of the olfactory-specific G protein (Golf). The G protein (Golf and/or Gs) in turn stimulates adenylate cyclase to make cAMP. The cAMP opens cyclic nucleotide-gated ion channels, which allow the influx of calcium and sodium ions, resulting in depolarization of the olfactory receptor neuron and triggering an action potential which transmits this information to the brain. A consensus nomenclature system based on evolutionary divergence is used here to classify the olfactory receptor family. The nomenclature begins with the root name OR, followed by an integer representing a family, a letter denoting a subfamily, and an integer representing the individual gene within the subfamily. Pssm-ID: 320541 Cd Length: 279 Bit Score: 251.46 E-value: 9.00e-83
|
|||||||||
7tmA_OR8D-like | cd15406 | olfactory receptor subfamily 8D and related proteins, member of the class A family of ... |
14-299 | 5.20e-82 | |||||
olfactory receptor subfamily 8D and related proteins, member of the class A family of seven-transmembrane G protein-coupled receptors; This group includes human olfactory receptor subfamily 8D and related proteins in other mammals. Olfactory receptors (ORs) play a central role in olfaction, the sense of smell. ORs belong to the class A rhodopsin-like family of G protein-coupled receptors and constitute the largest multigene family in mammals of approximately 1,000 genes. More than 60% of human ORs are non-functional pseudogenes compared to only about 20% in mouse. Each OR can recognize structurally similar odorants, and a single odorant can be detected by several ORs. Binding of an odorant to the olfactory receptor induces a conformational change that leads to the activation of the olfactory-specific G protein (Golf). The G protein (Golf and/or Gs) in turn stimulates adenylate cyclase to make cAMP. The cAMP opens cyclic nucleotide-gated ion channels, which allow the influx of calcium and sodium ions, resulting in depolarization of the olfactory receptor neuron and triggering an action potential which transmits this information to the brain. A consensus nomenclature system based on evolutionary divergence is used here to classify the olfactory receptor family. The nomenclature begins with the root name OR, followed by an integer representing a family, a letter denoting a subfamily, and an integer representing the individual gene within the subfamily. Pssm-ID: 320528 [Multi-domain] Cd Length: 290 Bit Score: 249.98 E-value: 5.20e-82
|
|||||||||
7tmA_OR12D-like | cd15915 | olfactory receptor subfamily 12D and related proteins, member of the class A family of ... |
26-289 | 6.84e-81 | |||||
olfactory receptor subfamily 12D and related proteins, member of the class A family of seven-transmembrane G protein-coupled receptors; This group includes human olfactory receptor subfamily 12D and related proteins in other mammals, sauropsids, and amphibians. Olfactory receptors (ORs) play a central role in olfaction, the sense of smell. ORs belong to the class A rhodopsin-like family of G protein-coupled receptors and constitute the largest multigene family in mammals of approximately 1,000 genes. More than 60% of human ORs are non-functional pseudogenes compared to only about 20% in mouse. Each OR can recognize structurally similar odorants, and a single odorant can be detected by several ORs. Binding of an odorant to the olfactory receptor induces a conformational change that leads to the activation of the olfactory-specific G protein (Golf). The G protein (Golf and/or Gs) in turn stimulates adenylate cyclase to make cAMP. The cAMP opens cyclic nucleotide-gated ion channels, which allow the influx of calcium and sodium ions, resulting in depolarization of the olfactory receptor neuron and triggering an action potential which transmits this information to the brain. A consensus nomenclature system based on evolutionary divergence is used here to classify the olfactory receptor family. The nomenclature begins with the root name OR, followed by an integer representing a family, a letter denoting a subfamily, and an integer representing the individual gene within the subfamily. Pssm-ID: 320581 [Multi-domain] Cd Length: 271 Bit Score: 246.45 E-value: 6.84e-81
|
|||||||||
7tmA_OR6N-like | cd15914 | olfactory receptor OR6N and related proteins, member of the class A family of ... |
23-289 | 5.44e-80 | |||||
olfactory receptor OR6N and related proteins, member of the class A family of seven-transmembrane G protein-coupled receptors; This group includes human olfactory receptor 6N, 6K, and related proteins in other mammals, sauropsids, and amphibians. Olfactory receptors (ORs) play a central role in olfaction, the sense of smell. ORs belong to the class A rhodopsin-like family of G protein-coupled receptors and constitute the largest multigene family in mammals of approximately 1,000 genes. More than 60% of human ORs are non-functional pseudogenes compared to only about 20% in mouse. Each OR can recognize structurally similar odorants, and a single odorant can be detected by several ORs. Binding of an odorant to the olfactory receptor induces a conformational change that leads to the activation of the olfactory-specific G protein (Golf). The G protein (Golf and/or Gs) in turn stimulates adenylate cyclase to make cAMP. The cAMP opens cyclic nucleotide-gated ion channels, which allow the influx of calcium and sodium ions, resulting in depolarization of the olfactory receptor neuron and triggering an action potential which transmits this information to the brain. A consensus nomenclature system based on evolutionary divergence is used here to classify the olfactory receptor family. The nomenclature begins with the root name OR, followed by an integer representing a family, a letter denoting a subfamily, and an integer representing the individual gene within the subfamily. Pssm-ID: 320580 [Multi-domain] Cd Length: 270 Bit Score: 243.82 E-value: 5.44e-80
|
|||||||||
7tmA_OR2F-like | cd15429 | olfactory receptor subfamily 2F and related proteins, member of the class A family of ... |
26-296 | 1.95e-79 | |||||
olfactory receptor subfamily 2F and related proteins, member of the class A family of seven-transmembrane G protein-coupled receptors; This group includes human olfactory receptor subfamily 2F and related proteins in other mammals and sauropsids. Olfactory receptors (ORs) play a central role in olfaction, the sense of smell. ORs belong to the class A rhodopsin-like family of G protein-coupled receptors and constitute the largest multigene family in mammals of approximately 1,000 genes. More than 60% of human ORs are non-functional pseudogenes compared to only about 20% in mouse. Each OR can recognize structurally similar odorants, and a single odorant can be detected by several ORs. Binding of an odorant to the olfactory receptor induces a conformational change that leads to the activation of the olfactory-specific G protein (Golf). The G protein (Golf and/or Gs) in turn stimulates adenylate cyclase to make cAMP. The cAMP opens cyclic nucleotide-gated ion channels, which allow the influx of calcium and sodium ions, resulting in depolarization of the olfactory receptor neuron and triggering an action potential which transmits this information to the brain. A consensus nomenclature system based on evolutionary divergence is used here to classify the olfactory receptor family. The nomenclature begins with the root name OR, followed by an integer representing a family, a letter denoting a subfamily, and an integer representing the individual gene within the subfamily. Pssm-ID: 320546 [Multi-domain] Cd Length: 277 Bit Score: 242.69 E-value: 1.95e-79
|
|||||||||
7tmA_OR5G-like | cd15414 | olfactory receptor subfamily 5G and related proteins, member of the class A family of ... |
26-299 | 4.45e-79 | |||||
olfactory receptor subfamily 5G and related proteins, member of the class A family of seven-transmembrane G protein-coupled receptors; This group includes human olfactory receptor subfamily 5G and related proteins in other mammals and sauropsids. Olfactory receptors (ORs) play a central role in olfaction, the sense of smell. ORs belong to the class A rhodopsin-like family of G protein-coupled receptors and constitute the largest multigene family in mammals of approximately 1,000 genes. More than 60% of human ORs are non-functional pseudogenes compared to only about 20% in mouse. Each OR can recognize structurally similar odorants, and a single odorant can be detected by several ORs. Binding of an odorant to the olfactory receptor induces a conformational change that leads to the activation of the olfactory-specific G protein (Golf). The G protein (Golf and/or Gs) in turn stimulates adenylate cyclase to make cAMP. The cAMP opens cyclic nucleotide-gated ion channels, which allow the influx of calcium and sodium ions, resulting in depolarization of the olfactory receptor neuron and triggering an action potential which transmits this information to the brain. A consensus nomenclature system based on evolutionary divergence is used here to classify the olfactory receptor family. The nomenclature begins with the root name OR, followed by an integer representing a family, a letter denoting a subfamily, and an integer representing the individual gene within the subfamily. Pssm-ID: 320536 [Multi-domain] Cd Length: 285 Bit Score: 242.33 E-value: 4.45e-79
|
|||||||||
7tmA_OR10D-like | cd15228 | olfactory receptor subfamily 10D and related proteins, member of the class A family of ... |
23-296 | 1.08e-78 | |||||
olfactory receptor subfamily 10D and related proteins, member of the class A family of seven-transmembrane G protein-coupled receptors; This group includes human olfactory receptor subfamily 10D and related proteins in other mammals and sauropsids. Olfactory receptors (ORs) play a central role in olfaction, the sense of smell. ORs belong to the class A rhodopsin-like family of G protein-coupled receptors and constitute the largest multigene family in mammals of approximately 1,000 genes. More than 60% of human ORs are non-functional pseudogenes compared to only 20% in mouse. Each OR can recognize structurally similar odorants, and a single odorant can be detected by several ORs. Binding of an odorant to the olfactory receptor induces a conformational change that leads to the activation of the olfactory-specific G protein (Golf). The G protein (Golf and/or Gs) in turn stimulates adenylate cyclase to make cAMP. The cAMP opens cyclic nucleotide-gated ion channels, which allow the influx of calcium and sodium ions, resulting in depolarization of the olfactory receptor neuron and triggering an action potential which transmits this information to the brain. A consensus nomenclature system based on evolutionary divergence is used here to classify the olfactory receptor family. The nomenclature begins with the root name OR, followed by an integer representing a family, a letter denoting a subfamily, and an integer representing the individual gene within the subfamily. Pssm-ID: 320356 [Multi-domain] Cd Length: 275 Bit Score: 240.80 E-value: 1.08e-78
|
|||||||||
7tmA_OR5H-like | cd15409 | olfactory receptor subfamily 5H and related proteins, member of the class A family of ... |
23-298 | 1.15e-78 | |||||
olfactory receptor subfamily 5H and related proteins, member of the class A family of seven-transmembrane G protein-coupled receptors; This group includes human olfactory receptor subfamily 5H, 5K, 5AC, 5T and related proteins in other mammals and sauropsids. Olfactory receptors (ORs) play a central role in olfaction, the sense of smell. ORs belong to the class A rhodopsin-like family of G protein-coupled receptors and constitute the largest multigene family in mammals of approximately 1,000 genes. More than 60% of human ORs are non-functional pseudogenes compared to only about 20% in mouse. Each OR can recognize structurally similar odorants, and a single odorant can be detected by several ORs. Binding of an odorant to the olfactory receptor induces a conformational change that leads to the activation of the olfactory-specific G protein (Golf). The G protein (Golf and/or Gs) in turn stimulates adenylate cyclase to make cAMP. The cAMP opens cyclic nucleotide-gated ion channels, which allow the influx of calcium and sodium ions, resulting in depolarization of the olfactory receptor neuron and triggering an action potential which transmits this information to the brain. A consensus nomenclature system based on evolutionary divergence is used here to classify the olfactory receptor family. The nomenclature begins with the root name OR, followed by an integer representing a family, a letter denoting a subfamily, and an integer representing the individual gene within the subfamily. Pssm-ID: 320531 [Multi-domain] Cd Length: 279 Bit Score: 240.77 E-value: 1.15e-78
|
|||||||||
7tmA_OR2B-like | cd15947 | olfactory receptor subfamily 2B and related proteins, member of the class A family of ... |
26-289 | 1.30e-77 | |||||
olfactory receptor subfamily 2B and related proteins, member of the class A family of seven-transmembrane G protein-coupled receptors; This group includes human olfactory receptor family 2 (subfamilies 2B, 2C, 2G, 2H, 2I, 2J, 2W, 2Y) and related proteins in other mammals and sauropsids. Olfactory receptors (ORs) play a central role in olfaction, the sense of smell. ORs belong to the class A rhodopsin-like family of G protein-coupled receptors and constitute the largest multigene family in mammals of approximately 1,000 genes. More than 60% of human ORs are non-functional pseudogenes compared to only about 20% in mouse. Each OR can recognize structurally similar odorants, and a single odorant can be detected by several ORs. Binding of an odorant to the olfactory receptor induces a conformational change that leads to the activation of the olfactory-specific G protein (Golf). The G protein (Golf and/or Gs) in turn stimulates adenylate cyclase to make cAMP. The cAMP opens cyclic nucleotide-gated ion channels, which allow the influx of calcium and sodium ions, resulting in depolarization of the olfactory receptor neuron and triggering an action potential which transmits this information to the brain. A consensus nomenclature system based on evolutionary divergence is used here to classify the olfactory receptor family. The nomenclature begins with the root name OR, followed by an integer representing a family, a letter denoting a subfamily, and an integer representing the individual gene within the subfamily. Pssm-ID: 320613 [Multi-domain] Cd Length: 270 Bit Score: 237.91 E-value: 1.30e-77
|
|||||||||
7tmA_OR5J-like | cd15415 | olfactory receptor subfamily 5J and related proteins, member of the class A family of ... |
26-298 | 1.85e-77 | |||||
olfactory receptor subfamily 5J and related proteins, member of the class A family of seven-transmembrane G protein-coupled receptors; This group includes human olfactory receptor subfamily 5J and related proteins in other mammals and sauropsids. Olfactory receptors (ORs) play a central role in olfaction, the sense of smell. ORs belong to the class A rhodopsin-like family of G protein-coupled receptors and constitute the largest multigene family in mammals of approximately 1,000 genes. More than 60% of human ORs are non-functional pseudogenes compared to only about 20% in mouse. Each OR can recognize structurally similar odorants, and a single odorant can be detected by several ORs. Binding of an odorant to the olfactory receptor induces a conformational change that leads to the activation of the olfactory-specific G protein (Golf). The G protein (Golf and/or Gs) in turn stimulates adenylate cyclase to make cAMP. The cAMP opens cyclic nucleotide-gated ion channels, which allow the influx of calcium and sodium ions, resulting in depolarization of the olfactory receptor neuron and triggering an action potential which transmits this information to the brain. A consensus nomenclature system based on evolutionary divergence is used here to classify the olfactory receptor family. The nomenclature begins with the root name OR, followed by an integer representing a family, a letter denoting a subfamily, and an integer representing the individual gene within the subfamily. Pssm-ID: 320537 [Multi-domain] Cd Length: 279 Bit Score: 237.70 E-value: 1.85e-77
|
|||||||||
7tmA_OR13H-like | cd15431 | olfactory receptor subfamily 13H and related proteins, member of the class A family of ... |
26-289 | 3.99e-77 | |||||
olfactory receptor subfamily 13H and related proteins, member of the class A family of seven-transmembrane G protein-coupled receptors; This group includes human olfactory receptor subfamily 13H and related proteins in other mammals, sauropsids, and amphibians. Olfactory receptors (ORs) play a central role in olfaction, the sense of smell. ORs belong to the class A rhodopsin-like family of G protein-coupled receptors and constitute the largest multigene family in mammals of approximately 1,000 genes. More than 60% of human ORs are non-functional pseudogenes compared to only about 20% in mouse. Each OR can recognize structurally similar odorants, and a single odorant can be detected by several ORs. Binding of an odorant to the olfactory receptor induces a conformational change that leads to the activation of the olfactory-specific G protein (Golf). The G protein (Golf and/or Gs) in turn stimulates adenylate cyclase to make cAMP. The cAMP opens cyclic nucleotide-gated ion channels, which allow the influx of calcium and sodium ions, resulting in depolarization of the olfactory receptor neuron and triggering an action potential which transmits this information to the brain. A consensus nomenclature system based on evolutionary divergence is used here to classify the olfactory receptor family. The nomenclature begins with the root name OR, followed by an integer representing a family, a letter denoting a subfamily, and an integer representing the individual gene within the subfamily. Pssm-ID: 320548 [Multi-domain] Cd Length: 269 Bit Score: 236.74 E-value: 3.99e-77
|
|||||||||
7tmA_OR10G-like | cd15916 | olfactory receptor subfamily 10G and related proteins, member of the class A family of ... |
24-296 | 1.02e-76 | |||||
olfactory receptor subfamily 10G and related proteins, member of the class A family of seven-transmembrane G protein-coupled receptors; This group includes human olfactory receptor subfamily 10G, 10S, and related proteins in other mammals, sauropsids, and amphibians. Olfactory receptors (ORs) play a central role in olfaction, the sense of smell. ORs belong to the class A rhodopsin-like family of G protein-coupled receptors and constitute the largest multigene family in mammals of approximately 1,000 genes. More than 60% of human ORs are non-functional pseudogenes compared to only about 20% in mouse. Each OR can recognize structurally similar odorants, and a single odorant can be detected by several ORs. Binding of an odorant to the olfactory receptor induces a conformational change that leads to the activation of the olfactory-specific G protein (Golf). The G protein (Golf and/or Gs) in turn stimulates adenylate cyclase to make cAMP. The cAMP opens cyclic nucleotide-gated ion channels, which allow the influx of calcium and sodium ions, resulting in depolarization of the olfactory receptor neuron and triggering an action potential which transmits this information to the brain. A consensus nomenclature system based on evolutionary divergence is used here to classify the olfactory receptor family. The nomenclature begins with the root name OR, followed by an integer representing a family, a letter denoting a subfamily, and an integer representing the individual gene within the subfamily. Pssm-ID: 320582 [Multi-domain] Cd Length: 276 Bit Score: 235.81 E-value: 1.02e-76
