protein AHNAK2 [Alligator mississippiensis]
List of domain hits
Name | Accession | Description | Interval | E-value | ||||||||||
GST_C_EF1Bgamma_like | cd03181 | Glutathione S-transferase C-terminal-like, alpha helical domain of the Gamma subunit of ... |
92-214 | 1.01e-69 | ||||||||||
Glutathione S-transferase C-terminal-like, alpha helical domain of the Gamma subunit of Elongation Factor 1B and similar proteins; Glutathione S-transferase (GST) C-terminal domain family, Gamma subunit of Elongation Factor 1B (EF1Bgamma) subfamily; EF1Bgamma is part of the eukaryotic translation elongation factor-1 (EF1) complex which plays a central role in the elongation cycle during protein biosynthesis. EF1 consists of two functionally distinct units, EF1A and EF1B. EF1A catalyzes the GTP-dependent binding of aminoacyl-tRNA to the ribosomal A site concomitant with the hydrolysis of GTP. The resulting inactive EF1A:GDP complex is recycled to the active GTP form by the guanine-nucleotide exchange factor EF1B, a complex composed of at least two subunits, alpha and gamma. Metazoan EFB1 contain a third subunit, beta. The EF1B gamma subunit contains a GST fold consisting of an N-terminal thioredoxin-fold domain and a C-terminal alpha helical domain. The GST-like domain of EF1Bgamma is believed to mediate the dimerization of the EF1 complex, which in yeast is a dimer of the heterotrimer EF1A:EF1Balpha:EF1Bgamma. In addition to its role in protein biosynthesis, EF1Bgamma may also display other functions. The recombinant rice protein has been shown to possess GSH conjugating activity. The yeast EF1Bgamma binds to membranes in a calcium dependent manner and is also part of a complex that binds to the msrA (methionine sulfoxide reductase) promoter suggesting a function in the regulation of its gene expression. Also included in this subfamily is the GST_C-like domain at the N-terminus of human valyl-tRNA synthetase (ValRS) and its homologs. Metazoan ValRS forms a stable complex with Elongation Factor-1H (EF-1H), and together, they catalyze consecutive steps in protein biosynthesis, tRNA aminoacylation and its transfer to EF. : Pssm-ID: 198290 [Multi-domain] Cd Length: 123 Bit Score: 230.53 E-value: 1.01e-69
|
||||||||||||||
EF1G | pfam00647 | Elongation factor 1 gamma, conserved domain; |
278-382 | 1.27e-64 | ||||||||||
Elongation factor 1 gamma, conserved domain; : Pssm-ID: 459888 Cd Length: 105 Bit Score: 215.09 E-value: 1.27e-64
|
||||||||||||||
GST_N_EF1Bgamma | cd03044 | GST_N family, Gamma subunit of Elongation Factor 1B (EFB1gamma) subfamily; EF1Bgamma is part ... |
5-83 | 8.72e-37 | ||||||||||
GST_N family, Gamma subunit of Elongation Factor 1B (EFB1gamma) subfamily; EF1Bgamma is part of the eukaryotic translation elongation factor-1 (EF1) complex which plays a central role in the elongation cycle during protein biosynthesis. EF1 consists of two functionally distinct units, EF1A and EF1B. EF1A catalyzes the GTP-dependent binding of aminoacyl-tRNA to the ribosomal A site concomitant with the hydrolysis of GTP. The resulting inactive EF1A:GDP complex is recycled to the active GTP form by the guanine-nucleotide exchange factor EF1B, a complex composed of at least two subunits, alpha and gamma. Metazoan EFB1 contain a third subunit, beta. The EF1B gamma subunit contains a GST fold consisting of an N-terminal TRX-fold domain and a C-terminal alpha helical domain. The GST-like domain of EF1Bgamma is believed to mediate the dimerization of the EF1 complex, which in yeast is a dimer of the heterotrimer EF1A:EF1Balpha:EF1Bgamma. In addition to its role in protein biosynthesis, EF1Bgamma may also display other functions. The recombinant rice protein has been shown to possess GSH conjugating activity. The yeast EF1Bgamma binds membranes in a calcium dependent manner and is also part of a complex that binds to the msrA (methionine sulfoxide reductase) promoter suggesting a function in the regulation of its gene expression. : Pssm-ID: 239342 [Multi-domain] Cd Length: 75 Bit Score: 134.30 E-value: 8.72e-37
|
||||||||||||||
TamB super family | cl34519 | Autotransporter translocation and assembly protein TamB [Intracellular trafficking, secretion, ... |
2271-2914 | 1.09e-10 | ||||||||||
Autotransporter translocation and assembly protein TamB [Intracellular trafficking, secretion, and vesicular transport]; The actual alignment was detected with superfamily member COG2911: Pssm-ID: 442155 [Multi-domain] Cd Length: 766 Bit Score: 67.76 E-value: 1.09e-10
|
||||||||||||||
TamB super family | cl34519 | Autotransporter translocation and assembly protein TamB [Intracellular trafficking, secretion, ... |
1837-2428 | 1.98e-09 | ||||||||||
Autotransporter translocation and assembly protein TamB [Intracellular trafficking, secretion, and vesicular transport]; The actual alignment was detected with superfamily member COG2911: Pssm-ID: 442155 [Multi-domain] Cd Length: 766 Bit Score: 63.91 E-value: 1.98e-09
|
||||||||||||||
TamB super family | cl34519 | Autotransporter translocation and assembly protein TamB [Intracellular trafficking, secretion, ... |
815-1340 | 3.57e-07 | ||||||||||
Autotransporter translocation and assembly protein TamB [Intracellular trafficking, secretion, and vesicular transport]; The actual alignment was detected with superfamily member COG2911: Pssm-ID: 442155 [Multi-domain] Cd Length: 766 Bit Score: 56.59 E-value: 3.57e-07
|
||||||||||||||
TamB super family | cl34519 | Autotransporter translocation and assembly protein TamB [Intracellular trafficking, secretion, ... |
3140-3571 | 4.37e-07 | ||||||||||
Autotransporter translocation and assembly protein TamB [Intracellular trafficking, secretion, and vesicular transport]; The actual alignment was detected with superfamily member COG2911: Pssm-ID: 442155 [Multi-domain] Cd Length: 766 Bit Score: 56.20 E-value: 4.37e-07
|
||||||||||||||
PDZ_canonical super family | cl49608 | canonical PDZ domain; Canonical PDZ (PSD-95 (Postsynaptic density protein 95), Dlg (Discs ... |
520-594 | 4.50e-06 | ||||||||||
canonical PDZ domain; Canonical PDZ (PSD-95 (Postsynaptic density protein 95), Dlg (Discs large protein), and ZO-1 (Zonula occludens-1)) domain. PDZ domains usually bind to short specific peptide sequences located at the C-terminal end of their partner proteins known as PDZ binding motifs. These domains can also interact with internal peptide motifs and certain lipids, and can take part in a head-to-tail oligomerization with other PDZ domains. The PDZ superfamily includes canonical PDZ domains as well as those with circular permutations and domain swapping mediated by beta-strands. The canonical PDZ domain contains six beta-strands A-F and two alpha-helices (alpha-helix 1 and 2), arranged in the order: beta-strands A, B, C, alpha-helix 1, beta-strands D, E, alpha-helix 2 and beta-strand F. The actual alignment was detected with superfamily member cd06765: Pssm-ID: 483948 [Multi-domain] Cd Length: 77 Bit Score: 46.96 E-value: 4.50e-06
|
||||||||||||||
AsmA super family | cl34531 | Uncharacterized conserved protein AsmA involved in outer membrane biogenesis [Cell wall ... |
1561-2019 | 3.20e-03 | ||||||||||
Uncharacterized conserved protein AsmA involved in outer membrane biogenesis [Cell wall/membrane/envelope biogenesis]; The actual alignment was detected with superfamily member COG2982: Pssm-ID: 442221 [Multi-domain] Cd Length: 491 Bit Score: 43.10 E-value: 3.20e-03
|
||||||||||||||
Name | Accession | Description | Interval | E-value | ||||||||||
GST_C_EF1Bgamma_like | cd03181 | Glutathione S-transferase C-terminal-like, alpha helical domain of the Gamma subunit of ... |
92-214 | 1.01e-69 | ||||||||||
Glutathione S-transferase C-terminal-like, alpha helical domain of the Gamma subunit of Elongation Factor 1B and similar proteins; Glutathione S-transferase (GST) C-terminal domain family, Gamma subunit of Elongation Factor 1B (EF1Bgamma) subfamily; EF1Bgamma is part of the eukaryotic translation elongation factor-1 (EF1) complex which plays a central role in the elongation cycle during protein biosynthesis. EF1 consists of two functionally distinct units, EF1A and EF1B. EF1A catalyzes the GTP-dependent binding of aminoacyl-tRNA to the ribosomal A site concomitant with the hydrolysis of GTP. The resulting inactive EF1A:GDP complex is recycled to the active GTP form by the guanine-nucleotide exchange factor EF1B, a complex composed of at least two subunits, alpha and gamma. Metazoan EFB1 contain a third subunit, beta. The EF1B gamma subunit contains a GST fold consisting of an N-terminal thioredoxin-fold domain and a C-terminal alpha helical domain. The GST-like domain of EF1Bgamma is believed to mediate the dimerization of the EF1 complex, which in yeast is a dimer of the heterotrimer EF1A:EF1Balpha:EF1Bgamma. In addition to its role in protein biosynthesis, EF1Bgamma may also display other functions. The recombinant rice protein has been shown to possess GSH conjugating activity. The yeast EF1Bgamma binds to membranes in a calcium dependent manner and is also part of a complex that binds to the msrA (methionine sulfoxide reductase) promoter suggesting a function in the regulation of its gene expression. Also included in this subfamily is the GST_C-like domain at the N-terminus of human valyl-tRNA synthetase (ValRS) and its homologs. Metazoan ValRS forms a stable complex with Elongation Factor-1H (EF-1H), and together, they catalyze consecutive steps in protein biosynthesis, tRNA aminoacylation and its transfer to EF. Pssm-ID: 198290 [Multi-domain] Cd Length: 123 Bit Score: 230.53 E-value: 1.01e-69
|
||||||||||||||
EF1G | pfam00647 | Elongation factor 1 gamma, conserved domain; |
278-382 | 1.27e-64 | ||||||||||
Elongation factor 1 gamma, conserved domain; Pssm-ID: 459888 Cd Length: 105 Bit Score: 215.09 E-value: 1.27e-64
|
||||||||||||||
GST_N_EF1Bgamma | cd03044 | GST_N family, Gamma subunit of Elongation Factor 1B (EFB1gamma) subfamily; EF1Bgamma is part ... |
5-83 | 8.72e-37 | ||||||||||
GST_N family, Gamma subunit of Elongation Factor 1B (EFB1gamma) subfamily; EF1Bgamma is part of the eukaryotic translation elongation factor-1 (EF1) complex which plays a central role in the elongation cycle during protein biosynthesis. EF1 consists of two functionally distinct units, EF1A and EF1B. EF1A catalyzes the GTP-dependent binding of aminoacyl-tRNA to the ribosomal A site concomitant with the hydrolysis of GTP. The resulting inactive EF1A:GDP complex is recycled to the active GTP form by the guanine-nucleotide exchange factor EF1B, a complex composed of at least two subunits, alpha and gamma. Metazoan EFB1 contain a third subunit, beta. The EF1B gamma subunit contains a GST fold consisting of an N-terminal TRX-fold domain and a C-terminal alpha helical domain. The GST-like domain of EF1Bgamma is believed to mediate the dimerization of the EF1 complex, which in yeast is a dimer of the heterotrimer EF1A:EF1Balpha:EF1Bgamma. In addition to its role in protein biosynthesis, EF1Bgamma may also display other functions. The recombinant rice protein has been shown to possess GSH conjugating activity. The yeast EF1Bgamma binds membranes in a calcium dependent manner and is also part of a complex that binds to the msrA (methionine sulfoxide reductase) promoter suggesting a function in the regulation of its gene expression. Pssm-ID: 239342 [Multi-domain] Cd Length: 75 Bit Score: 134.30 E-value: 8.72e-37
|
||||||||||||||
GstA | COG0625 | Glutathione S-transferase [Posttranslational modification, protein turnover, chaperones]; |
6-207 | 2.71e-32 | ||||||||||
Glutathione S-transferase [Posttranslational modification, protein turnover, chaperones]; Pssm-ID: 440390 [Multi-domain] Cd Length: 205 Bit Score: 126.55 E-value: 2.71e-32
|
||||||||||||||
GST_N | pfam02798 | Glutathione S-transferase, N-terminal domain; Function: conjugation of reduced glutathione to ... |
5-82 | 1.16e-19 | ||||||||||
Glutathione S-transferase, N-terminal domain; Function: conjugation of reduced glutathione to a variety of targets. Also included in the alignment, but not GSTs: S-crystallins from squid (similarity to GST previously noted); eukaryotic elongation factors 1-gamma (not known to have GST activity and similarity not previously recognized); HSP26 family of stress-related proteins including auxin-regulated proteins in plants and stringent starvation proteins in E. coli (not known to have GST activity and similarity not previously recognized). The glutathione molecule binds in a cleft between the N- and C-terminal domains - the catalytically important residues are proposed to reside in the N-terminal domain. Pssm-ID: 460698 [Multi-domain] Cd Length: 76 Bit Score: 85.82 E-value: 1.16e-19
|
||||||||||||||
GST_C | pfam00043 | Glutathione S-transferase, C-terminal domain; GST conjugates reduced glutathione to a variety ... |
107-199 | 4.78e-17 | ||||||||||
Glutathione S-transferase, C-terminal domain; GST conjugates reduced glutathione to a variety of targets including S-crystallin from squid, the eukaryotic elongation factor 1-gamma, the HSP26 family of stress-related proteins and auxin-regulated proteins in plants. Stringent starvation proteins in E. coli are also included in the alignment but are not known to have GST activity. The glutathione molecule binds in a cleft between N and C-terminal domains. The catalytically important residues are proposed to reside in the N-terminal domain. In plants, GSTs are encoded by a large gene family (48 GST genes in Arabidopsis) and can be divided into the phi, tau, theta, zeta, and lambda classes. Pssm-ID: 459647 [Multi-domain] Cd Length: 93 Bit Score: 78.87 E-value: 4.78e-17
|
||||||||||||||
TamB | COG2911 | Autotransporter translocation and assembly protein TamB [Intracellular trafficking, secretion, ... |
2271-2914 | 1.09e-10 | ||||||||||
Autotransporter translocation and assembly protein TamB [Intracellular trafficking, secretion, and vesicular transport]; Pssm-ID: 442155 [Multi-domain] Cd Length: 766 Bit Score: 67.76 E-value: 1.09e-10
|
||||||||||||||
PLN02473 | PLN02473 | glutathione S-transferase |
46-205 | 7.19e-10 | ||||||||||
glutathione S-transferase Pssm-ID: 166114 [Multi-domain] Cd Length: 214 Bit Score: 61.93 E-value: 7.19e-10
|
||||||||||||||
TamB | COG2911 | Autotransporter translocation and assembly protein TamB [Intracellular trafficking, secretion, ... |
1837-2428 | 1.98e-09 | ||||||||||
Autotransporter translocation and assembly protein TamB [Intracellular trafficking, secretion, and vesicular transport]; Pssm-ID: 442155 [Multi-domain] Cd Length: 766 Bit Score: 63.91 E-value: 1.98e-09
|
||||||||||||||
TamB | COG2911 | Autotransporter translocation and assembly protein TamB [Intracellular trafficking, secretion, ... |
815-1340 | 3.57e-07 | ||||||||||