|
|||||||||
7tmA_OR5AR1-like | cd15944 | olfactory receptor subfamily 5AR1 and related proteins, member of the class A family of ... |
10-299 | 2.73e-74 | |||||
olfactory receptor subfamily 5AR1 and related proteins, member of the class A family of seven-transmembrane G protein-coupled receptors; This group includes human olfactory receptor subfamily 5AR1 and related proteins in other mammals and sauropsids. Olfactory receptors (ORs) play a central role in olfaction, the sense of smell. ORs belong to the class A rhodopsin-like family of G protein-coupled receptors and constitute the largest multigene family in mammals of approximately 1,000 genes. More than 60% of human ORs are non-functional pseudogenes compared to only about 20% in mouse. Each OR can recognize structurally similar odorants, and a single odorant can be detected by several ORs. Binding of an odorant to the olfactory receptor induces a conformational change that leads to the activation of the olfactory-specific G protein (Golf). The G protein (Golf and/or Gs) in turn stimulates adenylate cyclase to make cAMP. The cAMP opens cyclic nucleotide-gated ion channels, which allow the influx of calcium and sodium ions, resulting in depolarization of the olfactory receptor neuron and triggering an action potential which transmits this information to the brain. A consensus nomenclature system based on evolutionary divergence is used here to classify the olfactory receptor family. The nomenclature begins with the root name OR, followed by an integer representing a family, a letter denoting a subfamily, and an integer representing the individual gene within the subfamily. Pssm-ID: 320610 [Multi-domain] Cd Length: 294 Bit Score: 230.44 E-value: 2.73e-74
|
|||||||||
7tmA_OR2A-like | cd15420 | olfactory receptor subfamily 2A and related proteins, member of the class A family of ... |
24-296 | 3.07e-74 | |||||
olfactory receptor subfamily 2A and related proteins, member of the class A family of seven-transmembrane G protein-coupled receptors; This group includes human olfactory receptor subfamily 2A and related proteins in other mammals and sauropsids. Olfactory receptors (ORs) play a central role in olfaction, the sense of smell. ORs belong to the class A rhodopsin-like family of G protein-coupled receptors and constitute the largest multigene family in mammals of approximately 1,000 genes. More than 60% of human ORs are non-functional pseudogenes compared to only about 20% in mouse. Each OR can recognize structurally similar odorants, and a single odorant can be detected by several ORs. Binding of an odorant to the olfactory receptor induces a conformational change that leads to the activation of the olfactory-specific G protein (Golf). The G protein (Golf and/or Gs) in turn stimulates adenylate cyclase to make cAMP. The cAMP opens cyclic nucleotide-gated ion channels, which allow the influx of calcium and sodium ions, resulting in depolarization of the olfactory receptor neuron and triggering an action potential which transmits this information to the brain. A consensus nomenclature system based on evolutionary divergence is used here to classify the olfactory receptor family. The nomenclature begins with the root name OR, followed by an integer representing a family, a letter denoting a subfamily, and an integer representing the individual gene within the subfamily. Pssm-ID: 320542 [Multi-domain] Cd Length: 277 Bit Score: 229.52 E-value: 3.07e-74
|
|||||||||
7tmA_OR6B-like | cd15224 | olfactory receptor subfamily 6B and related proteins, member of the class A family of ... |
24-289 | 2.04e-73 | |||||
olfactory receptor subfamily 6B and related proteins, member of the class A family of seven-transmembrane G protein-coupled receptors; This group includes human olfactory receptor 6B, 6A, 6Y, 6P, and related proteins in other mammals, sauropsids, and amphibians. Olfactory receptors (ORs) play a central role in olfaction, the sense of smell. ORs belong to the class A rhodopsin-like family of G protein-coupled receptors and constitute the largest multigene family in mammals of approximately 1,000 genes. More than 60% of human ORs are non-functional pseudogenes compared to only 20% in mouse. Each OR can recognize structurally similar odorants, and a single odorant can be detected by several ORs. Binding of an odorant to the olfactory receptor induces a conformational change that leads to the activation of the olfactory-specific G protein (Golf). The G protein (Golf and/or Gs) in turn stimulates adenylate cyclase to make cAMP. The cAMP opens cyclic nucleotide-gated ion channels, which allow the influx of calcium and sodium ions, resulting in depolarization of the olfactory receptor neuron and triggering an action potential which transmits this information to the brain. A consensus nomenclature system based on evolutionary divergence is used here to classify the olfactory receptor family. The nomenclature begins with the root name OR, followed by an integer representing a family, a letter denoting a subfamily, and an integer representing the individual gene within the subfamily. Pssm-ID: 320352 Cd Length: 270 Bit Score: 227.17 E-value: 2.04e-73
|
|||||||||
7tmA_OR2W-like | cd15434 | olfactory receptor subfamily 2W and related proteins, member of the class A family of ... |
28-296 | 4.36e-73 | |||||
olfactory receptor subfamily 2W and related proteins, member of the class A family of seven-transmembrane G protein-coupled receptors; This group includes human olfactory receptor subfamily 2W and related proteins in other mammals. Olfactory receptors (ORs) play a central role in olfaction, the sense of smell. ORs belong to the class A rhodopsin-like family of G protein-coupled receptors and constitute the largest multigene family in mammals of approximately 1,000 genes. More than 60% of human ORs are non-functional pseudogenes compared to only about 20% in mouse. Each OR can recognize structurally similar odorants, and a single odorant can be detected by several ORs. Binding of an odorant to the olfactory receptor induces a conformational change that leads to the activation of the olfactory-specific G protein (Golf). The G protein (Golf and/or Gs) in turn stimulates adenylate cyclase to make cAMP. The cAMP opens cyclic nucleotide-gated ion channels, which allow the influx of calcium and sodium ions, resulting in depolarization of the olfactory receptor neuron and triggering an action potential which transmits this information to the brain. A consensus nomenclature system based on evolutionary divergence is used here to classify the olfactory receptor family. The nomenclature begins with the root name OR, followed by an integer representing a family, a letter denoting a subfamily, and an integer representing the individual gene within the subfamily. Pssm-ID: 320551 [Multi-domain] Cd Length: 277 Bit Score: 226.49 E-value: 4.36e-73
|
|||||||||
7tmA_OR5M-like | cd15412 | olfactory receptor subfamily 5M and related proteins, member of the class A family of ... |
24-298 | 6.76e-73 | |||||
olfactory receptor subfamily 5M and related proteins, member of the class A family of seven-transmembrane G protein-coupled receptors; This group includes human olfactory receptor subfamily 5M and related proteins in other mammals and sauropsids. Olfactory receptors (ORs) play a central role in olfaction, the sense of smell. ORs belong to the class A rhodopsin-like family of G protein-coupled receptors and constitute the largest multigene family in mammals of approximately 1,000 genes. More than 60% of human ORs are non-functional pseudogenes compared to only about 20% in mouse. Each OR can recognize structurally similar odorants, and a single odorant can be detected by several ORs. Binding of an odorant to the olfactory receptor induces a conformational change that leads to the activation of the olfactory-specific G protein (Golf). The G protein (Golf and/or Gs) in turn stimulates adenylate cyclase to make cAMP. The cAMP opens cyclic nucleotide-gated ion channels, which allow the influx of calcium and sodium ions, resulting in depolarization of the olfactory receptor neuron and triggering an action potential which transmits this information to the brain. A consensus nomenclature system based on evolutionary divergence is used here to classify the olfactory receptor family. The nomenclature begins with the root name OR, followed by an integer representing a family, a letter denoting a subfamily, and an integer representing the individual gene within the subfamily. Pssm-ID: 320534 Cd Length: 279 Bit Score: 226.13 E-value: 6.76e-73
|
|||||||||
7tmA_OR5B-like | cd15407 | olfactory receptor subfamily 5B and related proteins, member of the class A family of ... |
26-298 | 1.20e-72 | |||||
olfactory receptor subfamily 5B and related proteins, member of the class A family of seven-transmembrane G protein-coupled receptors; This group includes human olfactory receptor subfamily 5B and related proteins in other mammals. Olfactory receptors (ORs) play a central role in olfaction, the sense of smell. ORs belong to the class A rhodopsin-like family of G protein-coupled receptors and constitute the largest multigene family in mammals of approximately 1,000 genes. More than 60% of human ORs are non-functional pseudogenes compared to only about 20% in mouse. Each OR can recognize structurally similar odorants, and a single odorant can be detected by several ORs. Binding of an odorant to the olfactory receptor induces a conformational change that leads to the activation of the olfactory-specific G protein (Golf). The G protein (Golf and/or Gs) in turn stimulates adenylate cyclase to make cAMP. The cAMP opens cyclic nucleotide-gated ion channels, which allow the influx of calcium and sodium ions, resulting in depolarization of the olfactory receptor neuron and triggering an action potential which transmits this information to the brain. A consensus nomenclature system based on evolutionary divergence is used here to classify the olfactory receptor family. The nomenclature begins with the root name OR, followed by an integer representing a family, a letter denoting a subfamily, and an integer representing the individual gene within the subfamily. Pssm-ID: 320529 Cd Length: 279 Bit Score: 225.76 E-value: 1.20e-72
|
|||||||||
7tmA_OR13-like | cd15430 | olfactory receptor family 13 and related proteins, member of the class A family of ... |
23-289 | 1.68e-72 | |||||
olfactory receptor family 13 and related proteins, member of the class A family of seven-transmembrane G protein-coupled receptors; This group includes human olfactory receptor family 13 (subfamilies 13C, 13D, 13F, and 13J), some subfamilies from OR family 2 (2K and 2S), and related proteins in other mammals. Olfactory receptors (ORs) play a central role in olfaction, the sense of smell. ORs belong to the class A rhodopsin-like family of G protein-coupled receptors and constitute the largest multigene family in mammals of approximately 1,000 genes. More than 60% of human ORs are non-functional pseudogenes compared to only about 20% in mouse. Each OR can recognize structurally similar odorants, and a single odorant can be detected by several ORs. Binding of an odorant to the olfactory receptor induces a conformational change that leads to the activation of the olfactory-specific G protein (Golf). The G protein (Golf and/or Gs) in turn stimulates adenylate cyclase to make cAMP. The cAMP opens cyclic nucleotide-gated ion channels, which allow the influx of calcium and sodium ions, resulting in depolarization of the olfactory receptor neuron and triggering an action potential which transmits this information to the brain. A consensus nomenclature system based on evolutionary divergence is used here to classify the olfactory receptor family. The nomenclature begins with the root name OR, followed by an integer representing a family, a letter denoting a subfamily, and an integer representing the individual gene within the subfamily. Pssm-ID: 320547 [Multi-domain] Cd Length: 270 Bit Score: 224.94 E-value: 1.68e-72
|
|||||||||
7tmA_OR10G6-like | cd15942 | olfactory receptor subfamily 10G6 and related proteins, member of the class A family of ... |
27-296 | 2.82e-71 | |||||
olfactory receptor subfamily 10G6 and related proteins, member of the class A family of seven-transmembrane G protein-coupled receptors; This group includes human olfactory receptor 10G6 and related proteins in other mammals and sauropsids. Olfactory receptors (ORs) play a central role in olfaction, the sense of smell. ORs belong to the class A rhodopsin-like family of G protein-coupled receptors and constitute the largest multigene family in mammals of approximately 1,000 genes. More than 60% of human ORs are non-functional pseudogenes compared to only about 20% in mouse. Each OR can recognize structurally similar odorants, and a single odorant can be detected by several ORs. Binding of an odorant to the olfactory receptor induces a conformational change that leads to the activation of the olfactory-specific G protein (Golf). The G protein (Golf and/or Gs) in turn stimulates adenylate cyclase to make cAMP. The cAMP opens cyclic nucleotide-gated ion channels, which allow the influx of calcium and sodium ions, resulting in depolarization of the olfactory receptor neuron and triggering an action potential which transmits this information to the brain. A consensus nomenclature system based on evolutionary divergence is used here to classify the olfactory receptor family. The nomenclature begins with the root name OR, followed by an integer representing a family, a letter denoting a subfamily, and an integer representing the individual gene within the subfamily. Pssm-ID: 320608 Cd Length: 275 Bit Score: 221.92 E-value: 2.82e-71
|
|||||||||
7tmA_OR3A-like | cd15233 | olfactory receptor subfamily 3A3 and related proteins, member of the class A family of ... |
24-296 | 3.94e-70 | |||||
olfactory receptor subfamily 3A3 and related proteins, member of the class A family of seven-transmembrane G protein-coupled receptors; This group includes human olfactory receptor subfamily 3A3 and 3A4, and related proteins in other mammals. Olfactory receptors (ORs) play a central role in olfaction, the sense of smell. ORs belong to the class A rhodopsin-like family of G protein-coupled receptors and constitute the largest multigene family in mammals of approximately 1,000 genes. More than 60% of human ORs are non-functional pseudogenes compared to only about 20% in mouse. Each OR can recognize structurally similar odorants, and a single odorant can be detected by several ORs. Binding of an odorant to the olfactory receptor induces a conformational change that leads to the activation of the olfactory-specific G protein (Golf). The G protein (Golf and/or Gs) in turn stimulates adenylate cyclase to make cAMP. The cAMP opens cyclic nucleotide-gated ion channels, which allow the influx of calcium and sodium ions, resulting in depolarization of the olfactory receptor neuron and triggering an action potential which transmits this information to the brain. A consensus nomenclature system based on evolutionary divergence is used here to classify the olfactory receptor family. The nomenclature begins with the root name OR, followed by an integer representing a family, a letter denoting a subfamily, and an integer representing the individual gene within the subfamily. Pssm-ID: 320361 [Multi-domain] Cd Length: 277 Bit Score: 218.89 E-value: 3.94e-70
|
|||||||||
7tmA_OR2_unk | cd15424 | olfactory receptor family 2, unknown subfamily, member of the class A family of ... |
24-296 | 2.45e-69 | |||||
olfactory receptor family 2, unknown subfamily, member of the class A family of seven-transmembrane G protein-coupled receptors; This group represents an unknown subfamily, conserved in some mammalia and sauropsids, in family 2 of olfactory receptors. Olfactory receptors (ORs) play a central role in olfaction, the sense of smell. ORs belong to the class A rhodopsin-like family of G protein-coupled receptors and constitute the largest multigene family in mammals of approximately 1,000 genes. More than 60% of human ORs are non-functional pseudogenes compared to only about 20% in mouse. Each OR can recognize structurally similar odorants, and a single odorant can be detected by several ORs. Binding of an odorant to the olfactory receptor induces a conformational change that leads to the activation of the olfactory-specific G protein (Golf). The G protein (Golf and/or Gs) in turn stimulates adenylate cyclase to make cAMP. The cAMP opens cyclic nucleotide-gated ion channels, which allow the influx of calcium and sodium ions, resulting in depolarization of the olfactory receptor neuron and triggering an action potential which transmits this information to the brain. A consensus nomenclature system based on evolutionary divergence is used here to classify the olfactory receptor family. The nomenclature begins with the root name OR, followed by an integer representing a family, a letter denoting a subfamily, and an integer representing the individual gene within the subfamily. Pssm-ID: 320544 [Multi-domain] Cd Length: 277 Bit Score: 216.91 E-value: 2.45e-69
|
|||||||||
7tmA_OR8B-like | cd15405 | olfactory receptor subfamily 8B and related proteins, member of the class A family of ... |
26-296 | 2.55e-69 | |||||
olfactory receptor subfamily 8B and related proteins, member of the class A family of seven-transmembrane G protein-coupled receptors; This group includes human olfactory receptor subfamily 8B and related proteins in other mammals. Olfactory receptors (ORs) play a central role in olfaction, the sense of smell. ORs belong to the class A rhodopsin-like family of G protein-coupled receptors and constitute the largest multigene family in mammals of approximately 1,000 genes. More than 60% of human ORs are non-functional pseudogenes compared to only about 20% in mouse. Each OR can recognize structurally similar odorants, and a single odorant can be detected by several ORs. Binding of an odorant to the olfactory receptor induces a conformational change that leads to the activation of the olfactory-specific G protein (Golf). The G protein (Golf and/or Gs) in turn stimulates adenylate cyclase to make cAMP. The cAMP opens cyclic nucleotide-gated ion channels, which allow the influx of calcium and sodium ions, resulting in depolarization of the olfactory receptor neuron and triggering an action potential which transmits this information to the brain. A consensus nomenclature system based on evolutionary divergence is used here to classify the olfactory receptor family. The nomenclature begins with the root name OR, followed by an integer representing a family, a letter denoting a subfamily, and an integer representing the individual gene within the subfamily. Pssm-ID: 320527 [Multi-domain] Cd Length: 277 Bit Score: 216.90 E-value: 2.55e-69
|
|||||||||
7tmA_OR10S1-like | cd15941 | olfactory receptor subfamily 10S1 and related proteins, member of the class A family of ... |
24-296 | 2.78e-69 | |||||
olfactory receptor subfamily 10S1 and related proteins, member of the class A family of seven-transmembrane G protein-coupled receptors; This group includes human olfactory receptor 10S1 and related proteins in other mammals and sauropsids. Olfactory receptors (ORs) play a central role in olfaction, the sense of smell. ORs belong to the class A rhodopsin-like family of G protein-coupled receptors and constitute the largest multigene family in mammals of approximately 1,000 genes. More than 60% of human ORs are non-functional pseudogenes compared to only about 20% in mouse. Each OR can recognize structurally similar odorants, and a single odorant can be detected by several ORs. Binding of an odorant to the olfactory receptor induces a conformational change that leads to the activation of the olfactory-specific G protein (Golf). The G protein (Golf and/or Gs) in turn stimulates adenylate cyclase to make cAMP. The cAMP opens cyclic nucleotide-gated ion channels, which allow the influx of calcium and sodium ions, resulting in depolarization of the olfactory receptor neuron and triggering an action potential which transmits this information to the brain. A consensus nomenclature system based on evolutionary divergence is used here to classify the olfactory receptor family. The nomenclature begins with the root name OR, followed by an integer representing a family, a letter denoting a subfamily, and an integer representing the individual gene within the subfamily. Pssm-ID: 320607 [Multi-domain] Cd Length: 277 Bit Score: 217.02 E-value: 2.78e-69
|
|||||||||
7tmA_OR7-like | cd15234 | olfactory receptor family 7 and related proteins, member of the class A family of ... |
26-296 | 5.57e-69 | |||||
olfactory receptor family 7 and related proteins, member of the class A family of seven-transmembrane G protein-coupled receptors; This group includes human olfactory receptor family 7 and related proteins in other mammals. Olfactory receptors (ORs) play a central role in olfaction, the sense of smell. ORs belong to the class A rhodopsin-like family of G protein-coupled receptors and constitute the largest multigene family in mammals of approximately 1,000 genes. More than 60% of human ORs are non-functional pseudogenes compared to only about 20% in mouse. Each OR can recognize structurally similar odorants, and a single odorant can be detected by several ORs. Binding of an odorant to the olfactory receptor induces a conformational change that leads to the activation of the olfactory-specific G protein (Golf). The G protein (Golf and/or Gs) in turn stimulates adenylate cyclase to make cAMP. The cAMP opens cyclic nucleotide-gated ion channels, which allow the influx of calcium and sodium ions, resulting in depolarization of the olfactory receptor neuron and triggering an action potential which transmits this information to the brain. A consensus nomenclature system based on evolutionary divergence is used here to classify the olfactory receptor family. The nomenclature begins with the root name OR, followed by an integer representing a family, a letter denoting a subfamily, and an integer representing the individual gene within the subfamily. Pssm-ID: 320362 [Multi-domain] Cd Length: 277 Bit Score: 215.90 E-value: 5.57e-69
|
|||||||||
7tmA_OR9G-like | cd15418 | olfactory receptor subfamily 9G and related proteins, member of the class A family of ... |
26-299 | 1.30e-68 | |||||
olfactory receptor subfamily 9G and related proteins, member of the class A family of seven-transmembrane G protein-coupled receptors; This group includes human olfactory receptor subfamily 9G and related proteins in other mammals and sauropsids. Olfactory receptors (ORs) play a central role in olfaction, the sense of smell. ORs belong to the class A rhodopsin-like family of G protein-coupled receptors and constitute the largest multigene family in mammals of approximately 1,000 genes. More than 60% of human ORs are non-functional pseudogenes compared to only about 20% in mouse. Each OR can recognize structurally similar odorants, and a single odorant can be detected by several ORs. Binding of an odorant to the olfactory receptor induces a conformational change that leads to the activation of the olfactory-specific G protein (Golf). The G protein (Golf and/or Gs) in turn stimulates adenylate cyclase to make cAMP. The cAMP opens cyclic nucleotide-gated ion channels, which allow the influx of calcium and sodium ions, resulting in depolarization of the olfactory receptor neuron and triggering an action potential which transmits this information to the brain. A consensus nomenclature system based on evolutionary divergence is used here to classify the olfactory receptor family. The nomenclature begins with the root name OR, followed by an integer representing a family, a letter denoting a subfamily, and an integer representing the individual gene within the subfamily. Pssm-ID: 320540 [Multi-domain] Cd Length: 281 Bit Score: 215.42 E-value: 1.30e-68
|
|||||||||
7tmA_OR2B2-like | cd15432 | olfactory receptor subfamily 2B2 and related proteins, member of the class A family of ... |
23-296 | 1.77e-68 | |||||
olfactory receptor subfamily 2B2 and related proteins, member of the class A family of seven-transmembrane G protein-coupled receptors; This group includes transmembrane olfactory receptor subfamily 2B2 and related proteins in other mammals and sauropsids. Olfactory receptors (ORs) play a central role in olfaction, the sense of smell. ORs belong to the class A rhodopsin-like family of G protein-coupled receptors and constitute the largest multigene family in mammals of approximately 1,000 genes. More than 60% of human ORs are non-functional pseudogenes compared to only about 20% in mouse. Each OR can recognize structurally similar odorants, and a single odorant can be detected by several ORs. Binding of an odorant to the olfactory receptor induces a conformational change that leads to the activation of the olfactory-specific G protein (Golf). The G protein (Golf and/or Gs) in turn stimulates adenylate cyclase to make cAMP. The cAMP opens cyclic nucleotide-gated ion channels, which allow the influx of calcium and sodium ions, resulting in depolarization of the olfactory receptor neuron and triggering an action potential which transmits this information to the brain. A consensus nomenclature system based on evolutionary divergence is used here to classify the olfactory receptor family. The nomenclature begins with the root name OR, followed by an integer representing a family, a letter denoting a subfamily, and an integer representing the individual gene within the subfamily. Pssm-ID: 320549 [Multi-domain] Cd Length: 277 Bit Score: 215.03 E-value: 1.77e-68
|
|||||||||
7tmA_OR2D-like | cd15428 | olfactory receptor subfamily 2D and related proteins, member of the class A family of ... |
24-296 | 6.91e-67 | |||||
olfactory receptor subfamily 2D and related proteins, member of the class A family of seven-transmembrane G protein-coupled receptors; This group includes human olfactory receptor subfamily 2D and related proteins in other mammals and sauropsids. Olfactory receptors (ORs) play a central role in olfaction, the sense of smell. ORs belong to the class A rhodopsin-like family of G protein-coupled receptors and constitute the largest multigene family in mammals of approximately 1,000 genes. More than 60% of human ORs are non-functional pseudogenes compared to only about 20% in mouse. Each OR can recognize structurally similar odorants, and a single odorant can be detected by several ORs. Binding of an odorant to the olfactory receptor induces a conformational change that leads to the activation of the olfactory-specific G protein (Golf). The G protein (Golf and/or Gs) in turn stimulates adenylate cyclase to make cAMP. The cAMP opens cyclic nucleotide-gated ion channels, which allow the influx of calcium and sodium ions, resulting in depolarization of the olfactory receptor neuron and triggering an action potential which transmits this information to the brain. A consensus nomenclature system based on evolutionary divergence is used here to classify the olfactory receptor family. The nomenclature begins with the root name OR, followed by an integer representing a family, a letter denoting a subfamily, and an integer representing the individual gene within the subfamily. Pssm-ID: 320545 [Multi-domain] Cd Length: 277 Bit Score: 210.80 E-value: 6.91e-67
|
|||||||||
7tmA_OR1330-like | cd15946 | olfactory receptor 1330 and related proteins, member of the class A family of ... |
24-289 | 6.73e-64 | |||||
olfactory receptor 1330 and related proteins, member of the class A family of seven-transmembrane G protein-coupled receptors; This group includes olfactory receptors 1330 from mouse, Olr859 from rat, and related proteins in other mammals and sauropsids. Olfactory receptors (ORs) play a central role in olfaction, the sense of smell. ORs belong to the class A rhodopsin-like family of G protein-coupled receptors and constitute the largest multigene family in mammals of approximately 1,000 genes. More than 60% of human ORs are non-functional pseudogenes compared to only about 20% in mouse. Each OR can recognize structurally similar odorants, and a single odorant can be detected by several ORs. Binding of an odorant to the olfactory receptor induces a conformational change that leads to the activation of the olfactory-specific G protein (Golf). The G protein (Golf and/or Gs) in turn stimulates adenylate cyclase to make cAMP. The cAMP opens cyclic nucleotide-gated ion channels, which allow the influx of calcium and sodium ions, resulting in depolarization of the olfactory receptor neuron and triggering an action potential which transmits this information to the brain. A consensus nomenclature system based on evolutionary divergence is used here to classify the olfactory receptor family. The nomenclature begins with the root name OR, followed by an integer representing a family, a letter denoting a subfamily, and an integer representing the individual gene within the subfamily. Pssm-ID: 320612 Cd Length: 270 Bit Score: 202.71 E-value: 6.73e-64
|
|||||||||
7tmA_OR1E-like | cd15236 | olfactory receptor subfamily 1E and related proteins, member of the class A family of ... |
24-296 | 2.75e-62 | |||||
olfactory receptor subfamily 1E and related proteins, member of the class A family of seven-transmembrane G protein-coupled receptors; This group includes human olfactory receptor subfamily 1E, 1J, and related proteins in other mammals. Olfactory receptors (ORs) play a central role in olfaction, the sense of smell. ORs belong to the class A rhodopsin-like family of G protein-coupled receptors and constitute the largest multigene family in mammals of approximately 1,000 genes. More than 60% of human ORs are non-functional pseudogenes compared to only about 20% in mouse. Each OR can recognize structurally similar odorants, and a single odorant can be detected by several ORs. Binding of an odorant to the olfactory receptor induces a conformational change that leads to the activation of the olfactory-specific G protein (Golf). The G protein (Golf and/or Gs) in turn stimulates adenylate cyclase to make cAMP. The cAMP opens cyclic nucleotide-gated ion channels, which allow the influx of calcium and sodium ions, resulting in depolarization of the olfactory receptor neuron and triggering an action potential which transmits this information to the brain. A consensus nomenclature system based on evolutionary divergence is used here to classify the olfactory receptor family. The nomenclature begins with the root name OR, followed by an integer representing a family, a letter denoting a subfamily, and an integer representing the individual gene within the subfamily. Pssm-ID: 320364 [Multi-domain] Cd Length: 277 Bit Score: 198.84 E-value: 2.75e-62
|
|||||||||
7tmA_OR11G-like | cd15913 | olfactory receptor OR11G and related proteins, member of the class A family of ... |
23-289 | 9.82e-62 | |||||
olfactory receptor OR11G and related proteins, member of the class A family of seven-transmembrane G protein-coupled receptors; This group includes human olfactory receptor 11G, 11H, and related proteins in other mammals, and sauropsids. Olfactory receptors (ORs) play a central role in olfaction, the sense of smell. ORs belong to the class A rhodopsin-like family of G protein-coupled receptors and constitute the largest multigene family in mammals of approximately 1,000 genes. More than 60% of human ORs are non-functional pseudogenes compared to only about 20% in mouse. Each OR can recognize structurally similar odorants, and a single odorant can be detected by several ORs. Binding of an odorant to the olfactory receptor induces a conformational change that leads to the activation of the olfactory-specific G protein (Golf). The G protein (Golf and/or Gs) in turn stimulates adenylate cyclase to make cAMP. The cAMP opens cyclic nucleotide-gated ion channels, which allow the influx of calcium and sodium ions, resulting in depolarization of the olfactory receptor neuron and triggering an action potential which transmits this information to the brain. A consensus nomenclature system based on evolutionary divergence is used here to classify the olfactory receptor family. The nomenclature begins with the root name OR, followed by an integer representing a family, a letter denoting a subfamily, and an integer representing the individual gene within the subfamily. Pssm-ID: 320579 Cd Length: 270 Bit Score: 197.15 E-value: 9.82e-62
|
|||||||||
7tmA_OR2Y-like | cd15433 | olfactory receptor subfamily 2Y and related proteins, member of the class A family of ... |
24-296 | 4.71e-59 | |||||
olfactory receptor subfamily 2Y and related proteins, member of the class A family of seven-transmembrane G protein-coupled receptors; This group includes human olfactory receptor subfamily 2Y, 2I, and related protein in other mammals. Olfactory receptors (ORs) play a central role in olfaction, the sense of smell. ORs belong to the class A rhodopsin-like family of G protein-coupled receptors and constitute the largest multigene family in mammals of approximately 1,000 genes. More than 60% of human ORs are non-functional pseudogenes compared to only about 20% in mouse. Each OR can recognize structurally similar odorants, and a single odorant can be detected by several ORs. Binding of an odorant to the olfactory receptor induces a conformational change that leads to the activation of the olfactory-specific G protein (Golf). The G protein (Golf and/or Gs) in turn stimulates adenylate cyclase to make cAMP. The cAMP opens cyclic nucleotide-gated ion channels, which allow the influx of calcium and sodium ions, resulting in depolarization of the olfactory receptor neuron and triggering an action potential which transmits this information to the brain. A consensus nomenclature system based on evolutionary divergence is used here to classify the olfactory receptor family. The nomenclature begins with the root name OR, followed by an integer representing a family, a letter denoting a subfamily, and an integer representing the individual gene within the subfamily. Pssm-ID: 320550 [Multi-domain] Cd Length: 277 Bit Score: 190.77 E-value: 4.71e-59
|
|||||||||
7tmA_OR56-like | cd15223 | olfactory receptor family 56 and related proteins, member of the class A family of ... |
29-296 | 6.23e-56 | |||||
olfactory receptor family 56 and related proteins, member of the class A family of seven-transmembrane G protein-coupled receptors; This group includes human olfactory receptor family 56 and related proteins in other mammals, sauropsids, and fishes. Olfactory receptors (ORs) play a central role in olfaction, the sense of smell. ORs belong to the class A rhodopsin-like family of G protein-coupled receptors and constitute the largest multigene family in mammals of approximately 1,000 genes. More than 60% of human ORs are non-functional pseudogenes compared to only about 20% in mouse. Each OR can recognize structurally similar odorants, and a single odorant can be detected by several ORs. Binding of an odorant to the olfactory receptor induces a conformational change that leads to the activation of the olfactory-specific G protein (Golf). The G protein (Golf and/or Gs) in turn stimulates adenylate cyclase to make cAMP. The cAMP opens cyclic nucleotide-gated ion channels, which allow the influx of calcium and sodium ions, resulting in depolarization of the olfactory receptor neuron and triggering an action potential which transmits this information to the brain. A consensus nomenclature system based on evolutionary divergence is used here to classify the olfactory receptor family. The nomenclature begins with the root name OR, followed by an integer representing a family, a letter denoting a subfamily, and an integer representing the individual gene within the subfamily. Pssm-ID: 320351 [Multi-domain] Cd Length: 279 Bit Score: 182.49 E-value: 6.23e-56
|
|||||||||
7tmA_OR51_52-like | cd15917 | olfactory receptor family 51, 52, 56 and related proteins, member of the class A family of ... |
29-292 | 4.88e-48 | |||||
olfactory receptor family 51, 52, 56 and related proteins, member of the class A family of seven-transmembrane G protein-coupled receptors; This group includes human olfactory receptor families 51, 52, 56, and related proteins in other mammals, sauropsids, amphibians, and fishes. Olfactory receptors (ORs) play a central role in olfaction, the sense of smell. ORs belong to the class A rhodopsin-like family of G protein-coupled receptors and constitute the largest multigene family in mammals of approximately 1,000 genes. More than 60% of human ORs are non-functional pseudogenes compared to only about 20% in mouse. Each OR can recognize structurally similar odorants, and a single odorant can be detected by several ORs. Binding of an odorant to the olfactory receptor induces a conformational change that leads to the activation of the olfactory-specific G protein (Golf). The G protein (Golf and/or Gs) in turn stimulates adenylate cyclase to make cAMP. The cAMP opens cyclic nucleotide-gated ion channels, which allow the influx of calcium and sodium ions, resulting in depolarization of the olfactory receptor neuron and triggering an action potential which transmits this information to the brain. A consensus nomenclature system based on evolutionary divergence is used here to classify the olfactory receptor family. The nomenclature begins with the root name OR, followed by an integer representing a family, a letter denoting a subfamily, and an integer representing the individual gene within the subfamily. Pssm-ID: 341351 Cd Length: 275 Bit Score: 162.07 E-value: 4.88e-48
|
|||||||||
7tmA_OR52I-like | cd15950 | olfactory receptor subfamily 52I and related proteins, member of the class A family of ... |
29-288 | 1.20e-46 | |||||
olfactory receptor subfamily 52I and related proteins, member of the class A family of seven-transmembrane G protein-coupled receptors; This group includes human olfactory receptor subfamily 52I and related proteins in other mammals and sauropsids. Olfactory receptors (ORs) play a central role in olfaction, the sense of smell. ORs belong to the class A rhodopsin-like family of G protein-coupled receptors and constitute the largest multigene family in mammals of approximately 1,000 genes. More than 60% of human ORs are non-functional pseudogenes compared to only about 20% in mouse. Each OR can recognize structurally similar odorants, and a single odorant can be detected by several ORs. Binding of an odorant to the olfactory receptor induces a conformational change that leads to the activation of the olfactory-specific G protein (Golf). The G protein (Golf and/or Gs) in turn stimulates adenylate cyclase to make cAMP. The cAMP opens cyclic nucleotide-gated ion channels, which allow the influx of calcium and sodium ions, resulting in depolarization of the olfactory receptor neuron and triggering an action potential which transmits this information to the brain. A consensus nomenclature system based on evolutionary divergence is used here to classify the olfactory receptor family. The nomenclature begins with the root name OR, followed by an integer representing a family, a letter denoting a subfamily, and an integer representing the individual gene within the subfamily. Pssm-ID: 320616 Cd Length: 275 Bit Score: 158.35 E-value: 1.20e-46