Autotransporter translocation and assembly protein TamB [Intracellular trafficking, secretion, and vesicular transport]; Pssm-ID: 442155 [Multi-domain] Cd Length: 766 Bit Score: 56.59 E-value: 3.57e-07
|
||||||||||||||
TamB | COG2911 | Autotransporter translocation and assembly protein TamB [Intracellular trafficking, secretion, ... |
3140-3571 | 4.37e-07 | ||||||||||
Autotransporter translocation and assembly protein TamB [Intracellular trafficking, secretion, and vesicular transport]; Pssm-ID: 442155 [Multi-domain] Cd Length: 766 Bit Score: 56.20 E-value: 4.37e-07
|
||||||||||||||
PDZ2_DLG5-like | cd06765 | PDZ domain 2 of Discs Large 5 (Dlg5) and related domains; PDZ (PSD-95 (Postsynaptic density ... |
520-594 | 4.50e-06 | ||||||||||
PDZ domain 2 of Discs Large 5 (Dlg5) and related domains; PDZ (PSD-95 (Postsynaptic density protein 95), Dlg (Discs large protein), and ZO-1 (Zonula occludens-1)) domain 2 of Drosophila and mammalian Dlg5, and related domains. Dlg5 is a scaffold protein with multiple conserved functions that are independent of each other in regulating growth, cell polarity, and cell adhesion. It has a coiled-coil domain, 4 PDZ domains and a MAGUK domain (an SH3 domain next to a non-catalytically active guanylate kinase domain). Deregulation of Dlg5 has been implicated in the malignancy of several cancer types. PDZ domains usually bind in a sequence-specific manner to short peptide sequences located at the C-terminal end of their partner proteins (known as PDZ binding motifs). The PDZ superfamily includes canonical PDZ domains as well as those with circular permutations and domain swapping mediated by beta-strands. This Dlg5-like family PSZ2 domain is a canonical PDZ domain containing six beta-strands A-F and two alpha-helices (alpha-helix 1 and 2), arranged in the order: beta-strands A, B, C, alpha-helix 1, beta-strands D, E, alpha-helix 2 and beta-strand F. Pssm-ID: 467246 [Multi-domain] Cd Length: 77 Bit Score: 46.96 E-value: 4.50e-06
|
||||||||||||||
CtpA | COG0793 | C-terminal processing protease CtpA/Prc, contains a PDZ domain [Posttranslational modification, ... |
528-601 | 3.86e-05 | ||||||||||
C-terminal processing protease CtpA/Prc, contains a PDZ domain [Posttranslational modification, protein turnover, chaperones]; Pssm-ID: 440556 [Multi-domain] Cd Length: 341 Bit Score: 49.10 E-value: 3.86e-05
|
||||||||||||||
PDZ | smart00228 | Domain present in PSD-95, Dlg, and ZO-1/2; Also called DHR (Dlg homologous region) or GLGF ... |
512-596 | 4.84e-04 | ||||||||||
Domain present in PSD-95, Dlg, and ZO-1/2; Also called DHR (Dlg homologous region) or GLGF (relatively well conserved tetrapeptide in these domains). Some PDZs have been shown to bind C-terminal polypeptides; others appear to bind internal (non-C-terminal) polypeptides. Different PDZs possess different binding specificities. Pssm-ID: 214570 [Multi-domain] Cd Length: 85 Bit Score: 41.60 E-value: 4.84e-04
|
||||||||||||||
AsmA | COG2982 | Uncharacterized conserved protein AsmA involved in outer membrane biogenesis [Cell wall ... |
1561-2019 | 3.20e-03 | ||||||||||
Uncharacterized conserved protein AsmA involved in outer membrane biogenesis [Cell wall/membrane/envelope biogenesis]; Pssm-ID: 442221 [Multi-domain] Cd Length: 491 Bit Score: 43.10 E-value: 3.20e-03
|
||||||||||||||
Name | Accession | Description | Interval | E-value | |||||||||||
GST_C_EF1Bgamma_like | cd03181 | Glutathione S-transferase C-terminal-like, alpha helical domain of the Gamma subunit of ... |
92-214 | 1.01e-69 | |||||||||||
Glutathione S-transferase C-terminal-like, alpha helical domain of the Gamma subunit of Elongation Factor 1B and similar proteins; Glutathione S-transferase (GST) C-terminal domain family, Gamma subunit of Elongation Factor 1B (EF1Bgamma) subfamily; EF1Bgamma is part of the eukaryotic translation elongation factor-1 (EF1) complex which plays a central role in the elongation cycle during protein biosynthesis. EF1 consists of two functionally distinct units, EF1A and EF1B. EF1A catalyzes the GTP-dependent binding of aminoacyl-tRNA to the ribosomal A site concomitant with the hydrolysis of GTP. The resulting inactive EF1A:GDP complex is recycled to the active GTP form by the guanine-nucleotide exchange factor EF1B, a complex composed of at least two subunits, alpha and gamma. Metazoan EFB1 contain a third subunit, beta. The EF1B gamma subunit contains a GST fold consisting of an N-terminal thioredoxin-fold domain and a C-terminal alpha helical domain. The GST-like domain of EF1Bgamma is believed to mediate the dimerization of the EF1 complex, which in yeast is a dimer of the heterotrimer EF1A:EF1Balpha:EF1Bgamma. In addition to its role in protein biosynthesis, EF1Bgamma may also display other functions. The recombinant rice protein has been shown to possess GSH conjugating activity. The yeast EF1Bgamma binds to membranes in a calcium dependent manner and is also part of a complex that binds to the msrA (methionine sulfoxide reductase) promoter suggesting a function in the regulation of its gene expression. Also included in this subfamily is the GST_C-like domain at the N-terminus of human valyl-tRNA synthetase (ValRS) and its homologs. Metazoan ValRS forms a stable complex with Elongation Factor-1H (EF-1H), and together, they catalyze consecutive steps in protein biosynthesis, tRNA aminoacylation and its transfer to EF. Pssm-ID: 198290 [Multi-domain] Cd Length: 123 Bit Score: 230.53 E-value: 1.01e-69
|
|||||||||||||||
EF1G | pfam00647 | Elongation factor 1 gamma, conserved domain; |
278-382 | 1.27e-64 | |||||||||||
Elongation factor 1 gamma, conserved domain; Pssm-ID: 459888 Cd Length: 105 Bit Score: 215.09 E-value: 1.27e-64
|
|||||||||||||||
GST_C_ValRS_N | cd10294 | Glutathione S-transferase C-terminal-like, alpha helical domain of vertebrate Valyl-tRNA ... |
92-214 | 1.60e-49 | |||||||||||
Glutathione S-transferase C-terminal-like, alpha helical domain of vertebrate Valyl-tRNA synthetase; Glutathione S-transferase (GST) C-terminal domain family, Valyl-tRNA synthetase (ValRS) subfamily; This model characterizes the GST_C-like domain found in the N-terminal region of human ValRS and its homologs from other vertebrates such as frog and zebrafish. Aminoacyl-tRNA synthetases (aaRSs) comprise a family of enzymes that catalyze the coupling of amino acids with their matching tRNAs. This involves the formation of an aminoacyl adenylate using ATP, followed by the transfer of the activated amino acid to the 3'-adenosine moiety of the tRNA. AaRSs may also be involved in translational and transcriptional regulation, as well as in tRNA processing. They typically form large stable complexes with other proteins. ValRS forms a stable complex with Elongation Factor-1H (EF-1H), and together, they catalyze consecutive steps in protein biosynthesis, tRNA aminoacylation and its transfer to EF. The GST_C-like domain of ValRS from higher eukaryotes is likely involved in protein-protein interactions, to mediate the formation of the multi-aaRS complex that acts as a molecular hub to coordinate protein synthesis. ValRSs from prokaryotes and lower eukaryotes, such as fungi and plants, do not appear to contain this GST_C-like domain. Pssm-ID: 198327 [Multi-domain] Cd Length: 123 Bit Score: 172.71 E-value: 1.60e-49
|
|||||||||||||||
GST_N_EF1Bgamma | cd03044 | GST_N family, Gamma subunit of Elongation Factor 1B (EFB1gamma) subfamily; EF1Bgamma is part ... |
5-83 | 8.72e-37 | |||||||||||
GST_N family, Gamma subunit of Elongation Factor 1B (EFB1gamma) subfamily; EF1Bgamma is part of the eukaryotic translation elongation factor-1 (EF1) complex which plays a central role in the elongation cycle during protein biosynthesis. EF1 consists of two functionally distinct units, EF1A and EF1B. EF1A catalyzes the GTP-dependent binding of aminoacyl-tRNA to the ribosomal A site concomitant with the hydrolysis of GTP. The resulting inactive EF1A:GDP complex is recycled to the active GTP form by the guanine-nucleotide exchange factor EF1B, a complex composed of at least two subunits, alpha and gamma. Metazoan EFB1 contain a third subunit, beta. The EF1B gamma subunit contains a GST fold consisting of an N-terminal TRX-fold domain and a C-terminal alpha helical domain. The GST-like domain of EF1Bgamma is believed to mediate the dimerization of the EF1 complex, which in yeast is a dimer of the heterotrimer EF1A:EF1Balpha:EF1Bgamma. In addition to its role in protein biosynthesis, EF1Bgamma may also display other functions. The recombinant rice protein has been shown to possess GSH conjugating activity. The yeast EF1Bgamma binds membranes in a calcium dependent manner and is also part of a complex that binds to the msrA (methionine sulfoxide reductase) promoter suggesting a function in the regulation of its gene expression. Pssm-ID: 239342 [Multi-domain] Cd Length: 75 Bit Score: 134.30 E-value: 8.72e-37
|
|||||||||||||||
GstA | COG0625 | Glutathione S-transferase [Posttranslational modification, protein turnover, chaperones]; |
6-207 | 2.71e-32 | |||||||||||
Glutathione S-transferase [Posttranslational modification, protein turnover, chaperones]; Pssm-ID: 440390 [Multi-domain] Cd Length: 205 Bit Score: 126.55 E-value: 2.71e-32
|
|||||||||||||||
GST_N | pfam02798 | Glutathione S-transferase, N-terminal domain; Function: conjugation of reduced glutathione to ... |
5-82 | 1.16e-19 | |||||||||||
Glutathione S-transferase, N-terminal domain; Function: conjugation of reduced glutathione to a variety of targets. Also included in the alignment, but not GSTs: S-crystallins from squid (similarity to GST previously noted); eukaryotic elongation factors 1-gamma (not known to have GST activity and similarity not previously recognized); HSP26 family of stress-related proteins including auxin-regulated proteins in plants and stringent starvation proteins in E. coli (not known to have GST activity and similarity not previously recognized). The glutathione molecule binds in a cleft between the N- and C-terminal domains - the catalytically important residues are proposed to reside in the N-terminal domain. Pssm-ID: 460698 [Multi-domain] Cd Length: 76 Bit Score: 85.82 E-value: 1.16e-19
|
|||||||||||||||
GST_C | pfam00043 | Glutathione S-transferase, C-terminal domain; GST conjugates reduced glutathione to a variety ... |
107-199 | 4.78e-17 | |||||||||||
Glutathione S-transferase, C-terminal domain; GST conjugates reduced glutathione to a variety of targets including S-crystallin from squid, the eukaryotic elongation factor 1-gamma, the HSP26 family of stress-related proteins and auxin-regulated proteins in plants. Stringent starvation proteins in E. coli are also included in the alignment but are not known to have GST activity. The glutathione molecule binds in a cleft between N and C-terminal domains. The catalytically important residues are proposed to reside in the N-terminal domain. In plants, GSTs are encoded by a large gene family (48 GST genes in Arabidopsis) and can be divided into the phi, tau, theta, zeta, and lambda classes. Pssm-ID: 459647 [Multi-domain] Cd Length: 93 Bit Score: 78.87 E-value: 4.78e-17
|
|||||||||||||||
GST_C_AaRS_like | cd10289 | Glutathione S-transferase C-terminal-like, alpha helical domain of various Aminoacyl-tRNA ... |
93-198 | 1.46e-14 | |||||||||||
Glutathione S-transferase C-terminal-like, alpha helical domain of various Aminoacyl-tRNA synthetases and similar domains; Glutathione S-transferase (GST) C-terminal domain family, Aminoacyl-tRNA synthetase (AaRS)-like subfamily; This model characterizes the GST_C-like domain found in the N-terminal region of some eukaryotic AaRSs, as well as similar domains found in proteins involved in protein synthesis including Aminoacyl tRNA synthetase complex-Interacting Multifunctional Protein 2 (AIMP2), AIMP3, and eukaryotic translation Elongation Factor 1 beta (eEF1b). AaRSs comprise a family of enzymes that catalyze the coupling of amino acids with their matching tRNAs. This involves the formation of an aminoacyl adenylate using ATP, followed by the transfer of the activated amino acid to the 3'-adenosine moiety of the tRNA. AaRSs may also be involved in translational and transcriptional regulation, as well as in tRNA processing. AaRSs in this subfamily include GluRS from lower eukaryotes, as well as GluProRS, MetRS, and CysRS from higher eukaryotes. AIMPs are non-enzymatic cofactors that play critical roles in the assembly and formation of a macromolecular multi-tRNA synthetase protein complex found in higher eukaryotes. The GST_C-like domain is involved in protein-protein interactions, mediating the formation of aaRS complexes such as the MetRS-Arc1p-GluRS ternary complex in lower eukaryotes and the multi-aaRS complex in higher eukaryotes, that act as molecular hubs for protein synthesis. AaRSs from prokaryotes, which are active as dimers, do not contain this GST_C-like domain. Pssm-ID: 198322 [Multi-domain] Cd Length: 82 Bit Score: 71.19 E-value: 1.46e-14
|
|||||||||||||||
GST_C_family | cd00299 | C-terminal, alpha helical domain of the Glutathione S-transferase family; Glutathione ... |
96-172 | 2.47e-13 | |||||||||||
C-terminal, alpha helical domain of the Glutathione S-transferase family; Glutathione S-transferase (GST) family, C-terminal alpha helical domain; a large, diverse group of cytosolic dimeric proteins involved in cellular detoxification by catalyzing the conjugation of glutathione (GSH) with a wide range of endogenous and xenobiotic alkylating agents, including carcinogens, therapeutic drugs, environmental toxins and products of oxidative stress. In addition, GSTs also show GSH peroxidase activity and are involved in the synthesis of prostaglandins and leukotrienes. This family, also referred to as soluble GSTs, is the largest family of GSH transferases and is only distantly related to the mitochondrial GSTs (GSTK). Soluble GSTs bear no structural similarity to microsomal GSTs (MAPEG family) and display additional activities unique to their group, such as catalyzing thiolysis, reduction and isomerization of certain compounds. The GST fold contains an N-terminal thioredoxin-fold domain and a C-terminal alpha helical domain, with an active site located in a cleft between the two domains. GSH binds to the N-terminal domain while the hydrophobic substrate occupies a pocket in the C-terminal domain. Based on sequence similarity, different classes of GSTs have been identified, which display varying tissue distribution, substrate specificities and additional specific activities. In humans, GSTs display polymorphisms which may influence individual susceptibility to diseases such as cancer, arthritis, allergy and sclerosis. Some GST family members with non-GST functions include glutaredoxin 2, the CLIC subfamily of anion channels, prion protein Ure2p, crystallins, metaxins, stringent starvation protein A, and aminoacyl-tRNA synthetases. Pssm-ID: 198286 [Multi-domain] Cd Length: 100 Bit Score: 68.68 E-value: 2.47e-13