|
|||||||||
7tmA_OR52E-like | cd15952 | olfactory receptor subfamily 52E and related proteins, member of the class A family of ... |
29-292 | 1.55e-46 | |||||
olfactory receptor subfamily 52E and related proteins, member of the class A family of seven-transmembrane G protein-coupled receptors; This group includes human olfactory receptor subfamily 52E and related proteins in other mammals and sauropsids. Olfactory receptors (ORs) play a central role in olfaction, the sense of smell. ORs belong to the class A rhodopsin-like family of G protein-coupled receptors and constitute the largest multigene family in mammals of approximately 1,000 genes. More than 60% of human ORs are non-functional pseudogenes compared to only about 20% in mouse. Each OR can recognize structurally similar odorants, and a single odorant can be detected by several ORs. Binding of an odorant to the olfactory receptor induces a conformational change that leads to the activation of the olfactory-specific G protein (Golf). The G protein (Golf and/or Gs) in turn stimulates adenylate cyclase to make cAMP. The cAMP opens cyclic nucleotide-gated ion channels, which allow the influx of calcium and sodium ions, resulting in depolarization of the olfactory receptor neuron and triggering an action potential which transmits this information to the brain. A consensus nomenclature system based on evolutionary divergence is used here to classify the olfactory receptor family. The nomenclature begins with the root name OR, followed by an integer representing a family, a letter denoting a subfamily, and an integer representing the individual gene within the subfamily. Pssm-ID: 320618 Cd Length: 274 Bit Score: 158.31 E-value: 1.55e-46
|
|||||||||
7tmA_OR52B-like | cd15221 | olfactory receptor subfamily 52B and related proteins, member of the class A family of ... |
29-288 | 5.20e-45 | |||||
olfactory receptor subfamily 52B and related proteins, member of the class A family of seven-transmembrane G protein-coupled receptors; This group includes human olfactory receptor (OR) subfamilies 52B, 52D, 52H and related proteins in other mammals, sauropsids, and amphibians. Olfactory receptors (ORs) play a central role in olfaction, the sense of smell. ORs belong to the class A rhodopsin-like family of G protein-coupled receptors and constitute the largest multigene family in mammals of approximately 1,000 genes. More than 60% of human ORs are non-functional pseudogenes compared to only about 20% in mouse. Each OR can recognize structurally similar odorants, and a single odorant can be detected by several ORs. Binding of an odorant to the olfactory receptor induces a conformational change that leads to the activation of the olfactory-specific G protein (Golf). The G protein (Golf and/or Gs) in turn stimulates adenylate cyclase to make cAMP. The cAMP opens cyclic nucleotide-gated ion channels, which allow the influx of calcium and sodium ions, resulting in depolarization of the olfactory receptor neuron and triggering an action potential which transmits this information to the brain. A consensus nomenclature system based on evolutionary divergence is used here to classify the olfactory receptor family. The nomenclature begins with the root name OR, followed by an integer representing a family, a letter denoting a subfamily, and an integer representing the individual gene within the subfamily. Pssm-ID: 320349 Cd Length: 275 Bit Score: 154.37 E-value: 5.20e-45
|
|||||||||
7tmA_OR51-like | cd15222 | olfactory receptor family 51 and related proteins, member of the class A family of ... |
24-291 | 3.44e-44 | |||||
olfactory receptor family 51 and related proteins, member of the class A family of seven-transmembrane G protein-coupled receptors; This group includes human olfactory receptor family 51 and related proteins in other mammals, sauropsids, and amphibians. Olfactory receptors (ORs) play a central role in olfaction, the sense of smell. ORs belong to the class A rhodopsin-like family of G protein-coupled receptors and constitute the largest multigene family in mammals of approximately 1,000 genes. More than 60% of human ORs are non-functional pseudogenes compared to only about 20% in mouse. Each OR can recognize structurally similar odorants, and a single odorant can be detected by several ORs. Binding of an odorant to the olfactory receptor induces a conformational change that leads to the activation of the olfactory-specific G protein (Golf). The G protein (Golf and/or Gs) in turn stimulates adenylate cyclase to make cAMP. The cAMP opens cyclic nucleotide-gated ion channels, which allow the influx of calcium and sodium ions, resulting in depolarization of the olfactory receptor neuron and triggering an action potential which transmits this information to the brain. A consensus nomenclature system based on evolutionary divergence is used here to classify the olfactory receptor family. The nomenclature begins with the root name OR, followed by an integer representing a family, a letter denoting a subfamily, and an integer representing the individual gene within the subfamily. Pssm-ID: 320350 Cd Length: 275 Bit Score: 152.27 E-value: 3.44e-44
|
|||||||||
7tmA_OR52P-like | cd15953 | olfactory receptor subfamily 52P and related proteins, member of the class A family of ... |
29-291 | 2.70e-43 | |||||
olfactory receptor subfamily 52P and related proteins, member of the class A family of seven-transmembrane G protein-coupled receptors; This group includes human olfactory receptor subfamily 52P and related proteins in other mammals, sauropsids and amphibians. Olfactory receptors (ORs) play a central role in olfaction, the sense of smell. ORs belong to the class A rhodopsin-like family of G protein-coupled receptors and constitute the largest multigene family in mammals of approximately 1,000 genes. More than 60% of human ORs are non-functional pseudogenes compared to only about 20% in mouse. Each OR can recognize structurally similar odorants, and a single odorant can be detected by several ORs. Binding of an odorant to the olfactory receptor induces a conformational change that leads to the activation of the olfactory-specific G protein (Golf). The G protein (Golf and/or Gs) in turn stimulates adenylate cyclase to make cAMP. The cAMP opens cyclic nucleotide-gated ion channels, which allow the influx of calcium and sodium ions, resulting in depolarization of the olfactory receptor neuron and triggering an action potential which transmits this information to the brain. A consensus nomenclature system based on evolutionary divergence is used here to classify the olfactory receptor family. The nomenclature begins with the root name OR, followed by an integer representing a family, a letter denoting a subfamily, and an integer representing the individual gene within the subfamily. Pssm-ID: 341354 Cd Length: 275 Bit Score: 149.72 E-value: 2.70e-43
|
|||||||||
7tmA_OR52W-like | cd15956 | olfactory receptor subfamily 52W and related proteins, member of the class A family of ... |
29-292 | 5.51e-40 | |||||
olfactory receptor subfamily 52W and related proteins, member of the class A family of seven-transmembrane G protein-coupled receptors; This group includes human olfactory receptor subfamily 52W and related proteins in other mammals and sauropsids. Olfactory receptors (ORs) play a central role in olfaction, the sense of smell. ORs belong to the class A rhodopsin-like family of G protein-coupled receptors and constitute the largest multigene family in mammals of approximately 1,000 genes. More than 60% of human ORs are non-functional pseudogenes compared to only about 20% in mouse. Each OR can recognize structurally similar odorants, and a single odorant can be detected by several ORs. Binding of an odorant to the olfactory receptor induces a conformational change that leads to the activation of the olfactory-specific G protein (Golf). The G protein (Golf and/or Gs) in turn stimulates adenylate cyclase to make cAMP. The cAMP opens cyclic nucleotide-gated ion channels, which allow the influx of calcium and sodium ions, resulting in depolarization of the olfactory receptor neuron and triggering an action potential which transmits this information to the brain. A consensus nomenclature system based on evolutionary divergence is used here to classify the olfactory receptor family. The nomenclature begins with the root name OR, followed by an integer representing a family, a letter denoting a subfamily, and an integer representing the individual gene within the subfamily. Pssm-ID: 320622 [Multi-domain] Cd Length: 275 Bit Score: 141.15 E-value: 5.51e-40
|
|||||||||
7tmA_OR52R_52L-like | cd15951 | olfactory receptor subfamily 52R, 52L, and related proteins, member of the class A family of ... |
29-289 | 1.58e-39 | |||||
olfactory receptor subfamily 52R, 52L, and related proteins, member of the class A family of seven-transmembrane G protein-coupled receptors; This group includes human olfactory receptor subfamilies 52R, 52L and related proteins in other mammals and sauropsids. Olfactory receptors (ORs) play a central role in olfaction, the sense of smell. ORs belong to the class A rhodopsin-like family of G protein-coupled receptors and constitute the largest multigene family in mammals of approximately 1,000 genes. More than 60% of human ORs are non-functional pseudogenes compared to only about 20% in mouse. Each OR can recognize structurally similar odorants, and a single odorant can be detected by several ORs. Binding of an odorant to the olfactory receptor induces a conformational change that leads to the activation of the olfactory-specific G protein (Golf). The G protein (Golf and/or Gs) in turn stimulates adenylate cyclase to make cAMP. The cAMP opens cyclic nucleotide-gated ion channels, which allow the influx of calcium and sodium ions, resulting in depolarization of the olfactory receptor neuron and triggering an action potential which transmits this information to the brain. A consensus nomenclature system based on evolutionary divergence is used here to classify the olfactory receptor family. The nomenclature begins with the root name OR, followed by an integer representing a family, a letter denoting a subfamily, and an integer representing the individual gene within the subfamily. Pssm-ID: 320617 Cd Length: 275 Bit Score: 139.79 E-value: 1.58e-39
|
|||||||||
7tm_4 | pfam13853 | Olfactory receptor; The members of this family are transmembrane olfactory receptors. |
29-301 | 5.29e-39 | |||||
Olfactory receptor; The members of this family are transmembrane olfactory receptors. Pssm-ID: 404695 Cd Length: 278 Bit Score: 138.79 E-value: 5.29e-39
|
|||||||||
7tmA_OR52M-like | cd15949 | olfactory receptor subfamily 52M and related proteins, member of the class A family of ... |
8-293 | 5.25e-37 | |||||
olfactory receptor subfamily 52M and related proteins, member of the class A family of seven-transmembrane G protein-coupled receptors; This group includes human olfactory receptor subfamily 52M and related proteins in other mammals, sauropsids, and amphibians. Olfactory receptors (ORs) play a central role in olfaction, the sense of smell. ORs belong to the class A rhodopsin-like family of G protein-coupled receptors and constitute the largest multigene family in mammals of approximately 1,000 genes. More than 60% of human ORs are non-functional pseudogenes compared to only about 20% in mouse. Each OR can recognize structurally similar odorants, and a single odorant can be detected by several ORs. Binding of an odorant to the olfactory receptor induces a conformational change that leads to the activation of the olfactory-specific G protein (Golf). The G protein (Golf and/or Gs) in turn stimulates adenylate cyclase to make cAMP. The cAMP opens cyclic nucleotide-gated ion channels, which allow the influx of calcium and sodium ions, resulting in depolarization of the olfactory receptor neuron and triggering an action potential which transmits this information to the brain. A consensus nomenclature system based on evolutionary divergence is used here to classify the olfactory receptor family. The nomenclature begins with the root name OR, followed by an integer representing a family, a letter denoting a subfamily, and an integer representing the individual gene within the subfamily. Pssm-ID: 320615 Cd Length: 292 Bit Score: 133.75 E-value: 5.25e-37
|
|||||||||
7tmA_OR52K-like | cd15948 | olfactory receptor subfamily 52K and related proteins, member of the class A family of ... |
29-293 | 2.78e-36 | |||||
olfactory receptor subfamily 52K and related proteins, member of the class A family of seven-transmembrane G protein-coupled receptors; This group includes human olfactory receptor subfamily 52K and related proteins in other mammals and sauropsids. Olfactory receptors (ORs) play a central role in olfaction, the sense of smell. ORs belong to the class A rhodopsin-like family of G protein-coupled receptors and constitute the largest multigene family in mammals of approximately 1,000 genes. More than 60% of human ORs are non-functional pseudogenes compared to only about 20% in mouse. Each OR can recognize structurally similar odorants, and a single odorant can be detected by several ORs. Binding of an odorant to the olfactory receptor induces a conformational change that leads to the activation of the olfactory-specific G protein (Golf). The G protein (Golf and/or Gs) in turn stimulates adenylate cyclase to make cAMP. The cAMP opens cyclic nucleotide-gated ion channels, which allow the influx of calcium and sodium ions, resulting in depolarization of the olfactory receptor neuron and triggering an action potential which transmits this information to the brain. A consensus nomenclature system based on evolutionary divergence is used here to classify the olfactory receptor family. The nomenclature begins with the root name OR, followed by an integer representing a family, a letter denoting a subfamily, and an integer representing the individual gene within the subfamily. Pssm-ID: 320614 [Multi-domain] Cd Length: 277 Bit Score: 131.57 E-value: 2.78e-36
|
|||||||||
7tm_1 | pfam00001 | 7 transmembrane receptor (rhodopsin family); This family contains, amongst other ... |
39-285 | 1.86e-30 | |||||
7 transmembrane receptor (rhodopsin family); This family contains, amongst other G-protein-coupled receptors (GCPRs), members of the opsin family, which have been considered to be typical members of the rhodopsin superfamily. They share several motifs, mainly the seven transmembrane helices, GCPRs of the rhodopsin superfamily. All opsins bind a chromophore, such as 11-cis-retinal. The function of most opsins other than the photoisomerases is split into two steps: light absorption and G-protein activation. Photoisomerases, on the other hand, are not coupled to G-proteins - they are thought to generate and supply the chromophore that is used by visual opsins. Pssm-ID: 459624 [Multi-domain] Cd Length: 256 Bit Score: 115.47 E-value: 1.86e-30
|
|||||||||
7tmA_OR52N-like | cd15954 | olfactory receptor subfamily 52N and related proteins, member of the class A family of ... |
29-292 | 1.43e-29 | |||||
olfactory receptor subfamily 52N and related proteins, member of the class A family of seven-transmembrane G protein-coupled receptors; This group includes human olfactory receptor subfamily 52N and related proteins in other mammals and sauropsids. Olfactory receptors (ORs) play a central role in olfaction, the sense of smell. ORs belong to the class A rhodopsin-like family of G protein-coupled receptors and constitute the largest multigene family in mammals of approximately 1,000 genes. More than 60% of human ORs are non-functional pseudogenes compared to only about 20% in mouse. Each OR can recognize structurally similar odorants, and a single odorant can be detected by several ORs. Binding of an odorant to the olfactory receptor induces a conformational change that leads to the activation of the olfactory-specific G protein (Golf). The G protein (Golf and/or Gs) in turn stimulates adenylate cyclase to make cAMP. The cAMP opens cyclic nucleotide-gated ion channels, which allow the influx of calcium and sodium ions, resulting in depolarization of the olfactory receptor neuron and triggering an action potential which transmits this information to the brain. A consensus nomenclature system based on evolutionary divergence is used here to classify the olfactory receptor family. The nomenclature begins with the root name OR, followed by an integer representing a family, a letter denoting a subfamily, and an integer representing the individual gene within the subfamily. Pssm-ID: 320620 Cd Length: 276 Bit Score: 113.76 E-value: 1.43e-29
|
|||||||||
7tmA_OR52A-like | cd15955 | olfactory receptor subfamily 52A and related proteins, member of the class A family of ... |
26-292 | 4.49e-26 | |||||
olfactory receptor subfamily 52A and related proteins, member of the class A family of seven-transmembrane G protein-coupled receptors; This group includes human olfactory receptor subfamily 52A and related proteins in other mammals and sauropsids. Olfactory receptors (ORs) play a central role in olfaction, the sense of smell. ORs belong to the class A rhodopsin-like family of G protein-coupled receptors and constitute the largest multigene family in mammals of approximately 1,000 genes. More than 60% of human ORs are non-functional pseudogenes compared to only about 20% in mouse. Each OR can recognize structurally similar odorants, and a single odorant can be detected by several ORs. Binding of an odorant to the olfactory receptor induces a conformational change that leads to the activation of the olfactory-specific G protein (Golf). The G protein (Golf and/or Gs) in turn stimulates adenylate cyclase to make cAMP. The cAMP opens cyclic nucleotide-gated ion channels, which allow the influx of calcium and sodium ions, resulting in depolarization of the olfactory receptor neuron and triggering an action potential which transmits this information to the brain. A consensus nomenclature system based on evolutionary divergence is used here to classify the olfactory receptor family. The nomenclature begins with the root name OR, followed by an integer representing a family, a letter denoting a subfamily, and an integer representing the individual gene within the subfamily. Pssm-ID: 320621 [Multi-domain] Cd Length: 276 Bit Score: 104.47 E-value: 4.49e-26
|
|||||||||
7tm_classA_rhodopsin-like | cd00637 | rhodopsin receptor-like class A family of the seven-transmembrane G protein-coupled receptor ... |
28-289 | 8.25e-21 | |||||
rhodopsin receptor-like class A family of the seven-transmembrane G protein-coupled receptor superfamily; Class A rhodopsin-like receptors constitute about 90% of all GPCRs. The class A GPCRs include the light-sensitive rhodopsin as well as receptors for biogenic amines, lipids, nucleotides, odorants, peptide hormones, and a variety of other ligands. All GPCRs have a common structural architecture comprising of seven-transmembrane (TM) alpha-helices interconnected by three extracellular and three intracellular loops. A general feature of GPCR signaling is agonist-induced conformational changes in the receptors, leading to activation of the heterotrimeric G proteins, which consist of the guanine nucleotide-binding G-alpha subunit and the dimeric G-beta-gamma subunits. The activated G proteins then bind to and activate numerous downstream effector proteins, which generate second messengers that mediate a broad range of cellular and physiological processes. Based on sequence similarity, GPCRs can be divided into six major classes: class A (rhodopsin-like family), class B (Methuselah-like, adhesion and secretin-like receptor family), class C (metabotropic glutamate receptor family), class D (fungal mating pheromone receptors), class E (cAMP receptor family), and class F (frizzled/smoothened receptor family). Nearly 800 human GPCR genes have been identified and are involved essentially in all major physiological processes. Approximately 40% of clinically marketed drugs mediate their effects through modulation of GPCR function for the treatment of a variety of human diseases including bacterial infections. Pssm-ID: 410626 [Multi-domain] Cd Length: 275 Bit Score: 90.04 E-value: 8.25e-21