|
|||||||||||||||
GST_C_8 | cd03207 | C-terminal, alpha helical domain of an unknown subfamily 8 of Glutathione S-transferases; ... |
97-199 | 1.05e-12 | |||||||||||
C-terminal, alpha helical domain of an unknown subfamily 8 of Glutathione S-transferases; Glutathione S-transferase (GST) C-terminal domain family, unknown subfamily 8; composed of Agrobacterium tumefaciens GST and other uncharacterized bacterial proteins with similarity to GSTs. GSTs are cytosolic dimeric proteins involved in cellular detoxification by catalyzing the conjugation of glutathione (GSH) with a wide range of endogenous and xenobiotic alkylating agents, including carcinogens, therapeutic drugs, environmental toxins, and products of oxidative stress. GSTs also show GSH peroxidase activity and are involved in the synthesis of prostaglandins and leukotrienes. The GST fold contains an N-terminal thioredoxin-fold domain and a C-terminal alpha helical domain, with an active site located in a cleft between the two domains. GSH binds to the N-terminal domain while the hydrophobic substrate occupies a pocket in the C-terminal domain. The three-dimensional structure of Agrobacterium tumefaciens GST has been determined but there is no information on its functional characterization. Pssm-ID: 198316 [Multi-domain] Cd Length: 101 Bit Score: 66.55 E-value: 1.05e-12
|
|||||||||||||||
GST_C_AIMP3 | cd10305 | Glutathione S-transferase C-terminal-like, alpha helical domain of Aminoacyl tRNA synthetase ... |
90-192 | 2.00e-12 | |||||||||||
Glutathione S-transferase C-terminal-like, alpha helical domain of Aminoacyl tRNA synthetase complex-Interacting Multifunctional Protein 3; Glutathione S-transferase (GST) C-terminal domain family, Aminoacyl tRNA synthetase complex-Interacting Multifunctional Protein (AIMP) 3 subfamily; AIMPs are non-enzymatic cofactors that play critical roles in the assembly and formation of a macromolecular multi-tRNA synthetase protein complex that functions as a molecular hub to coordinate protein synthesis. There are three AIMPs, named AIMP1-3, which play diverse regulatory roles. AIMP3, also called p18 or eukaryotic translation elongation factor 1 epsilon-1 (EEF1E1), contains a C-terminal domain with similarity to the C-terminal alpha helical domain of GSTs. It specifically interacts with methionyl-tRNA synthetase (MetRS) and is translocated to the nucleus during DNA synthesis or in response to DNA damage and oncogenic stress. In the nucleus, it interacts with ATM and ATR, which are upstream kinase regulators of p53. It appears to work against DNA damage in cooperation with AIMP2, and similar to AIMP2, AIMP3 is also a haploinsufficient tumor suppressor. AIMP3 transgenic mice have shorter lifespans than wild-type mice and they show characteristics of progeria, suggesting that AIMP3 may also be involved in cellular and organismal aging. Pssm-ID: 198338 [Multi-domain] Cd Length: 101 Bit Score: 65.77 E-value: 2.00e-12
|
|||||||||||||||
GST_N_family | cd00570 | Glutathione S-transferase (GST) family, N-terminal domain; a large, diverse group of cytosolic ... |
6-80 | 1.14e-11 | |||||||||||
Glutathione S-transferase (GST) family, N-terminal domain; a large, diverse group of cytosolic dimeric proteins involved in cellular detoxification by catalyzing the conjugation of glutathione (GSH) with a wide range of endogenous and xenobiotic alkylating agents, including carcinogens, therapeutic drugs, environmental toxins and products of oxidative stress. In addition, GSTs also show GSH peroxidase activity and are involved in the synthesis of prostaglandins and leukotrienes. This family, also referred to as soluble GSTs, is the largest family of GSH transferases and is only distantly related to the mitochondrial GSTs (GSTK subfamily, a member of the DsbA family). Soluble GSTs bear no structural similarity to microsomal GSTs (MAPEG family) and display additional activities unique to their group, such as catalyzing thiolysis, reduction and isomerization of certain compounds. The GST fold contains an N-terminal TRX-fold domain and a C-terminal alpha helical domain, with an active site located in a cleft between the two domains. Based on sequence similarity, different classes of GSTs have been identified, which display varying tissue distribution, substrate specificities and additional specific activities. In humans, GSTs display polymorphisms which may influence individual susceptibility to diseases such as cancer, arthritis, allergy and sclerosis. Some GST family members with non-GST functions include glutaredoxin 2, the CLIC subfamily of anion channels, prion protein Ure2p, crystallins, metaxin 2 and stringent starvation protein A. Pssm-ID: 238319 [Multi-domain] Cd Length: 71 Bit Score: 62.59 E-value: 1.14e-11
|
|||||||||||||||
TamB | COG2911 | Autotransporter translocation and assembly protein TamB [Intracellular trafficking, secretion, ... |
2271-2914 | 1.09e-10 | |||||||||||
Autotransporter translocation and assembly protein TamB [Intracellular trafficking, secretion, and vesicular transport]; Pssm-ID: 442155 [Multi-domain] Cd Length: 766 Bit Score: 67.76 E-value: 1.09e-10
|
|||||||||||||||
PLN02473 | PLN02473 | glutathione S-transferase |
46-205 | 7.19e-10 | |||||||||||
glutathione S-transferase Pssm-ID: 166114 [Multi-domain] Cd Length: 214 Bit Score: 61.93 E-value: 7.19e-10
|
|||||||||||||||
TamB | COG2911 | Autotransporter translocation and assembly protein TamB [Intracellular trafficking, secretion, ... |
1837-2428 | 1.98e-09 | |||||||||||
Autotransporter translocation and assembly protein TamB [Intracellular trafficking, secretion, and vesicular transport]; Pssm-ID: 442155 [Multi-domain] Cd Length: 766 Bit Score: 63.91 E-value: 1.98e-09
|
|||||||||||||||
PRK10357 | PRK10357 | putative glutathione S-transferase; Provisional |
55-229 | 3.06e-09 | |||||||||||
putative glutathione S-transferase; Provisional Pssm-ID: 182405 [Multi-domain] Cd Length: 202 Bit Score: 59.73 E-value: 3.06e-09
|
|||||||||||||||
TamB | COG2911 | Autotransporter translocation and assembly protein TamB [Intracellular trafficking, secretion, ... |
2173-2719 | 3.11e-08 | |||||||||||
Autotransporter translocation and assembly protein TamB [Intracellular trafficking, secretion, and vesicular transport]; Pssm-ID: 442155 [Multi-domain] Cd Length: 766 Bit Score: 60.05 E-value: 3.11e-08
|
|||||||||||||||
GST_C_GluProRS_N | cd10309 | Glutathione S-transferase C-terminal-like, alpha helical domain of bifunctional ... |
143-192 | 3.91e-08 | |||||||||||
Glutathione S-transferase C-terminal-like, alpha helical domain of bifunctional Glutamyl-Prolyl-tRNA synthetase; Glutathione S-transferase (GST) C-terminal domain family, bifunctional GluRS-Prolyl-tRNA synthetase (GluProRS) subfamily; This model characterizes the GST_C-like domain found in the N-terminal region of GluProRS from higher eukaryotes. Aminoacyl-tRNA synthetases (aaRSs) comprise a family of enzymes that catalyze the coupling of amino acids with their matching tRNAs. This involves the formation of an aminoacyl adenylate using ATP, followed by the transfer of the activated amino acid to the 3'-adenosine moiety of the tRNA. AaRSs may also be involved in translational and transcriptional regulation, as well as in tRNA processing. The GST_C-like domain of GluProRS may be involved in protein-protein interactions, mediating the formation of the multi-aaRS complex in higher eukaryotes. The multi-aaRS complex acts as a molecular hub for protein synthesis. AaRSs from prokaryotes, which are active as dimers, do not contain this GST_C-like domain. Pssm-ID: 198342 [Multi-domain] Cd Length: 81 Bit Score: 53.09 E-value: 3.91e-08