|
|||||||||
7tmA_amine_R-like | cd14967 | amine receptors and similar proteins, member of the class A family of seven-transmembrane G ... |
36-296 | 1.48e-11 | |||||
amine receptors and similar proteins, member of the class A family of seven-transmembrane G protein-coupled receptors; Amine receptors of the class A family of GPCRs include adrenoceptors, 5-HT (serotonin) receptors, muscarinic cholinergic receptors, dopamine receptors, histamine receptors, and trace amine receptors. The receptors of amine subfamily are major therapeutic targets for the treatment of neurological disorders and psychiatric diseases. All GPCRs have a common structural architecture comprising of seven-transmembrane (TM) alpha-helices interconnected by three extracellular and three intracellular loops. A general feature of GPCR signaling is agonist-induced conformational changes in the receptors, leading to activation of the heterotrimeric G proteins, which consist of the guanine nucleotide-binding G-alpha subunit and the dimeric G-beta-gamma subunits. The activated G proteins then bind to and activate numerous downstream effector proteins, which generate second messengers that mediate a broad range of cellular and physiological processes. Pssm-ID: 320098 [Multi-domain] Cd Length: 259 Bit Score: 63.35 E-value: 1.48e-11
|
|||||||||
7tmA_Opsins_type2_animals | cd14969 | type 2 opsins in animals, member of the class A family of seven-transmembrane G ... |
28-296 | 1.26e-10 | |||||
type 2 opsins in animals, member of the class A family of seven-transmembrane G protein-coupled receptors; This rhodopsin family represents the type 2 opsins found in vertebrates and invertebrates except sponge. Type 2 opsins primarily function as G protein coupled receptors and are responsible for vision as well as for circadian rhythm and pigment regulation. On the contrary, type 1 opsins such as bacteriorhodopsin and proteorhodopsin are found in both prokaryotic and eukaryotic microbes, functioning as light-gated ion channels, proton pumps, sensory receptors and in other unknown functions. Although these two opsin types share seven-transmembrane domain topology and a conserved lysine reside in the seventh helix, type 1 opsins do not activate G-proteins and are not evolutionarily related to type 2. Type 2 opsins can be classified into six distinct subfamilies including the vertebrate opsins/encephalopsins, the G(o) opsins, the G(s) opsins, the invertebrate G(q) opsins, the photoisomerases, and the neuropsins. Pssm-ID: 381741 [Multi-domain] Cd Length: 284 Bit Score: 61.07 E-value: 1.26e-10
|
|||||||||
7tmA_EDG-like | cd14972 | endothelial differentiation gene family, member of the class A family of seven-transmembrane G ... |
28-296 | 3.85e-09 | |||||
endothelial differentiation gene family, member of the class A family of seven-transmembrane G protein-coupled receptors; This group represents the endothelial differentiation gene (Edg) family of G-protein coupled receptors, melanocortin/ACTH receptors, and cannabinoid receptors as well as their closely related receptors. The Edg GPCRs bind blood borne lysophospholipids including sphingosine-1-phosphate (S1P) and lysophosphatidic acid (LPA), which are involved in the regulation of cell proliferation, survival, migration, invasion, endothelial cell shape change and cytoskeletal remodeling. The Edg receptors are classified into two subfamilies: the lysophosphatidic acid subfamily that includes LPA1 (Edg2), LPA2 (Edg4), and LPA3 (Edg7); and the S1P subfamily that includes S1P1 (Edg1), S1P2 (Edg5), S1P3 (Edg3), S1P4 (Edg6), and S1P5 (Edg8). Melanocortin receptors bind a group of pituitary peptide hormones known as melanocortins, which include adrenocorticotropic hormone (ACTH) and the different isoforms of melanocyte-stimulating hormones. Two types of cannabinoid receptors, CB1 and CB2, are activated by naturally occurring endocannabinoids, cannabis plant-derived cannabinoids such as tetrahydrocannabinol, or synthetic cannabinoids. The CB receptors are involved in the various physiological processes such as appetite, mood, memory, and pain sensation. CB1 receptor is expressed predominantly in central and peripheral neurons, while CB2 receptor is found mainly in the immune system. Pssm-ID: 341317 [Multi-domain] Cd Length: 275 Bit Score: 56.53 E-value: 3.85e-09
|
|||||||||
7tmA_Adenosine_R | cd14968 | adenosine receptor subfamily, member of the class A family of seven-transmembrane G ... |
39-296 | 1.01e-07 | |||||
adenosine receptor subfamily, member of the class A family of seven-transmembrane G protein-coupled receptors; The adenosine receptors (or P1 receptors), a family of G protein-coupled purinergic receptors, bind adenosine as their endogenous ligand. There are four types of adenosine receptors in human, designated as A1, A2A, A2B, and A3. Each type is encoded by a different gene and has distinct functions with some overlap. For example, both A1 and A2A receptors are involved in regulating myocardial oxygen consumption and coronary blood flow in the heart, while the A2A receptor also has a broad spectrum of anti-inflammatory effects in the body. These two receptors also expressed in the brain, where they have important roles in the release of other neurotransmitters such as dopamine and glutamate, while the A2B and A3 receptors found primarily in the periphery and play important roles in inflammation and immune responses. The A1 and A3 receptors preferentially interact with G proteins of the G(i/o) family, thereby lowering the intracellular cAMP levels, whereas the A2A and A2B receptors interact with G proteins of the G(s) family, activating adenylate cyclase to elevate cAMP levels. Pssm-ID: 341316 [Multi-domain] Cd Length: 285 Bit Score: 52.26 E-value: 1.01e-07
|
|||||||||
7tmA_Opsin5_neuropsin | cd15074 | neuropsin (Opsin-5), member of the class A family of seven-transmembrane G protein-coupled ... |
28-151 | 2.21e-07 | |||||
neuropsin (Opsin-5), member of the class A family of seven-transmembrane G protein-coupled receptors; Neuropsin, also known as Opsin-5, is a photoreceptor protein expressed in the retina, brain, testes, and spinal cord. Neuropsin belongs to the type 2 opsin family of the class A G-protein coupled receptors. Mammalian neuropsin activates Gi protein-mediated photo-transduction pathway in a UV-dependent manner, whereas, in non-mammalian vertebrates, neuropsin is involved in regulating the photoperiodic control of seasonal reproduction in birds such as quail. As with other opsins, it may also act as a retinal photoisomerase. Pssm-ID: 320202 [Multi-domain] Cd Length: 284 Bit Score: 51.51 E-value: 2.21e-07
|
|||||||||
7tmA_Melanopsin | cd15336 | vertebrate melanopsins (Opsin-4), member of the class A family of seven-transmembrane G ... |
39-138 | 1.38e-06 | |||||
vertebrate melanopsins (Opsin-4), member of the class A family of seven-transmembrane G protein-coupled receptors; Melanopsin (also called Opsin-4) is the G protein-coupled photopigment that mediates non-visual responses to light. In mammals, these photoresponses include the photo-entrainment of circadian rhythm, pupillary constriction, and acute nocturnal melatonin suppression. Mammalian melanopsins are expressed only in the inner retina, whereas non-mammalian vertebrate melanopsins are localized in various extra-retinal tissues such as iris, brain, pineal gland, and skin. Melanopsins belong the class A of the G protein-coupled receptors and possess seven-transmembrane (TM) alpha-helices interconnected by three extracellular and three intracellular loops. Pssm-ID: 320458 [Multi-domain] Cd Length: 290 Bit Score: 48.95 E-value: 1.38e-06
|
|||||||||
7tmA_TAARs | cd15055 | trace amine-associated receptors, member of the class A family of seven-transmembrane G ... |
26-155 | 1.77e-06 | |||||
trace amine-associated receptors, member of the class A family of seven-transmembrane G protein-coupled receptors; The trace amine-associated receptors (TAARs) are a distinct subfamily within the class A G protein-coupled receptor family. Trace amines are endogenous amines of unknown function that have strong structural and metabolic similarity to classical monoamine neurotransmitters (serotonin, noradrenaline, adrenaline, dopamine, and histamine), which play critical roles in human and animal physiological activities such as cognition, consciousness, mood, motivation, perception, and autonomic responses. However, trace amines are found in the mammalian brain at very low concentrations compared to classical monoamines. Trace amines, including p-tyramine, beta-phenylethylamine, and tryptamine, are also thought to act as chemical messengers to exert their biological effects in vertebrates. All GPCRs have a common structural architecture comprising of seven-transmembrane (TM) alpha-helices interconnected by three extracellular and three intracellular loops. A general feature of GPCR signaling is agonist-induced conformational changes in the receptors, leading to activation of the heterotrimeric G proteins, which consist of the guanine nucleotide-binding G-alpha subunit and the dimeric G-beta-gamma subunits. The activated G proteins then bind to and activate numerous downstream effector proteins, which generate second messengers that mediate a broad range of cellular and physiological processes. Pssm-ID: 320183 [Multi-domain] Cd Length: 285 Bit Score: 48.70 E-value: 1.77e-06
|
|||||||||
7tmA_Melanopsin-like | cd15083 | vertebrate melanopsins and related opsins, member of the class A family of seven-transmembrane ... |
33-226 | 2.46e-06 | |||||
vertebrate melanopsins and related opsins, member of the class A family of seven-transmembrane G protein-coupled receptors; This group represent the Gq-coupled rhodopsin subfamily consists of melanopsins, insect photoreceptors R1-R6, invertebrate Gq opsins as well as their closely related opsins. Melanopsins (also called Opsin-4) are the primary photoreceptor molecules for non-visual functions such as the photo-entrainment of the circadian rhythm and pupillary constriction in mammals. Mammalian melanopsins are expressed only in the inner retina, whereas non-mammalian vertebrate melanopsins are localized in various extra-retinal tissues such as iris, brain, pineal gland, and skin. The outer photoreceptors (R1-R6) are the insect Drosophila equivalent to the vertebrate rods and are responsible for image formation and motion detection. The invertebrate G(q) opsins includes the arthropod and mollusk visual opsins as well as invertebrate melanopsins, which are also found in vertebrates. Arthropods possess color vision by the use of multiple opsins sensitive to different light wavelengths. Members of this subfamily belong to the class A of the G protein-coupled receptors and have seven-transmembrane (TM) alpha-helices interconnected by three extracellular and three intracellular loops. Pssm-ID: 320211 [Multi-domain] Cd Length: 291 Bit Score: 48.10 E-value: 2.46e-06
|
|||||||||
7tmA_Parapinopsin | cd15075 | non-visual parapinopsin, member of the class A family of seven-transmembrane G protein-coupled ... |
30-128 | 3.84e-06 | |||||
non-visual parapinopsin, member of the class A family of seven-transmembrane G protein-coupled receptors; This group includes the non-visual pineal pigment, parapinopsin, which is a member of the class A of the seven transmembrane G protein-coupled receptors. Parapinopsin serves as a UV-sensitive pigment for the wavelength discrimination in the pineal-related organs of lower vertebrates such as reptiles, amphibians, and fish. Although parapinopsin is phylogenetically related to vertebrate visual pigments such as rhodopsin, which releases its retinal chromophore and bleaches, the parapinopsin photoproduct is stable and does not bleach. The vertebrate non-visual opsin family includes pinopsins, parapinopsin, VA (vertebrate ancient) opsins, and parietopsins. These non-visual opsins are expressed in various extra-retinal tissues and/or in non-rod, non-cone retinal cells. Pssm-ID: 320203 [Multi-domain] Cd Length: 279 Bit Score: 47.46 E-value: 3.84e-06
|
|||||||||
7tmA_Prostanoid_R | cd14981 | G protein-coupled receptors for prostanoids, member of the class A family of ... |
100-176 | 5.64e-06 | |||||
G protein-coupled receptors for prostanoids, member of the class A family of seven-transmembrane G protein-coupled receptors; Prostanoids are the cyclooxygenase (COX) metabolites of arachidonic acid, which include the prostaglandins (PGD2, PGE2, PGF2alpha), prostacyclin (PGI2), and thromboxane A2 (TxA2). These five major bioactive prostanoids acts as mediators or modulators in a wide range of physiological and pathophysiological processes within the kidney and play important roles in inflammation, platelet aggregation, and vasoconstriction/relaxation, among many others. They act locally by preferentially interacting with G protein-coupled receptors designated DP, EP. FP, IP, and TP, respectively. The phylogenetic tree suggests that the prostanoid receptors can be grouped into two major branches: G(s)-coupled (DP1, EP2, EP4, and IP) and G(i)- (EP3) or G(q)-coupled (EP1, FP, and TP), forming three clusters. Pssm-ID: 320112 [Multi-domain] Cd Length: 288 Bit Score: 47.24 E-value: 5.64e-06
|
|||||||||
7tmA_Octopamine_R | cd15063 | octopamine receptors in invertebrates, member of the class A family of seven-transmembrane G ... |
36-295 | 7.40e-06 | |||||
octopamine receptors in invertebrates, member of the class A family of seven-transmembrane G protein-coupled receptors; G-protein coupled receptor for octopamine (OA), which functions as a neurotransmitter, neurohormone, and neuromodulator in invertebrate nervous system. Octopamine (also known as beta, 4-dihydroxyphenethylamine) is an endogenous trace amine that is highly similar to norepinephrine, but lacks a hydroxyl group, and has effects on the adrenergic and dopaminergic nervous systems. Based on the pharmacological and signaling profiles, the octopamine receptors can be classified into at least two groups: OA1 receptors elevate intracellular calcium levels in muscle, whereas OA2 receptors activate adenylate cyclase and increase cAMP production. Pssm-ID: 320191 [Multi-domain] Cd Length: 266 Bit Score: 46.72 E-value: 7.40e-06
|
|||||||||
7tmA_GPR119_R_insulinotropic_receptor | cd15104 | G protein-coupled receptor 119, also called glucose-dependent insulinotropic receptor, member ... |
34-296 | 8.41e-06 | |||||
G protein-coupled receptor 119, also called glucose-dependent insulinotropic receptor, member of the class A family of seven-transmembrane G protein-coupled receptors; GPR119 is activated by oleoylethanolamide (OEA), a naturally occurring bioactive lipid with hypophagic and anti-obesity effects. Immunohistochemistry and double-immunofluorescence studies revealed the predominant GPR119 localization in pancreatic polypeptide (PP)-cells of islets. In addition, GPR119 expression is elevated in islets of obese hyperglycemic mice as compared to control islets, suggesting a possible involvement of this receptor in the development of obesity and diabetes. GPR119 has a significant sequence similarity with the members of the endothelial differentiation gene family. All GPCRs have a common structural architecture comprising of seven-transmembrane (TM) alpha-helices interconnected by three extracellular and three intracellular loops. A general feature of GPCR signaling is agonist-induced conformational changes in the receptors, leading to activation of the heterotrimeric G proteins, which consist of the guanine nucleotide-binding G-alpha subunit and the dimeric G-beta-gamma subunits. The activated G proteins then bind to and activate numerous downstream effector proteins, which generate second messengers that mediate a broad range of cellular and physiological processes. Pssm-ID: 320232 [Multi-domain] Cd Length: 283 Bit Score: 46.60 E-value: 8.41e-06
|
|||||||||
7tmA_Beta3_AR | cd15959 | beta-3 adrenergic receptors (adrenoceptors), member of the class A family of ... |
31-143 | 1.89e-05 | |||||
beta-3 adrenergic receptors (adrenoceptors), member of the class A family of seven-transmembrane G protein-coupled receptors; The beta-3 adrenergic receptor (beta-3 adrenoceptor), also known as beta-3 AR, is activated by adrenaline and plays important roles in regulating cardiac function and heart rate. The human heart contains three subtypes of the beta AR: beta-1 AR, beta-2 AR, and beta-3 AR. Beta-1 AR and beta-2 AR, which expressed at about a ratio of 70:30, are the major subtypes involved in modulating cardiac contractility and heart rate by positively stimulating the G(s) protein-adenylate cyclase-cAMP-PKA signaling pathway. In contrast, beta-3 AR produces negative inotropic effects by activating inhibitory G(i) proteins. The aberrant expression of betrayers can lead to cardiac dysfunction such as arrhythmias or heart failure. Pssm-ID: 320625 [Multi-domain] Cd Length: 302 Bit Score: 45.67 E-value: 1.89e-05
|
|||||||||
7tmA_Chemokine_R | cd14984 | classical and atypical chemokine receptors, member of the class A family of ... |
26-250 | 3.82e-05 | |||||
classical and atypical chemokine receptors, member of the class A family of seven-transmembrane G protein-coupled receptors; Chemokines are principal regulators for leukocyte trafficking, recruitment, and activation. Chemokine family membership is defined on the basis of sequence homology and on the presence of variations on a conserved cysteine motif, which allows the family to further divide into four subfamilies (CC, CXC, XC, and CX3C). Chemokines interact with seven-transmembrane receptors which are typically coupled to G protein for signaling. Currently, there are ten known receptors for CC chemokines, seven for CXC chemokines, and single receptors for the XC and CX3C chemokines. In addition to these classical chemokine receptors, there exists a subfamily of atypical chemokine receptors (ACKRs) that are unable to couple to G-proteins and, instead, they preferentially mediate beta-arrestin dependent processes, such as receptor internalization, after ligand binding. The classical chemokine receptors contain a conserved DRYLAIV motif in the second intracellular loop, which is required for G-protein coupling. However, the ACKRs lack this conserved motif and fail to couple to G-proteins and induce classical GPCR signaling. Five receptors have been identified for the ACKR family, including CC-chemokine receptors like 1 and 2 (CCRL1 and CCRL2), CXCR7, Duffy antigen receptor for chemokine (DARC), and D6. Both ACKR1 (DARC) and ACKR3 (CXCR7) show low sequence homology to the classic chemokine receptors. Pssm-ID: 341319 [Multi-domain] Cd Length: 278 Bit Score: 44.51 E-value: 3.82e-05
|
|||||||||
7tmA_Cannabinoid_R | cd15099 | cannabinoid receptors, member of the class A family of seven-transmembrane G protein-coupled ... |
19-296 | 4.59e-05 | |||||