|
|||||||||||||||
TamB | COG2911 | Autotransporter translocation and assembly protein TamB [Intracellular trafficking, secretion, ... |
1480-2137 | 9.36e-08 | |||||||||||
Autotransporter translocation and assembly protein TamB [Intracellular trafficking, secretion, and vesicular transport]; Pssm-ID: 442155 [Multi-domain] Cd Length: 766 Bit Score: 58.51 E-value: 9.36e-08
|
|||||||||||||||
GST_N_Phi | cd03053 | GST_N family, Class Phi subfamily; composed of plant-specific class Phi GSTs and related ... |
6-81 | 1.24e-07 | |||||||||||
GST_N family, Class Phi subfamily; composed of plant-specific class Phi GSTs and related fungal and bacterial proteins. GSTs are cytosolic dimeric proteins involved in cellular detoxification by catalyzing the conjugation of glutathione (GSH) with a wide range of endogenous and xenobiotic alkylating agents, including carcinogens, therapeutic drugs, environmental toxins and products of oxidative stress. The GST fold contains an N-terminal TRX-fold domain and a C-terminal alpha helical domain, with an active site located in a cleft between the two domains. The class Phi GST subfamily has experience extensive gene duplication. The Arabidopsis and Oryza genomes contain 13 and 16 Phi GSTs, respectively. They are primarily responsible for herbicide detoxification together with class Tau GSTs, showing class specificity in substrate preference. Phi enzymes are highly reactive toward chloroacetanilide and thiocarbamate herbicides. Some Phi GSTs have other functions including transport of flavonoid pigments to the vacuole, shoot regeneration and GSH peroxidase activity. Pssm-ID: 239351 [Multi-domain] Cd Length: 76 Bit Score: 51.50 E-value: 1.24e-07
|
|||||||||||||||
PLN02395 | PLN02395 | glutathione S-transferase |
45-164 | 1.49e-07 | |||||||||||
glutathione S-transferase Pssm-ID: 166036 [Multi-domain] Cd Length: 215 Bit Score: 54.87 E-value: 1.49e-07
|
|||||||||||||||
GST_C_7 | cd03206 | C-terminal, alpha helical domain of an unknown subfamily 7 of Glutathione S-transferases; ... |
96-165 | 2.64e-07 | |||||||||||
C-terminal, alpha helical domain of an unknown subfamily 7 of Glutathione S-transferases; Glutathione S-transferase (GST) C-terminal domain family, unknown subfamily 7; composed of uncharacterized proteins with similarity to GSTs. GSTs are cytosolic dimeric proteins involved in cellular detoxification by catalyzing the conjugation of glutathione (GSH) with a wide range of endogenous and xenobiotic alkylating agents, including carcinogens, therapeutic drugs, environmental toxins, and products of oxidative stress. GSTs also show GSH peroxidase activity and are involved in the synthesis of prostaglandins and leukotrienes. The GST fold contains an N-terminal thioredoxin-fold domain and a C-terminal alpha helical domain, with an active site located in a cleft between the two domains. GSH binds to the N-terminal domain while the hydrophobic substrate occupies a pocket in the C-terminal domain. Pssm-ID: 198315 [Multi-domain] Cd Length: 100 Bit Score: 51.46 E-value: 2.64e-07
|
|||||||||||||||
GST_C_Beta | cd03188 | C-terminal, alpha helical domain of Class Beta Glutathione S-transferases; Glutathione ... |
94-172 | 3.25e-07 | |||||||||||
C-terminal, alpha helical domain of Class Beta Glutathione S-transferases; Glutathione S-transferase (GST) C-terminal domain family, Class Beta subfamily; GSTs are cytosolic dimeric proteins involved in cellular detoxification by catalyzing the conjugation of glutathione (GSH) with a wide range of endogenous and xenobiotic alkylating agents, including carcinogens, therapeutic drugs, environmental toxins, and products of oxidative stress. The GST fold contains an N-terminal thioredoxin-fold domain and a C-terminal alpha helical domain, with an active site located in a cleft between the two domains. GSH binds to the N-terminal domain while the hydrophobic substrate occupies a pocket in the C-terminal domain. Unlike mammalian GSTs which detoxify a broad range of compounds, the bacterial class Beta GSTs exhibit GSH conjugating activity with a narrow range of substrates. In addition to GSH conjugation, they are involved in the protection against oxidative stress and are able to bind antibiotics and reduce the antimicrobial activity of beta-lactam drugs, contributing to antibiotic resistance. The structure of the Proteus mirabilis enzyme reveals that the cysteine in the active site forms a covalent bond with GSH. One member of this subfamily is a GST from Burkholderia xenovorans LB400 that is encoded by the bphK gene and is part of the biphenyl catabolic pathway. Pssm-ID: 198297 [Multi-domain] Cd Length: 113 Bit Score: 51.48 E-value: 3.25e-07
|
|||||||||||||||
GST_C_Ure2p_like | cd03178 | C-terminal, alpha helical domain of Ure2p and related Glutathione S-transferase-like proteins; ... |
94-163 | 3.42e-07 | |||||||||||
C-terminal, alpha helical domain of Ure2p and related Glutathione S-transferase-like proteins; Glutathione S-transferase (GST) C-terminal domain family, Ure2p-like subfamily; composed of the Saccharomyces cerevisiae Ure2p, YfcG and YghU from Escherichia coli, and related GST-like proteins. Ure2p is a regulator for nitrogen catabolism in yeast. It represses the expression of several gene products involved in the use of poor nitrogen sources when rich sources are available. A transmissible conformational change of Ure2p results in a prion called [Ure3], an inactive, self-propagating and infectious amyloid. Ure2p displays a GST fold containing an N-terminal thioredoxin-fold domain and a C-terminal alpha helical domain. The N-terminal thioredoxin-fold domain is sufficient to induce the [Ure3] phenotype and is also called the prion domain of Ure2p. In addition to its role in nitrogen regulation, Ure2p confers protection to cells against heavy metal ion and oxidant toxicity, and shows glutathione (GSH) peroxidase activity. YfcG and YghU are two of the nine GST homologs in the genome of Escherichia coli. They display very low or no GSH transferase, but show very good disulfide bond oxidoreductase activity. YghU also shows modest organic hydroperoxide reductase activity. GSTs are cytosolic dimeric proteins involved in cellular detoxification by catalyzing the conjugation of GSH with a wide range of endogenous and xenobiotic alkylating agents, including carcinogens, therapeutic drugs, environmental toxins and products of oxidative stress. GSTs also show GSH peroxidase activity and are involved in the synthesis of prostaglandins and leukotrienes. The GST active site is located in a cleft between the N- and C-terminal domains. GSH binds to the N-terminal domain while the hydrophobic substrate occupies a pocket in the C-terminal domain. Pssm-ID: 198288 [Multi-domain] Cd Length: 110 Bit Score: 51.48 E-value: 3.42e-07
|
|||||||||||||||
TamB | COG2911 | Autotransporter translocation and assembly protein TamB [Intracellular trafficking, secretion, ... |
815-1340 | 3.57e-07 | |||||||||||
Autotransporter translocation and assembly protein TamB [Intracellular trafficking, secretion, and vesicular transport]; Pssm-ID: 442155 [Multi-domain] Cd Length: 766 Bit Score: 56.59 E-value: 3.57e-07
|
|||||||||||||||
TamB | COG2911 | Autotransporter translocation and assembly protein TamB [Intracellular trafficking, secretion, ... |
3140-3571 | 4.37e-07 | |||||||||||
Autotransporter translocation and assembly protein TamB [Intracellular trafficking, secretion, and vesicular transport]; Pssm-ID: 442155 [Multi-domain] Cd Length: 766 Bit Score: 56.20 E-value: 4.37e-07
|
|||||||||||||||
GST_C_2 | pfam13410 | Glutathione S-transferase, C-terminal domain; This domain is closely related to pfam00043. |
128-192 | 4.65e-07 | |||||||||||
Glutathione S-transferase, C-terminal domain; This domain is closely related to pfam00043. Pssm-ID: 433185 [Multi-domain] Cd Length: 67 Bit Score: 49.63 E-value: 4.65e-07
|
|||||||||||||||
TamB | COG2911 | Autotransporter translocation and assembly protein TamB [Intracellular trafficking, secretion, ... |
2371-2995 | 9.21e-07 | |||||||||||
Autotransporter translocation and assembly protein TamB [Intracellular trafficking, secretion, and vesicular transport]; Pssm-ID: 442155 [Multi-domain] Cd Length: 766 Bit Score: 55.05 E-value: 9.21e-07
|
|||||||||||||||
PLN02907 | PLN02907 | glutamate-tRNA ligase |
19-268 | 1.51e-06 | |||||||||||
glutamate-tRNA ligase Pssm-ID: 215492 [Multi-domain] Cd Length: 722 Bit Score: 54.35 E-value: 1.51e-06
|
|||||||||||||||
GST_C_GluRS_N | cd10306 | Glutathione S-transferase C-terminal-like, alpha helical domain of Glutamyl-tRNA synthetase; ... |
94-192 | 2.22e-06 | |||||||||||
Glutathione S-transferase C-terminal-like, alpha helical domain of Glutamyl-tRNA synthetase; Glutathione S-transferase (GST) C-terminal domain family, Glutamyl-tRNA synthetase (GluRS) subfamily; This model characterizes the GST_C-like domain found in the N-terminal region of GluRS from lower eukaryotes. Aminoacyl-tRNA synthetases (aaRSs) comprise a family of enzymes that catalyze the coupling of amino acids with their matching tRNAs. This involves the formation of an aminoacyl adenylate using ATP, followed by the transfer of the activated amino acid to the 3'-adenosine moiety of the tRNA. AaRSs may also be involved in translational and transcriptional regulation, as well as in tRNA processing. The GST_C-like domain of GluRS is involved in protein-protein interactions. This domain mediates the formation of the MetRS-Arc1p-GluRS ternary complex found in lower eukaryotes, which is considered an evolutionary intermediate between prokaryotic aaRS and the multi-aaRS complex found in higher eukaryotes. AaRSs from prokaryotes, which are active as dimers, do not contain this GST_C-like domain. Pssm-ID: 198339 [Multi-domain] Cd Length: 87 Bit Score: 48.12 E-value: 2.22e-06
|
|||||||||||||||
AsmA | COG2982 | Uncharacterized conserved protein AsmA involved in outer membrane biogenesis [Cell wall ... |
2117-2613 | 2.72e-06 | |||||||||||
Uncharacterized conserved protein AsmA involved in outer membrane biogenesis [Cell wall/membrane/envelope biogenesis]; Pssm-ID: 442221 [Multi-domain] Cd Length: 491 Bit Score: 53.12 E-value: 2.72e-06
|
|||||||||||||||
GST_N_GTT1_like | cd03046 | GST_N family, Saccharomyces cerevisiae GTT1-like subfamily; composed of predominantly ... |
6-79 | 3.68e-06 | |||||||||||
GST_N family, Saccharomyces cerevisiae GTT1-like subfamily; composed of predominantly uncharacterized proteins with similarity to the S. cerevisiae GST protein, GTT1, and the Schizosaccharomyces pombe GST-III. GSTs are cytosolic dimeric proteins involved in cellular detoxification by catalyzing the conjugation of glutathione (GSH) with a wide range of endogenous and xenobiotic alkylating agents, including carcinogens, therapeutic drugs, environmental toxins and products of oxidative stress. GSTs also show GSH peroxidase activity and are involved in the synthesis of prostaglandins and leukotrienes. The GST fold contains an N-terminal TRX-fold domain and a C-terminal alpha helical domain, with an active site located in a cleft between the two domains. GTT1, a homodimer, exhibits GST activity with standard substrates and associates with the endoplasmic reticulum. Its expression is induced after diauxic shift and remains high throughout the stationary phase. S. pombe GST-III is implicated in the detoxification of various metals. Pssm-ID: 239344 [Multi-domain] Cd Length: 76 Bit Score: 47.11 E-value: 3.68e-06
|
|||||||||||||||
AsmA | COG2982 | Uncharacterized conserved protein AsmA involved in outer membrane biogenesis [Cell wall ... |
974-1416 | 3.93e-06 | |||||||||||
Uncharacterized conserved protein AsmA involved in outer membrane biogenesis [Cell wall/membrane/envelope biogenesis]; Pssm-ID: 442221 [Multi-domain] Cd Length: 491 Bit Score: 52.73 E-value: 3.93e-06
|
|||||||||||||||
GST_C_2 | cd03180 | C-terminal, alpha helical domain of an unknown subfamily 2 of Glutathione S-transferases; ... |
94-192 | 4.18e-06 | |||||||||||
C-terminal, alpha helical domain of an unknown subfamily 2 of Glutathione S-transferases; Glutathione S-transferase (GST) C-terminal domain family, unknown subfamily 2; composed of uncharacterized bacterial proteins, with similarity to GSTs. GSTs are cytosolic dimeric proteins involved in cellular detoxification by catalyzing the conjugation of glutathione (GSH) with a wide range of endogenous and xenobiotic alkylating agents, including carcinogens, therapeutic drugs, environmental toxins and products of oxidative stress. GSTs also show GSH peroxidase activity and are involved in the synthesis of prostaglandins and leukotrienes. The GST fold contains an N-terminal thioredoxin-fold domain and a C-terminal alpha helical domain, with an active site located in a cleft between the two domains. GSH binds to the N-terminal domain while the hydrophobic substrate occupies a pocket in the C-terminal domain. Pssm-ID: 198289 [Multi-domain] Cd Length: 110 Bit Score: 48.04 E-value: 4.18e-06
|
|||||||||||||||
PDZ2_DLG5-like | cd06765 | PDZ domain 2 of Discs Large 5 (Dlg5) and related domains; PDZ (PSD-95 (Postsynaptic density ... |
520-594 | 4.50e-06 | |||||||||||
PDZ domain 2 of Discs Large 5 (Dlg5) and related domains; PDZ (PSD-95 (Postsynaptic density protein 95), Dlg (Discs large protein), and ZO-1 (Zonula occludens-1)) domain 2 of Drosophila and mammalian Dlg5, and related domains. Dlg5 is a scaffold protein with multiple conserved functions that are independent of each other in regulating growth, cell polarity, and cell adhesion. It has a coiled-coil domain, 4 PDZ domains and a MAGUK domain (an SH3 domain next to a non-catalytically active guanylate kinase domain). Deregulation of Dlg5 has been implicated in the malignancy of several cancer types. PDZ domains usually bind in a sequence-specific manner to short peptide sequences located at the C-terminal end of their partner proteins (known as PDZ binding motifs). The PDZ superfamily includes canonical PDZ domains as well as those with circular permutations and domain swapping mediated by beta-strands. This Dlg5-like family PSZ2 domain is a canonical PDZ domain containing six beta-strands A-F and two alpha-helices (alpha-helix 1 and 2), arranged in the order: beta-strands A, B, C, alpha-helix 1, beta-strands D, E, alpha-helix 2 and beta-strand F. Pssm-ID: 467246 [Multi-domain] Cd Length: 77 Bit Score: 46.96 E-value: 4.50e-06