cannabinoid receptors, member of the class A family of seven-transmembrane G protein-coupled receptors; Cannabinoid receptors belong to the class A G-protein coupled receptor superfamily. Two types of cannabinoid receptors, CB1 and CB2, have been identified so far. They are activated by naturally occurring endocannabinoids, cannabis plant-derived cannabinoids such as tetrahydrocannabinol, or synthetic cannabinoids. The CB receptors are involved in the various physiological processes such as appetite, mood, memory, and pain sensation. CB1 receptor is expressed predominantly in central and peripheral neurons, while CB2 receptor is found mainly in the immune system. Pssm-ID: 320227 [Multi-domain] Cd Length: 281 Bit Score: 44.44 E-value: 4.59e-05
|
|||||||||
7tmA_tyramine_R-like | cd15061 | tyramine receptors and similar proteins, member of the class A family of seven-transmembrane G ... |
34-295 | 5.15e-05 | |||||
tyramine receptors and similar proteins, member of the class A family of seven-transmembrane G protein-coupled receptors; This group includes tyramine-specific receptors and similar proteins found in insects and other invertebrates. These tyramine receptors form a distinct receptor family that is phylogenetically different from the other tyramine/octopamine receptors which also found in invertebrates. Both octopamine and tyramine mediate their actions via G protein-coupled receptors (GPCRs) and are the invertebrate equivalent of vertebrate adrenergic neurotransmitters. In Drosophila, octopamine is involved in ovulation by mediating an egg release from the ovary, while a physiological role for tyramine in this process is not fully understood. All GPCRs have a common structural architecture comprising of seven-transmembrane (TM) alpha-helices interconnected by three extracellular and three intracellular loops. A general feature of GPCR signaling is agonist-induced conformational changes in the receptors, leading to activation of the heterotrimeric G proteins, which consist of the guanine nucleotide-binding G-alpha subunit and the dimeric G-beta-gamma subunits. The activated G proteins then bind to and activate numerous downstream effector proteins, which generate second messengers that mediate a broad range of cellular and physiological processes. Pssm-ID: 320189 [Multi-domain] Cd Length: 256 Bit Score: 43.89 E-value: 5.15e-05
|
|||||||||
7tmA_5-HT1_5_7 | cd15064 | serotonin receptor subtypes 1, 5 and 7, member of the class A family of seven-transmembrane G ... |
39-295 | 6.21e-05 | |||||
serotonin receptor subtypes 1, 5 and 7, member of the class A family of seven-transmembrane G protein-coupled receptors; This group includes serotonin receptor subtypes 1, 5, and 7 that are activated by the neurotransmitter serotonin. The 5-HT1 and 5-HT5 receptors mediate inhibitory neurotransmission by coupling to G proteins of the G(i/o) family. The 5-HT1 receptor subfamily includes 5-HT1A, 5-HT1B, 5-HT1D, 5-HT1E, and 5-HT1F. There is no 5-HT1C receptor subtype, as it has been reclassified as 5-HT2C receptor. The 5-HT5A and 5-HT5B receptors have been cloned from rat and mouse, but only the 5-HT5A isoform has been identified in human because of the presence of premature stop codons in the human 5-HT5B gene, which prevents a functional receptor from being expressed. The 5-HT7 receptor is coupled to Gs, which positively stimulates adenylate cyclase activity, leading to increased intracellular cAMP formation and calcium influx. In the CNS, serotonin is involved in the regulation of appetite, mood, sleep, cognition, learning and memory, as well as implicated in neurologic disorders such as migraine, schizophrenia, and depression. Pssm-ID: 320192 [Multi-domain] Cd Length: 258 Bit Score: 43.86 E-value: 6.21e-05
|
|||||||||
7tmA_DmOct-betaAR-like | cd15066 | Drosophila melanogaster beta-adrenergic receptor-like octopamine receptors and similar ... |
21-145 | 7.25e-05 | |||||
Drosophila melanogaster beta-adrenergic receptor-like octopamine receptors and similar receptors in bilateria; member of the class A family of seven-transmembrane G protein-coupled receptors; This group includes Drosophila beta-adrenergic-like octopamine receptors and similar proteins. The biogenic amine octopamine is the invertebrate equivalent of vertebrate adrenergic neurotransmitters and exerts its effects through different G protein-coupled receptor types. Insect octopamine receptors are involved in the modulation of carbohydrate metabolism, muscular tension, cognition and memory. The activation of octopamine receptors mediating these actions leads to an increase in adenylate cyclase activity, thereby increasing cAMP levels. In Drosophila melanogaster, three subgroups have been classified on the basis of their structural homology and functional equivalents with vertebrate beta-adrenergic receptors: DmOctBeta1R, DmOctBeta2R, and DmOctBeta3R. Pssm-ID: 320194 [Multi-domain] Cd Length: 265 Bit Score: 43.52 E-value: 7.25e-05
|
|||||||||
7tmA_CCKR-like | cd14993 | cholecystokinin receptors and related proteins, member of the class A family of ... |
28-285 | 7.42e-05 | |||||
cholecystokinin receptors and related proteins, member of the class A family of seven-transmembrane G protein-coupled receptors; This group represents four G-protein coupled receptors that are members of the RFamide receptor family, including cholecystokinin receptors (CCK-AR and CCK-BR), orexin receptors (OXR), neuropeptide FF receptors (NPFFR), and pyroglutamylated RFamide peptide receptor (QRFPR). These RFamide receptors are activated by their endogenous peptide ligands that share a common C-terminal arginine (R) and an amidated phenylanine (F) motif. CCK-AR (type A, alimentary; also known as CCK1R) is found abundantly on pancreatic acinar cells and binds only sulfated CCK-peptides with very high affinity, whereas CCK-BR (type B, brain; also known as CCK2R), the predominant form in the brain and stomach, binds CCK or gastrin and discriminates poorly between sulfated and non-sulfated peptides. CCK is implicated in regulation of digestion, appetite control, and body weight, and is involved in neurogenesis via CCK-AR. There is some evidence to support that CCK and gastrin, via their receptors, are involved in promoting cancer development and progression, acting as growth and invasion factors. Orexins (OXs; also referred to as hypocretins) are neuropeptide hormones that regulate the sleep-wake cycle and potently influence homeostatic systems regulating appetite and feeding behavior or modulating emotional responses such as anxiety or panic. OXs are synthesized as prepro-orexin (PPO) in the hypothalamus and then proteolytically cleaved into two forms of isoforms: orexin-A (OX-A) and orexin-B (OX-B). OXA is a 33 amino-acid peptide with N-terminal pyroglutamyl residue and two intramolecular disulfide bonds, whereas OXB is a 28 amino-acid linear peptide with no disulfide bonds. OX-A binds orexin receptor 1 (OX1R) with high-affinity, but also binds with somewhat low-affinity to OX2R, and signals primarily to Gq coupling, whereas OX-B shows a strong preference for the orexin receptor 2 (OX2R) and signals through Gq or Gi/o coupling. The 26RFa, also known as QRFP (Pyroglutamylated RFamide peptide), is a 26-amino acid residue peptide that exerts similar orexigenic activity including the regulation of feeding behavior in mammals. It is the ligand for G-protein coupled receptor 103 (GPR103), which is predominantly expressed in paraventricular (PVN) and ventromedial (VMH) nuclei of the hypothalamus. GPR103 shares significant protein sequence homology with orexin receptors (OX1R and OX2R), which have recently shown to produce a neuroprotective effect in Alzheimer's disease by forming a functional heterodimer with GPR103. Neuropeptide FF (NPFF) is a mammalian octapeptide that has been implicated in a wide range of physiological functions in the brain including pain sensitivity, insulin release, food intake, memory, blood pressure, and opioid-induced tolerance and hyperalgesia. The effects of NPFF are mediated through neuropeptide FF1 and FF2 receptors (NPFF1-R and NPFF2-R) which are predominantly expressed in the brain. NPFF induces pro-nociceptive effects, mainly through the NPFF1-R, and anti-nociceptive effects, mainly through the NPFF2-R. Pssm-ID: 320124 [Multi-domain] Cd Length: 296 Bit Score: 43.74 E-value: 7.42e-05
|
|||||||||
7tmA_5-HT7 | cd15329 | serotonin receptor subtype 7, member of the class A family of seven-transmembrane G ... |
28-146 | 8.50e-05 | |||||
serotonin receptor subtype 7, member of the class A family of seven-transmembrane G protein-coupled receptors; The 5-HT7 receptor, one of 14 mammalian serotonin receptors, is a member of the class A of GPCRs and is activated by the neurotransmitter serotonin (5-hydroxytryptamine, 5-HT). 5-HT7 receptor mainly couples to Gs protein, which positively stimulates adenylate cyclase, leading to increased intracellular cAMP formation and calcium influx. 5-HT7 receptor is expressed in various human tissues, mainly in the brain, the lower gastrointestinal tract and in vital blood vessels including the coronary artery. In the CNS, serotonin is involved in the regulation of appetite, mood, sleep, cognition, learning and memory, as well as implicated in neurologic disorders such as migraine, schizophrenia, and depression. Pssm-ID: 320452 [Multi-domain] Cd Length: 260 Bit Score: 43.41 E-value: 8.50e-05
|
|||||||||
7tmA_Beta1_AR | cd15958 | beta-1 adrenergic receptors (adrenoceptors), member of the class A family of ... |
34-156 | 1.33e-04 | |||||
beta-1 adrenergic receptors (adrenoceptors), member of the class A family of seven-transmembrane G protein-coupled receptors; The beta-1 adrenergic receptor (beta-1 adrenoceptor), also known as beta-1 AR, is activated by adrenaline (epinephrine) and plays important roles in regulating cardiac function and heart rate. The human heart contains three subtypes of the beta AR: beta-1 AR, beta-2 AR, and beta-3 AR. Beta-1 AR and beta-2 AR, which expressed at about a ratio of 70:30, are the major subtypes involved in modulating cardiac contractility and heart rate by positively stimulating the G(s) protein-adenylate cyclase-cAMP-PKA signaling pathway. In contrast, beta-3 AR produces negative inotropic effects by activating inhibitory G(i) proteins. The aberrant expression of betrayers can lead to cardiac dysfunction such as arrhythmias or heart failure. Pssm-ID: 320624 [Multi-domain] Cd Length: 298 Bit Score: 42.97 E-value: 1.33e-04
|
|||||||||
7tmA_5-HT2B | cd15306 | serotonin receptor subtype 2B, member of the class A family of seven-transmembrane G ... |
28-138 | 1.37e-04 | |||||
serotonin receptor subtype 2B, member of the class A family of seven-transmembrane G protein-coupled receptors; The 5-HT2 receptors are a subfamily of serotonin receptors that bind the neurotransmitter serotonin (5HT; 5-hydroxytryptamine) in the central nervous system (CNS). The 5-HT2 subfamily is composed of three subtypes that mediate excitatory neurotransmission: 5-HT2A, 5-HT2B, and 5-HT2C. They are selectively linked to G proteins of the G(q/11) family and activate phospholipase C, which leads to activation of protein kinase C and calcium release. In the CNS, serotonin is involved in the regulation of appetite, mood, sleep, cognition, learning and memory, as well as implicated in diseases such as migraine, schizophrenia, and depression. Indeed, 5-HT2 receptors are attractive targets for a variety of psychoactive drugs, ranging from atypical antipsychotic drugs, antidepressants, and anxiolytics, which have an antagonistic action on 5-HT2 receptors, to hallucinogens, which act as agonists at postsynaptic 5-HT2 receptors. All GPCRs have a common structural architecture comprising of seven-transmembrane (TM) alpha-helices interconnected by three extracellular and three intracellular loops. A general feature of GPCR signaling is agonist-induced conformational changes in the receptors, leading to activation of the heterotrimeric G proteins, which consist of the guanine nucleotide-binding G-alpha subunit and the dimeric G-beta-gamma subunits. The activated G proteins then bind to and activate numerous downstream effector proteins, which generate second messengers that mediate a broad range of cellular and physiological processes. Pssm-ID: 341347 [Multi-domain] Cd Length: 277 Bit Score: 42.90 E-value: 1.37e-04
|
|||||||||
7tmA_Vasopressin_Oxytocin | cd15196 | vasopressin and oxytocin receptors, member of the class A family of seven-transmembrane G ... |
37-250 | 1.42e-04 | |||||
vasopressin and oxytocin receptors, member of the class A family of seven-transmembrane G protein-coupled receptors; Vasopressin (also known as arginine vasopressin or anti-diuretic hormone) and oxytocin are synthesized in the hypothalamus and are released from the posterior pituitary gland. The actions of vasopressin are mediated by the interaction of this hormone with three receptor subtypes: V1aR, V1bR, and V2R. These subtypes are differ in localization, function, and signaling pathways. Activation of V1aR and V1bR stimulate phospholipase C, while activation of V2R stimulates adenylate cyclase. Although vasopressin and oxytocin differ only by two amino acids and stimulate the same cAMP/PKA pathway, they have divergent physiological functions. Vasopressin is involved in regulating blood pressure and the balance of water and sodium ions, whereas oxytocin plays an important role in the uterus during childbirth and in lactation. Pssm-ID: 320324 [Multi-domain] Cd Length: 264 Bit Score: 42.61 E-value: 1.42e-04
|
|||||||||
7tmA_Parietopsin | cd15085 | non-visual parietopsins, member of the class A family of seven-transmembrane G protein-coupled ... |
24-143 | 1.68e-04 | |||||
non-visual parietopsins, member of the class A family of seven-transmembrane G protein-coupled receptors; Parietopsin is a non-visual green light-sensitive opsin that was initially identified in the parietal eye of lizards. The vertebrate non-visual opsin family includes pinopsins, parapinopsin, VA (vertebrate ancient) opsins, and parietopsins. These non-visual opsins are expressed in various extra-retinal tissues and/or in non-rod, non-cone retinal cells. They are thought to be involved in light-dependent physiological functions such as photo-entrainment of circadian rhythm, photoperiodicity and body color change. Parietopsin belongs to the class A of the G protein-coupled receptors and shows strong homology to the vertebrate visual opsins. Pssm-ID: 320213 [Multi-domain] Cd Length: 280 Bit Score: 42.53 E-value: 1.68e-04
|
|||||||||
7tmA_Peropsin | cd15073 | retinal pigment epithelium-derived rhodopsin homolog, member of the class A family of ... |
28-296 | 2.37e-04 | |||||
retinal pigment epithelium-derived rhodopsin homolog, member of the class A family of seven-transmembrane G protein-coupled receptors; Peropsin, also known as a retinal pigment epithelium-derived rhodopsin homolog (RRH), is a visual pigment-like protein found exclusively in the apical microvilli of the retinal pigment epithelium. Peropsin belongs to the type 2 opsin family of the class A G-protein coupled receptors. Peropsin presumably plays a physiological role in the retinal pigment epithelium either by detecting light directly or monitoring the levels of retinoids, the primary light absorber in visual perception, or other pigment-related compounds in the eye. Pssm-ID: 320201 [Multi-domain] Cd Length: 280 Bit Score: 42.03 E-value: 2.37e-04
|
|||||||||
7tmA_Trissin_R | cd15012 | trissin receptor and related proteins, member of the class A family of seven-transmembrane G ... |
28-128 | 2.45e-04 | |||||
trissin receptor and related proteins, member of the class A family of seven-transmembrane G protein-coupled receptors; This subgroup represents the Drosophila melanogaster trissin receptor and closely related invertebrate proteins which are a member of the class A family of seven-transmembrane G-protein coupled receptors. The cysteine-rich trissin has been shown to be an endogenous ligand for the orphan CG34381 in Drosophila melanogaster. Trissin is a peptide composed of 28 amino acids with three intrachain disulfide bonds with no significant structural similarities to known endogenous peptides. Cysteine-rich peptides are known to have antimicrobial or toxicant activities, although frequently their mechanism of action is poorly understood. Since the expression of trissin and its receptor is reported to predominantly localize to the brain and thoracicoabdominal ganglion, trissin is predicted to behave as a neuropeptide. All GPCRs have a common structural architecture comprising of seven-transmembrane (TM) alpha-helices interconnected by three extracellular and three intracellular loops. A general feature of GPCR signaling is agonist-induced conformational changes in the receptors, leading to activation of the heterotrimeric G proteins, which consist of the guanine nucleotide-binding G-alpha subunit and the dimeric G-beta-gamma subunits. The activated G proteins then bind to and activate numerous downstream effector proteins, which generate second messengers that mediate a broad range of cellular and physiological processes. Pssm-ID: 320140 [Multi-domain] Cd Length: 277 Bit Score: 42.05 E-value: 2.45e-04
|
|||||||||
7tmA_GHSR-like | cd15928 | growth hormone secretagogue receptor, motilin receptor, and related proteins, member of the ... |
24-152 | 2.67e-04 | |||||
growth hormone secretagogue receptor, motilin receptor, and related proteins, member of the class A family of seven-transmembrane G protein-coupled receptors; This subfamily includes growth hormone secretagogue receptor (GHSR or ghrelin receptor), motilin receptor (also called GPR38), and related proteins. Both GHSR and GPR38 bind peptide hormones. Ghrelin, the endogenous ligand for GHSR, is an acylated 28-amino acid peptide hormone produced by ghrelin cells in the gastrointestinal tract. Ghrelin is also called the hunger hormone and is involved in the regulation of growth hormone release, appetite and feeding, gut motility, lipid and glucose metabolism, and energy balance. Motilin, the ligand for GPR38, is a 22 amino acid peptide hormone expressed throughout the gastrointestinal tract and stimulates contraction of gut smooth muscle. It is involved in the regulation of digestive tract motility. Pssm-ID: 320594 [Multi-domain] Cd Length: 288 Bit Score: 42.09 E-value: 2.67e-04
|
|||||||||
7tmA_Vasopressin-like | cd14986 | vasopressin receptors and its related G protein-coupled receptors, member of the class A ... |
37-154 | 3.41e-04 | |||||
vasopressin receptors and its related G protein-coupled receptors, member of the class A family of seven-transmembrane G protein-coupled receptors; Members of this group form a subfamily within the class A G-protein coupled receptors (GPCRs), which includes the vasopressin and oxytocin receptors, the gonadotropin-releasing hormone receptors (GnRHRs), the neuropeptide S receptor (NPSR), and orphan GPR150. These receptors share significant sequence homology with each other, suggesting that they have a common evolutionary origin. Vasopressin, also known as arginine vasopressin or anti-diuretic hormone, is a neuropeptide synthesized in the hypothalamus. The actions of vasopressin are mediated by the interaction of this hormone with three tissue-specific subtypes: V1AR, V1BR, and V2R. Although vasopressin differs from oxytocin by only two amino acids, they have divergent physiological functions. Vasopressin is involved in regulating osmotic and cardiovascular homeostasis, whereas oxytocin plays an important role in the uterus during childbirth and in lactation. GnRHR, also known as luteinizing hormone releasing hormone receptor (LHRHR), plays an central role in vertebrate reproductive function; its activation by binding to GnRH leads to the release of follicle stimulating hormone (FSH) and luteinizing hormone (LH) from the pituitary gland. Neuropeptide S (NPS) promotes arousal and anxiolytic-like effects by activating its cognate receptor NPSR. NPSR has also been associated with asthma and allergy. GPR150 is an orphan receptor closely related to the oxytocin and vasopressin receptors. Pssm-ID: 320117 [Multi-domain] Cd Length: 295 Bit Score: 41.59 E-value: 3.41e-04
|
|||||||||
7tmA_alpha2_AR | cd15059 | alpha-2 adrenergic receptors, member of the class A family of seven-transmembrane G ... |
36-165 | 3.64e-04 | |||||
alpha-2 adrenergic receptors, member of the class A family of seven-transmembrane G protein-coupled receptors; The alpha-2 adrenergic receptors (or adrenoceptors) are a subfamily of the class A rhodopsin-like GPCRs that share a common architecture of seven transmembrane helices. This subfamily consists of three highly homologous receptor subtypes that have a key role in neurotransmitter release: alpha-2A, alpha-2B, and alpha-2C. In addition, a fourth subtype, alpha-2D is present in ray-finned fishes and amphibians, but is not found in humans. The alpha-2 receptors are found in both central and peripheral nervous system and serve to produce inhibitory functions through the G(i) proteins. Thus, the alpha-2 receptors inhibit adenylate cyclase, which decreases cAMP production and thereby decreases calcium influx during the action potential. Consequently, lowered levels of calcium will lead to a decrease in neurotransmitter release by negative feedback. All GPCRs have a common structural architecture comprising of seven-transmembrane (TM) alpha-helices interconnected by three extracellular and three intracellular loops. A general feature of GPCR signaling is agonist-induced conformational changes in the receptors, leading to activation of the heterotrimeric G proteins, which consist of the guanine nucleotide-binding G-alpha subunit and the dimeric G-beta-gamma subunits. The activated G proteins then bind to and activate numerous downstream effector proteins, which generate second messengers that mediate a broad range of cellular and physiological processes. Pssm-ID: 320187 [Multi-domain] Cd Length: 261 Bit Score: 41.56 E-value: 3.64e-04
|
|||||||||
7tmA_Beta_AR | cd15058 | beta adrenergic receptors (adrenoceptors), member of the class A family of seven-transmembrane ... |
24-143 | 4.90e-04 | |||||
beta adrenergic receptors (adrenoceptors), member of the class A family of seven-transmembrane G protein-coupled receptors; The beta adrenergic receptor (beta adrenoceptor), also known as beta AR, is activated by hormone adrenaline (epinephrine) and plays important roles in regulating cardiac function and heart rate, as well as pulmonary physiology. The human heart contains three subtypes of the beta AR: beta-1 AR, beta-2 AR, and beta-3 AR. Beta-1 AR and beta-2 AR, which expressed at about a ratio of 70:30, are the major subtypes involved in modulating cardiac contractility and heart rate by positively stimulating the G(s) protein-adenylate cyclase-cAMP-PKA signaling pathway. In contrast, beta-3 AR produces negative inotropic effects by activating inhibitory G(i) proteins. The aberrant expression of beta-ARs can lead to cardiac dysfunction such as arrhythmias or heart failure. All GPCRs have a common structural architecture comprising of seven-transmembrane (TM) alpha-helices interconnected by three extracellular and three intracellular loops. A general feature of GPCR signaling is agonist-induced conformational changes in the receptors, leading to activation of the heterotrimeric G proteins, which consist of the guanine nucleotide-binding G-alpha subunit and the dimeric G-beta-gamma subunits. The activated G proteins then bind to and activate numerous downstream effector proteins, which generate second messengers that mediate a broad range of cellular and physiological processes. Pssm-ID: 320186 [Multi-domain] Cd Length: 305 Bit Score: 41.28 E-value: 4.90e-04
|
|||||||||
7tmA_FMRFamide_R-like | cd14978 | FMRFamide (Phe-Met-Arg-Phe) receptors and related proteins, member of the class A family of ... |
34-183 | 6.47e-04 | |||||
FMRFamide (Phe-Met-Arg-Phe) receptors and related proteins, member of the class A family of seven-transmembrane G protein-coupled receptors; This group includes Drosophila melanogaster G-protein coupled FMRFamide (Phe-Met-Arg-Phe-NH2) receptor DrmFMRFa-R and related invertebrate receptors, as well as the vertebrate proteins GPR139 and GPR142. DrmFMRFa-R binds with high affinity to FMRFamide and intrinsic FMRFamide-related peptides. FMRFamide is a neuropeptide from the family of FMRFamide-related peptides (FaRPs), which all containing a C-terminal RFamide (Arg-Phe-NH2) motif and have diverse functions in the central and peripheral nervous systems. FMRFamide is an important neuropeptide in many types of invertebrates such as insects, nematodes, molluscs, and worms. In invertebrates, the FMRFamide-related peptides are involved in the regulation of heart rate, blood pressure, gut motility, feeding behavior, and reproduction. On the other hand, in vertebrates such as mice, they play a role in the modulation of morphine-induced antinociception. Orphan receptors GPR139 and GPR142 are very closely related G protein-coupled receptors, but they have different expression patterns in the brain and in other tissues. These receptors couple to inhibitory G proteins and activate phospholipase C. Studies suggested that dimer formation may be required for their proper function. GPR142 is predominantly expressed in pancreatic beta-cells and mediates enhancement of glucose-stimulated insulin secretion, whereas GPR139 is mostly expressed in the brain and is suggested to play a role in the control of locomotor activity. Tryptophan and phenylalanine have been identified as putative endogenous ligands of GPR139. Pssm-ID: 410630 [Multi-domain] Cd Length: 299 Bit Score: 40.69 E-value: 6.47e-04
|
|||||||||
7tmA_Adenosine_R_A3 | cd15070 | adenosine receptor subtype A3, member of the class A family of seven-transmembrane G ... |
39-296 | 6.97e-04 | |||||
adenosine receptor subtype A3, member of the class A family of seven-transmembrane G protein-coupled receptors; The A3 receptor, a member of the adenosine receptor family of G protein-coupled receptors, is coupled to G proteins of the inhibitory G(i) family, which lead to inhibition of adenylate cyclase and thereby lowering the intracellular cAMP levels. The A3 receptor has a sustained protective function in the heart during cardiac ischemia and contributes to inhibition of neutrophil degranulation in neutrophil-mediated tissue injury. Moreover, activation of A3 receptor by adenosine protects astrocytes from cell death induced by hypoxia. Pssm-ID: 320198 [Multi-domain] Cd Length: 280 Bit Score: 40.53 E-value: 6.97e-04
|
|||||||||
7tmA_GnRHR-like | cd15195 | gonadotropin-releasing hormone and adipokinetic hormone receptors, member of the class A ... |
39-223 | 7.11e-04 | |||||
gonadotropin-releasing hormone and adipokinetic hormone receptors, member of the class A family of seven-transmembrane G protein-coupled receptors; Gonadotropin-releasing hormone (GnRH) and adipokinetic hormone (AKH) receptors share strong sequence homology to each other, suggesting that they have a common evolutionary origin. GnRHR, also known as luteinizing hormone releasing hormone receptor (LHRHR), plays an central role in vertebrate reproductive function; its activation by binding to GnRH leads to the release of follicle stimulating hormone (FSH) and luteinizing hormone (LH) from the pituitary gland. Adipokinetic hormone (AKH) is a lipid-mobilizing hormone that is involved in control of insect metabolism. Generally, AKH behaves as a typical stress hormone by mobilizing lipids, carbohydrates and/or certain amino acids such as proline. Thus, it utilizes the body's energy reserves to fight the immediate stress problems and subdue processes that are less important. Although AKH is known to responsible for regulating the energy metabolism during insect flying, it is also found in insects that have lost its functional wings and predominantly walk for their locomotion. Both GnRH and AKH receptors are members of the class A of the seven-transmembrane, G-protein coupled receptor (GPCR) superfamily. Pssm-ID: 320323 [Multi-domain] Cd Length: 293 Bit Score: 40.84 E-value: 7.11e-04
|
|||||||||
7tmA_PGI2 | cd15141 | prostaglandin I2 receptor, member of the class A family of seven-transmembrane G ... |
64-233 | 1.03e-03 | |||||
prostaglandin I2 receptor, member of the class A family of seven-transmembrane G protein-coupled receptors; Prostaglandin I2 receptor (also called prostacyclin receptor or prostanoid IP receptor) is a class A, G protein-coupled receptor whose endogenous ligand is prostacyclin, which is the major product of cyclooxygenase metabolite of arachidonic acid that found predominantly in platelets and vascular smooth muscle cells (VSMCs). The PGI2 receptor is coupled to both G(s) and G(q) protein subtypes, resulting in increased cAMP formation, phosphoinositide turnover, and Ca2+ signaling. PGI2 receptor activation by prostacyclin induces VSMC differentiation and produces a potent vasodilation and inhibition of platelet aggregation. Pssm-ID: 320269 [Multi-domain] Cd Length: 301 Bit Score: 40.19 E-value: 1.03e-03
|
|||||||||
7tmA_CB2 | cd15341 | cannabinoid receptor subtype 2, member of the class A family of seven-transmembrane G ... |
34-296 | 1.10e-03 | |||||
cannabinoid receptor subtype 2, member of the class A family of seven-transmembrane G protein-coupled receptors; Cannabinoid receptors belong to the class A G-protein coupled receptor superfamily. Two types of cannabinoid receptors, CB1 and CB2, have been identified so far. They are activated by naturally occurring endocannabinoids, cannabis plant-derived cannabinoids such as tetrahydrocannabinol, or synthetic cannabinoids. The CB receptors are involved in the various physiological processes such as appetite, mood, memory, and pain sensation. CB1 receptor is expressed predominantly in central and peripheral neurons, while CB2 receptor is found mainly in the immune system. Pssm-ID: 320463 [Multi-domain] Cd Length: 279 Bit Score: 40.21 E-value: 1.10e-03
|
|||||||||
7tmA_Dop1R2-like | cd15067 | dopamine 1-like receptor 2 from Drosophila melanogaster and similar proteins, member of the ... |
28-295 | 1.38e-03 | |||||
dopamine 1-like receptor 2 from Drosophila melanogaster and similar proteins, member of the class A family of seven-transmembrane G protein-coupled receptors; G protein-coupled dopamine 1-like receptor 2 is expressed in Drosophila heads and it shows significant sequence similarity with vertebrate and invertebrate dopamine receptors. Although the Drosophila Dop1R2 receptor does not cluster into the D1-like structural group, it does show pharmacological properties similar to D1-like receptors. As shown in vertebrate D1-like receptors, agonist stimulation of Dop1R2 activates adenylyl cyclase to increase cAMP levels and also generates a calcium signal through stimulation of phospholipase C. Pssm-ID: 320195 [Multi-domain] Cd Length: 262 Bit Score: 39.65 E-value: 1.38e-03
|
|||||||||
7tmA_5-HT2A | cd15304 | serotonin receptor subtype 2A, member of the class A family of seven-transmembrane G ... |
28-145 | 1.41e-03 | |||||
serotonin receptor subtype 2A, member of the class A family of seven-transmembrane G protein-coupled receptors; The 5-HT2 receptors are a subfamily of serotonin receptors that bind the neurotransmitter serotonin (5HT; 5-hydroxytryptamine) in the central nervous system (CNS). The 5-HT2 subfamily is composed of three subtypes that mediate excitatory neurotransmission: 5-HT2A, 5-HT2B, and 5-HT2C. They are selectively linked to G proteins of the G(q/11) family and activate phospholipase C, which leads to activation of protein kinase C and calcium release. In the CNS, serotonin is involved in the regulation of appetite, mood, sleep, cognition, learning and memory, as well as implicated in diseases such as migraine, schizophrenia, and depression. Indeed, 5-HT2 receptors are attractive targets for a variety of psychoactive drugs, ranging from atypical antipsychotic drugs, antidepressants, and anxiolytics, which have an antagonistic action on 5-HT2 receptors, to hallucinogens, which act as agonists at postsynaptic 5-HT2 receptors. All GPCRs have a common structural architecture comprising of seven-transmembrane (TM) alpha-helices interconnected by three extracellular and three intracellular loops. A general feature of GPCR signaling is agonist-induced conformational changes in the receptors, leading to activation of the heterotrimeric G proteins, which consist of the guanine nucleotide-binding G-alpha subunit and the dimeric G-beta-gamma subunits. The activated G proteins then bind to and activate numerous downstream effector proteins, which generate second messengers that mediate a broad range of cellular and physiological processes. Pssm-ID: 341345 [Multi-domain] Cd Length: 267 Bit Score: 39.53 E-value: 1.41e-03
|
|||||||||
7tmA_TAAR2_3_4 | cd15312 | trace amine-associated receptors 2, 3, 4, and similar receptors, member of the class A family ... |
28-135 | 1.63e-03 | |||||
trace amine-associated receptors 2, 3, 4, and similar receptors, member of the class A family of seven-transmembrane G protein-coupled receptors; TAAR2, TAAR3, and TAAR4 are among the 15 identified trace amine-associated receptor subtypes, which form a distinct subfamily within the class A G protein-coupled receptor family. Trace amines are endogenous amines of unknown function that have strong structural and metabolic similarity to classical monoamine neurotransmitters (serotonin, noradrenaline, adrenaline, dopamine, and histamine), which play critical roles in human and animal physiological activities such as cognition, consciousness, mood, motivation, perception, and autonomic responses. However, trace amines are found in the mammalian brain at very low concentrations compared to classical monoamines. Trace amines, including p-tyramine, beta-phenylethylamine, and tryptamine, are also thought to act as chemical messengers to exert their biological effects in vertebrates. All GPCRs have a common structural architecture comprising of seven-transmembrane (TM) alpha-helices interconnected by three extracellular and three intracellular loops. A general feature of GPCR signaling is agonist-induced conformational changes in the receptors, leading to activation of the heterotrimeric G proteins, which consist of the guanine nucleotide-binding G-alpha subunit and the dimeric G-beta-gamma subunits. The activated G proteins then bind to and activate numerous downstream effector proteins, which generate second messengers that mediate a broad range of cellular and physiological processes. Pssm-ID: 320437 [Multi-domain] Cd Length: 289 Bit Score: 39.64 E-value: 1.63e-03
|
|||||||||
7tmA_Pinopsin | cd15084 | non-visual pinopsins, member of the class A family of seven-transmembrane G protein-coupled ... |
41-128 | 1.86e-03 | |||||
non-visual pinopsins, member of the class A family of seven-transmembrane G protein-coupled receptors; Pinopsins are found in the pineal organ of birds, reptiles and amphibians, but are absent from teleosts and mammals. The vertebrate non-visual opsin family includes pinopsins, parapinopsin, VA (vertebrate ancient) opsins, and parietopsins. These non-visual opsins are expressed in various extra-retinal tissues and/or in non-rod, non-cone retinal cells. They are thought to be involved in light-dependent physiological functions such as photo-entrainment of circadian rhythm, photoperiodicity and body color change. Pinopsins belong the class A of the G protein-coupled receptors and possess seven-transmembrane (TM) alpha-helices interconnected by three extracellular and three intracellular loops. Pssm-ID: 320212 [Multi-domain] Cd Length: 295 Bit Score: 39.46 E-value: 1.86e-03
|
|||||||||
7tmA_alpha2C_AR | cd15323 | alpha-2 adrenergic receptors subtype C, member of the class A family of seven-transmembrane G ... |
31-296 | 1.89e-03 | |||||
alpha-2 adrenergic receptors subtype C, member of the class A family of seven-transmembrane G protein-coupled receptors; The alpha-2 adrenergic receptors (or adrenoceptors) are a subfamily of the class A rhodopsin-like GPCRs that share a common architecture of seven transmembrane helices. This subfamily consists of three highly homologous receptor subtypes that have a key role in neurotransmitter release: alpha-2A, alpha-2B, and alpha-2C. In addition, a fourth subtype, alpha-2D is present in ray-finned fishes and amphibians, but is not found in humans. The alpha-2 receptors are found in both central and peripheral nervous system and serve to produce inhibitory functions through the G(i) proteins. Thus, the alpha-2 receptors inhibit adenylate cyclase, which decreases cAMP production and thereby decreases calcium influx during the action potential. Consequently, lowered levels of calcium will lead to a decrease in neurotransmitter release by negative feedback. Pssm-ID: 320446 [Multi-domain] Cd Length: 261 Bit Score: 39.15 E-value: 1.89e-03
|
|||||||||
7tmA_alpha1A_AR | cd15325 | alpha-1 adrenergic receptors subtype A, member of the class A family of seven-transmembrane G ... |
39-138 | 2.06e-03 | |||||
alpha-1 adrenergic receptors subtype A, member of the class A family of seven-transmembrane G protein-coupled receptors; The alpha-1 adrenergic receptors (or adrenoceptors) are a subfamily of the class A rhodopsin-like GPCRs that share a common architecture of seven transmembrane helices. This subfamily consists of three highly homologous receptor subtypes that primarily mediate smooth muscle contraction: alpha-1A, alpha-1B, and alpha-1D. Activation of alpha-1 receptors by catecholamines such as norepinephrine and epinephrine couples to the G(q) protein, which then activates the phospholipase C pathway, leading to an increase in IP3 and calcium. Consequently, the elevation of intracellular calcium concentration leads to vasoconstriction in smooth muscle of blood vessels. In addition, activation of alpha-1 receptors by phenylpropanolamine (PPA) produces anorexia and may induce appetite suppression in rats. Pssm-ID: 320448 [Multi-domain] Cd Length: 261 Bit Score: 39.11 E-value: 2.06e-03
|
|||||||||
7tmA_NTSR-like | cd14979 | neurotensin receptors and related G protein-coupled receptors, member of the class A family of ... |
28-156 | 2.44e-03 | |||||
neurotensin receptors and related G protein-coupled receptors, member of the class A family of seven-transmembrane G protein-coupled receptors; This subfamily includes the neurotensin receptors and related G-protein coupled receptors, including neuromedin U receptors, growth hormone secretagogue receptor, motilin receptor, the putative GPR39 and the capa receptors from insects. These receptors all bind peptide hormones with diverse physiological effects. All GPCRs have a common structural architecture comprising of seven-transmembrane (TM) alpha-helices interconnected by three extracellular and three intracellular loops. A general feature of GPCR signaling is agonist-induced conformational changes in the receptors, leading to activation of the heterotrimeric G proteins, which consist of the guanine nucleotide-binding G-alpha subunit and the dimeric G-beta-gamma subunits. The activated G proteins then bind to and activate numerous downstream effector proteins, which generate second messengers that mediate a broad range of cellular and physiological processes. Pssm-ID: 320110 [Multi-domain] Cd Length: 300 Bit Score: 38.88 E-value: 2.44e-03
|
|||||||||
7tmA_photoreceptors_insect | cd15079 | insect photoreceptors R1-R6 and similar proteins, member of the class A family of ... |
25-146 | 2.87e-03 | |||||
insect photoreceptors R1-R6 and similar proteins, member of the class A family of seven-transmembrane G protein-coupled receptors; This group includes the insect photoreceptors and their closely related proteins. The Drosophila eye is composed of about 800 unit eyes called ommatidia, each of which contains eight photoreceptor cells (R1-R8). The six outer photoreceptors (R1-R6) function like the vertebrate rods and are responsible for motion detection in dim light and image formation. The R1-R6 photoreceptors express a blue-absorbing pigment, Rhodopsin 1(Rh1). The inner photoreceptors (R7 and R8) are considered the equivalent of the color-sensitive vertebrate cone cells, which express a range of different pigments. The R7 photoreceptors express one of two different UV absorbing pigments, either Rh3 or Rh4. Likewise, the R8 photoreceptors express either the blue absorbing pigment Rh5 or green absorbing pigment Rh6. These photoreceptors belong the class A of the G protein-coupled receptors and possess seven-transmembrane (TM) alpha-helices interconnected by three extracellular and three intracellular loops. Pssm-ID: 320207 [Multi-domain] Cd Length: 292 Bit Score: 38.71 E-value: 2.87e-03
|
|||||||||
7tmA_Opsin_Gq_invertebrates | cd15337 | invertebrate Gq opsins, member of the class A family of seven-transmembrane G protein-coupled ... |
33-144 | 3.01e-03 | |||||
invertebrate Gq opsins, member of the class A family of seven-transmembrane G protein-coupled receptors; The invertebrate Gq-coupled opsin subfamily includes the arthropod and mollusc visual opsins. Like the vertebrate visual opsins, arthropods possess color vision by the use of multiple opsins sensitive to different light wavelengths. The invertebrate Gq opsins are closely related to the vertebrate melanopsins, the primary photoreceptor molecules for non-visual responses to light, and the R1-R6 photoreceptors, which are the fly equivalent to the vertebrate rods. The Gq opsins belong the class A of the G protein-coupled receptors and possess seven-transmembrane (TM) alpha-helices interconnected by three extracellular and three intracellular loops. Pssm-ID: 320459 [Multi-domain] Cd Length: 292 Bit Score: 38.84 E-value: 3.01e-03
|
|||||||||
7tmA_UII-R | cd14999 | urotensin-II receptor, member of the class A family of seven-transmembrane G protein-coupled ... |
39-128 | 3.10e-03 | |||||
urotensin-II receptor, member of the class A family of seven-transmembrane G protein-coupled receptors; The urotensin-II receptor (UII-R, also known as the hypocretin receptor) is a member of the class A rhodopsin-like G-protein coupled receptors, which binds the peptide hormone urotensin-II. Urotensin II (UII) is a vasoactive somatostatin-like or cortistatin-like peptide hormone. However, despite the apparent structural similarity to these peptide hormones, they are not homologous to UII. Urotensin II was first identified in fish spinal cord, but later found in humans and other mammals. In fish, UII is secreted at the back part of the spinal cord, in a neurosecretory centre called uroneurapophysa, and is involved in the regulation of the renal and cardiovascular systems. In mammals, urotensin II is the most potent mammalian vasoconstrictor identified to date and causes contraction of arterial blood vessels, including the thoracic aorta. The urotensin II receptor is a rhodopsin-like G-protein coupled receptor, which binds urotensin-II. The receptor was previously known as GPR14, or sensory epithelial neuropeptide-like receptor (SENR). The UII receptor is expressed in the CNS (cerebellum and spinal cord), skeletal muscle, pancreas, heart, endothelium and vascular smooth muscle. It is involved in the pathophysiological control of cardiovascular function and may also influence CNS and endocrine functions. Binding of urotensin II to the receptor leads to activation of phospholipase C, through coupling to G(q/11) family proteins. The resulting increase in intracellular calcium may cause the contraction of vascular smooth muscle. Pssm-ID: 320130 [Multi-domain] Cd Length: 282 Bit Score: 38.58 E-value: 3.10e-03
|
|||||||||
7tmA_5-HT2C | cd15305 | serotonin receptor subtype 2C, member of the class A family of seven-transmembrane G ... |
28-145 | 3.67e-03 | |||||
serotonin receptor subtype 2C, member of the class A family of seven-transmembrane G protein-coupled receptors; The 5-HT2 receptors are a subfamily of serotonin receptors that bind the neurotransmitter serotonin (5HT; 5-hydroxytryptamine) in the central nervous system (CNS). The 5-HT2 subfamily is composed of three subtypes that mediate excitatory neurotransmission: 5-HT2A, 5-HT2B, and 5-HT2C. They are selectively linked to G proteins of the G(q/11) family and activate phospholipase C, which leads to activation of protein kinase C and calcium release. In the CNS, serotonin is involved in the regulation of appetite, mood, sleep, cognition, learning and memory, as well as implicated in diseases such as migraine, schizophrenia, and depression. Indeed, 5-HT2 receptors are attractive targets for a variety of psychoactive drugs, ranging from atypical antipsychotic drugs, antidepressants, and anxiolytics, which have an antagonistic action on 5-HT2 receptors, to hallucinogens, which act as agonists at postsynaptic 5-HT2 receptors. All GPCRs have a common structural architecture comprising of seven-transmembrane (TM) alpha-helices interconnected by three extracellular and three intracellular loops. A general feature of GPCR signaling is agonist-induced conformational changes in the receptors, leading to activation of the heterotrimeric G proteins, which consist of the guanine nucleotide-binding G-alpha subunit and the dimeric G-beta-gamma subunits. The activated G proteins then bind to and activate numerous downstream effector proteins, which generate second messengers that mediate a broad range of cellular and physiological processes. Pssm-ID: 341346 [Multi-domain] Cd Length: 275 Bit Score: 38.35 E-value: 3.67e-03
|
|||||||||
7tmA_tyramine_octopamine_R-like | cd15060 | tyramine/octopamine receptor-like, member of the class A family of seven-transmembrane G ... |
39-295 | 3.68e-03 | |||||
tyramine/octopamine receptor-like, member of the class A family of seven-transmembrane G protein-coupled receptors; This group includes tyramine/octopamine receptors and similar proteins found in insects and other invertebrates. Both octopamine and tyramine mediate their actions via G protein-coupled receptors (GPCRs) and are the invertebrate equivalent of vertebrate adrenergic neurotransmitters. In Drosophila, octopamine is involved in ovulation by mediating an egg release from the ovary, while a physiological role for tyramine in this process is not fully understood. All GPCRs have a common structural architecture comprising of seven-transmembrane (TM) alpha-helices interconnected by three extracellular and three intracellular loops. A general feature of GPCR signaling is agonist-induced conformational changes in the receptors, leading to activation of the heterotrimeric G proteins, which consist of the guanine nucleotide-binding G-alpha subunit and the dimeric G-beta-gamma subunits. The activated G proteins then bind to and activate numerous downstream effector proteins, which generate second messengers that mediate a broad range of cellular and physiological processes. Pssm-ID: 320188 [Multi-domain] Cd Length: 260 Bit Score: 38.18 E-value: 3.68e-03
|
|||||||||
7tmA_purinoceptor-like | cd14982 | purinoceptor and its related proteins, member of the class A family of seven-transmembrane G ... |
64-251 | 3.71e-03 | |||||
purinoceptor and its related proteins, member of the class A family of seven-transmembrane G protein-coupled receptors; Members of this subfamily include lysophosphatidic acid receptor, P2 purinoceptor, protease-activated receptor, platelet-activating factor receptor, Epstein-Barr virus induced gene 2, proton-sensing G protein-coupled receptors, GPR35, and GPR55, among others. All GPCRs have a common structural architecture comprising of seven-transmembrane (TM) alpha-helices interconnected by three extracellular and three intracellular loops. A general feature of GPCR signaling is agonist-induced conformational changes in the receptors, leading to activation of the heterotrimeric G proteins, which consist of the guanine nucleotide-binding G-alpha subunit and the dimeric G-beta-gamma subunits. The activated G proteins then bind to and activate numerous downstream effector proteins, which generate second messengers that mediate a broad range of cellular and physiological processes. Pssm-ID: 341318 [Multi-domain] Cd Length: 283 Bit Score: 38.40 E-value: 3.71e-03
|
|||||||||
7tm_GPCRs | cd14964 | seven-transmembrane G protein-coupled receptor superfamily; This hierarchical evolutionary ... |
25-257 | 4.73e-03 | |||||
seven-transmembrane G protein-coupled receptor superfamily; This hierarchical evolutionary model represents the seven-transmembrane (7TM) receptors, often referred to as G protein-coupled receptors (GPCRs), which transmit physiological signals from the outside of the cell to the inside via G proteins. GPCRs constitute the largest known superfamily of transmembrane receptors across the three kingdoms of life that respond to a wide variety of extracellular stimuli including peptides, lipids, neurotransmitters, amino acids, hormones, and sensory stimuli such as light, smell and taste. All GPCRs share a common structural architecture comprising of seven-transmembrane (TM) alpha-helices interconnected by three extracellular and three intracellular loops. A general feature of GPCR signaling is agonist-induced conformational changes in the receptors, leading to activation of the heterotrimeric G proteins, which consist of the guanine nucleotide-binding G-alpha subunit and the dimeric G-beta-gamma subunits. The activated G proteins then bind to and activate numerous downstream effector proteins, which generate second messengers that mediate a broad range of cellular and physiological processes. However, some 7TM receptors, such as the type 1 microbial rhodopsins, do not activate G proteins. Based on sequence similarity, GPCRs can be divided into six major classes: class A (the rhodopsin-like family), class B (the Methuselah-like, adhesion and secretin-like receptor family), class C (the metabotropic glutamate receptor family), class D (the fungal mating pheromone receptors), class E (the cAMP receptor family), and class F (the frizzled/smoothened receptor family). Nearly 800 human GPCR genes have been identified and are involved essentially in all major physiological processes. Approximately 40% of clinically marketed drugs mediate their effects through modulation of GPCR function for the treatment of a variety of human diseases including bacterial infections. Pssm-ID: 410628 [Multi-domain] Cd Length: 267 Bit Score: 38.18 E-value: 4.73e-03
|
|||||||||
7tmA_NPSR | cd15197 | neuropeptide S receptor, member of the class A family of seven-transmembrane G protein-coupled ... |
33-148 | 4.94e-03 | |||||
neuropeptide S receptor, member of the class A family of seven-transmembrane G protein-coupled receptors; Neuropeptide S (NPS) promotes arousal and anxiolytic-like effects by activating its cognate receptor NPSR. NPSR is widely expressed in the brain, and its activation induces an elevation of intracellular calcium and cAMP concentrations, presumably by coupling to G(s) and G(q) proteins. Mutations in NPSR have been associated with an increased susceptibility to asthma. NPSR was originally identified as an orphan receptor GPR154 and is also known as G protein receptor for asthma susceptibility (GPRA) or vasopressin receptor-related receptor 1 (VRR1). Pssm-ID: 320325 [Multi-domain] Cd Length: 294 Bit Score: 38.17 E-value: 4.94e-03
|
|||||||||
7tmA_Opioid_R-like | cd14970 | opioid receptors and related proteins, member of the class A family of seven-transmembrane G ... |
32-128 | 5.01e-03 | |||||
opioid receptors and related proteins, member of the class A family of seven-transmembrane G protein-coupled receptors; This group includes opioid receptors, somatostatin receptors, melanin-concentrating hormone receptors (MCHRs), and neuropeptides B/W receptors. Together they constitute the opioid receptor-like family, members of the class A G-protein coupled receptors. Opioid receptors are coupled to inhibitory G proteins of the G(i/o) family and are involved in regulating a variety of physiological functions such as pain, addiction, mood, stress, epileptic seizure, and obesity, among many others. G protein-coupled somatostatin receptors (SSTRs), which display strong sequence similarity with opioid receptors, binds somatostatin (somatotropin release inhibiting factor), a polypeptide hormone that regulates a wide variety of physiological functions such as neurotransmission, cell proliferation, contractility of smooth muscle cells, and endocrine signaling as well as inhibition of the release of many secondary hormones. MCHR binds melanin concentrating hormone and is presumably involved in the neuronal regulation of food intake. Despite strong homology with somatostatin receptors, MCHR does not appear to bind somatostatin. Neuropeptides B/W receptors are primarily expressed in the CNS and stimulate the cortisol secretion by activating the adenylate cyclase- and the phospholipase C-dependent signaling pathways. Pssm-ID: 320101 [Multi-domain] Cd Length: 282 Bit Score: 38.04 E-value: 5.01e-03
|
|||||||||
7tmA_5-HT1E | cd15335 | serotonin receptor subtype 1E, member of the class A family of seven-transmembrane G ... |
40-296 | 6.26e-03 | |||||
serotonin receptor subtype 1E, member of the class A family of seven-transmembrane G protein-coupled receptors; The 5-HT1 receptors, one of 14 mammalian 5-HT receptors, is a member of the class A of GPCRs and is activated by the endogenous neurotransmitter and peripheral signal mediator serotonin (5-hydroxytryptamine, 5-HT). The 5-HT1 receptors mediate inhibitory neurotransmission by coupling to G proteins of the G(i/o) family, which lead to a decrease in adenylate cyclase activity, thereby decreasing intracellular cAMP levels and calcium influx. The 5-HT1 receptor subfamily includes 5 subtypes: 5-HT1A, 5-HT1B, 5-HT1D, 5-HT1E, and 5-HT1F. There is no 5-HT1C receptor subtype, as it has been reclassified as the 5-HT2C receptor. In the CNS, serotonin is involved in the regulation of appetite, mood, sleep, cognition, learning and memory, as well as implicated in neurologic disorders such as migraine, schizophrenia, and depression. Pssm-ID: 320457 [Multi-domain] Cd Length: 258 Bit Score: 37.60 E-value: 6.26e-03
|
|||||||||
7tmA_GPR19 | cd15008 | G protein-coupled receptor 19, member of the class A family of seven-transmembrane G ... |
28-145 | 6.61e-03 | |||||
G protein-coupled receptor 19, member of the class A family of seven-transmembrane G protein-coupled receptors; G-protein coupled receptor 19 is an orphan receptor that is expressed predominantly in neuronal cells during mouse embryogenesis. Its mRNA is found frequently over-expressed in patients with small cell lung cancer. GPR19 shares a significant amino acid sequence identity with the D2 dopamine and neuropeptide Y families of receptors. Human GPR19 gene, intronless in the coding region, also has a distribution in brain overlapping that of the D2 dopamine receptor gene, and is located on chromosome 12. GPR19 is a member of the class A family of GPCRs, which represents a widespread protein family that includes the light-sensitive rhodopsin as well as receptors for biogenic amines, lipids, nucleotides, odorants, peptide hormones, and a variety of other ligands. All GPCRs have a common structural architecture comprising of seven-transmembrane (TM) alpha-helices interconnected by three extracellular and three intracellular loops. A general feature of GPCR signaling is agonist-induced conformational changes in the receptors, leading to activation of the heterotrimeric G proteins, which consist of the guanine nucleotide-binding G-alpha subunit and the dimeric G-beta-gamma subunits. The activated G proteins then bind to and activate numerous downstream effector proteins, which generate second messengers that mediate a broad range of cellular and physiological processes. Pssm-ID: 320137 [Multi-domain] Cd Length: 275 Bit Score: 37.51 E-value: 6.61e-03
|
|||||||||
7tmA_CCK-BR | cd15979 | cholecystokinin receptor type B, member of the class A family of seven-transmembrane G ... |
37-128 | 7.27e-03 | |||||
cholecystokinin receptor type B, member of the class A family of seven-transmembrane G protein-coupled receptors; Cholecystokinin receptors (CCK-AR and CCK-BR) are a group of G-protein coupled receptors which bind the peptide hormones cholecystokinin (CCK) or gastrin. CCK, which facilitates digestion in the small intestine, and gastrin, a major regulator of gastric acid secretion, are highly similar peptides. Like gastrin, CCK is a naturally-occurring linear peptide that is synthesized as a preprohormone, then proteolytically cleaved to form a family of peptides with the common C-terminal sequence (Gly-Trp-Met-Asp-Phe-NH2), which is required for full biological activity. CCK-AR (type A, alimentary; also known as CCK1R) is found abundantly on pancreatic acinar cells and binds only sulfated CCK-peptides with very high affinity, whereas CCK-BR (type B, brain; also known as CCK2R), the predominant form in the brain and stomach, binds CCK or gastrin and discriminates poorly between sulfated and non-sulfated peptides. CCK is implicated in regulation of digestion, appetite control, and body weight, and is involved in neurogenesis via CCK-AR. There is some evidence to support that CCK and gastrin, via their receptors, are involved in promoting cancer development and progression, acting as growth and invasion factors. Pssm-ID: 320645 [Multi-domain] Cd Length: 275 Bit Score: 37.49 E-value: 7.27e-03
|
|||||||||
7tmA_ETH-R | cd14997 | ecdysis-triggering hormone receptors, member of the class A family of seven-transmembrane G ... |
29-129 | 8.34e-03 | |||||
ecdysis-triggering hormone receptors, member of the class A family of seven-transmembrane G protein-coupled receptors; This subgroup represents the ecdysis-triggering hormone receptors found in insects, which are members of the class A family of seven-transmembrane G-protein coupled receptors. Ecdysis-triggering hormones are vital regulatory signals that govern the stereotypic physiological sequence leading to cuticle shedding in insects. Thus, the ETH signaling system has been a target for the design of more sophisticated insect-selective pest control strategies. Two subtypes of ecdysis-triggering hormone receptor were identified in Drosophila melanogaster. Blood-borne ecdysis-triggering hormone (ETH) activates the behavioral sequence through direct actions on the central nervous system. In insects, ecdysis is thought to be controlled by the interaction between peptide hormones; in particular between ecdysis-triggering hormone (ETH) from the periphery and eclosion hormone (EH) and crustacean cardioactive peptide (CCAP) from the central nervous system. All GPCRs have a common structural architecture comprising of seven-transmembrane (TM) alpha-helices interconnected by three extracellular and three intracellular loops. A general feature of GPCR signaling is agonist-induced conformational changes in the receptors, leading to activation of the heterotrimeric G proteins, which consist of the guanine nucleotide-binding G-alpha subunit and the dimeric G-beta-gamma subunits. The activated G proteins then bind to and activate numerous downstream effector proteins, which generate second messengers that mediate a broad range of cellular and physiological processes. Pssm-ID: 320128 [Multi-domain] Cd Length: 294 Bit Score: 37.27 E-value: 8.34e-03
|
|||||||||
Blast search parameters | ||||
|