|
|||||||||||||||
AsmA | COG2982 | Uncharacterized conserved protein AsmA involved in outer membrane biogenesis [Cell wall ... |
1803-2218 | 4.96e-06 | |||||||||||
Uncharacterized conserved protein AsmA involved in outer membrane biogenesis [Cell wall/membrane/envelope biogenesis]; Pssm-ID: 442221 [Multi-domain] Cd Length: 491 Bit Score: 52.35 E-value: 4.96e-06
|
|||||||||||||||
GST_C_Delta_Epsilon | cd03177 | C-terminal, alpha helical domain of Class Delta and Epsilon Glutathione S-transferases; ... |
121-195 | 6.09e-06 | |||||||||||
C-terminal, alpha helical domain of Class Delta and Epsilon Glutathione S-transferases; Glutathione S-transferase (GST) C-terminal domain family, Class Delta and Epsilon subfamily; GSTs are cytosolic dimeric proteins involved in cellular detoxification by catalyzing the conjugation of glutathione (GSH) with a wide range of endogenous and xenobiotic alkylating agents, including carcinogens, therapeutic drugs, environmental toxins and products of oxidative stress. GSTs also show GSH peroxidase activity and are involved in the synthesis of prostaglandins and leukotrienes. The GST fold contains an N-terminal thioredoxin-fold domain and a C-terminal alpha helical domain, with an active site located in a cleft between the two domains. GSH binds to the N-terminal domain while the hydrophobic substrate occupies a pocket in the C-terminal domain. The class Delta and Epsilon subfamily is made up primarily of insect GSTs, which play major roles in insecticide resistance by facilitating reductive dehydrochlorination of insecticides or conjugating them with GSH to produce water-soluble metabolites that are easily excreted. They are also implicated in protection against cellular damage by oxidative stress. Pssm-ID: 198287 [Multi-domain] Cd Length: 117 Bit Score: 47.91 E-value: 6.09e-06
|
|||||||||||||||
AsmA | COG2982 | Uncharacterized conserved protein AsmA involved in outer membrane biogenesis [Cell wall ... |
2615-3114 | 1.95e-05 | |||||||||||
Uncharacterized conserved protein AsmA involved in outer membrane biogenesis [Cell wall/membrane/envelope biogenesis]; Pssm-ID: 442221 [Multi-domain] Cd Length: 491 Bit Score: 50.42 E-value: 1.95e-05
|
|||||||||||||||
GST_N_4 | cd03056 | GST_N family, unknown subfamily 4; composed of uncharacterized bacterial proteins with ... |
6-81 | 2.12e-05 | |||||||||||
GST_N family, unknown subfamily 4; composed of uncharacterized bacterial proteins with similarity to GSTs. GSTs are cytosolic dimeric proteins involved in cellular detoxification by catalyzing the conjugation of glutathione (GSH) with a wide range of endogenous and xenobiotic alkylating agents, including carcinogens, therapeutic drugs, environmental toxins and products of oxidative stress. GSTs also show GSH peroxidase activity and are involved in the synthesis of prostaglandins and leukotrienes. The GST fold contains an N-terminal TRX-fold domain and a C-terminal alpha helical domain, with an active site located in a cleft between the two domains. Pssm-ID: 239354 [Multi-domain] Cd Length: 73 Bit Score: 44.87 E-value: 2.12e-05
|
|||||||||||||||
GST_C_GTT1_like | cd03189 | C-terminal, alpha helical domain of GTT1-like Glutathione S-transferases; Glutathione ... |
87-163 | 2.65e-05 | |||||||||||
C-terminal, alpha helical domain of GTT1-like Glutathione S-transferases; Glutathione S-transferase (GST) C-terminal domain family, Saccharomyces cerevisiae GTT1-like subfamily; composed of predominantly uncharacterized proteins with similarity to the S. cerevisiae GST protein, GTT1, and the Schizosaccharomyces pombe GST-III. GSTs are cytosolic dimeric proteins involved in cellular detoxification by catalyzing the conjugation of glutathione (GSH) with a wide range of endogenous and xenobiotic alkylating agents, including carcinogens, therapeutic drugs, environmental toxins, and products of oxidative stress. GSTs also show GSH peroxidase activity and are involved in the synthesis of prostaglandins and leukotrienes. The GST fold contains an N-terminal thioredoxin-fold domain and a C-terminal alpha helical domain, with an active site located in a cleft between the two domains. GSH binds to the N-terminal domain while the hydrophobic substrate occupies a pocket in the C-terminal domain. GTT1, a homodimer, exhibits GST activity with standard substrates and associates with the endoplasmic reticulum. Its expression is induced after diauxic shift and remains high throughout the stationary phase. S. pombe GST-III is implicated in the detoxification of various metals. Pssm-ID: 198298 [Multi-domain] Cd Length: 123 Bit Score: 46.15 E-value: 2.65e-05
|
|||||||||||||||
CtpA | COG0793 | C-terminal processing protease CtpA/Prc, contains a PDZ domain [Posttranslational modification, ... |
528-601 | 3.86e-05 | |||||||||||
C-terminal processing protease CtpA/Prc, contains a PDZ domain [Posttranslational modification, protein turnover, chaperones]; Pssm-ID: 440556 [Multi-domain] Cd Length: 341 Bit Score: 49.10 E-value: 3.86e-05
|
|||||||||||||||
TamB | COG2911 | Autotransporter translocation and assembly protein TamB [Intracellular trafficking, secretion, ... |
1568-2286 | 4.76e-05 | |||||||||||
Autotransporter translocation and assembly protein TamB [Intracellular trafficking, secretion, and vesicular transport]; Pssm-ID: 442155 [Multi-domain] Cd Length: 766 Bit Score: 49.65 E-value: 4.76e-05
|
|||||||||||||||
PDZ_canonical | cd00136 | canonical PDZ domain; Canonical PDZ (PSD-95 (Postsynaptic density protein 95), Dlg (Discs ... |
528-582 | 7.26e-05 | |||||||||||
canonical PDZ domain; Canonical PDZ (PSD-95 (Postsynaptic density protein 95), Dlg (Discs large protein), and ZO-1 (Zonula occludens-1)) domain. PDZ domains usually bind to short specific peptide sequences located at the C-terminal end of their partner proteins known as PDZ binding motifs. These domains can also interact with internal peptide motifs and certain lipids, and can take part in a head-to-tail oligomerization with other PDZ domains. The PDZ superfamily includes canonical PDZ domains as well as those with circular permutations and domain swapping mediated by beta-strands. The canonical PDZ domain contains six beta-strands A-F and two alpha-helices (alpha-helix 1 and 2), arranged in the order: beta-strands A, B, C, alpha-helix 1, beta-strands D, E, alpha-helix 2 and beta-strand F. Pssm-ID: 467153 [Multi-domain] Cd Length: 81 Bit Score: 43.69 E-value: 7.26e-05
|
|||||||||||||||
TamB | COG2911 | Autotransporter translocation and assembly protein TamB [Intracellular trafficking, secretion, ... |
2925-3473 | 7.40e-05 | |||||||||||
Autotransporter translocation and assembly protein TamB [Intracellular trafficking, secretion, and vesicular transport]; Pssm-ID: 442155 [Multi-domain] Cd Length: 766 Bit Score: 48.88 E-value: 7.40e-05
|
|||||||||||||||
PDZ2-PDZRN4-like | cd06716 | PDZ domain 2 of PDZ domain-containing RING finger protein 4 (PDZRN4), PDZRN3-B, and related ... |
528-563 | 8.10e-05 | |||||||||||
PDZ domain 2 of PDZ domain-containing RING finger protein 4 (PDZRN4), PDZRN3-B, and related domains; PDZ (PSD-95 (Postsynaptic density protein 95), Dlg (Discs large protein), and ZO-1 (Zonula occludens-1)) domain 1 of PDZRN4, PDZRN3-B, and related domains. PDZRN4 (also known as ligand of numb protein X 4, and SEMACAP3-like protein) contains an N-terminal RING domain and two tandem repeat PDZ domains. It is involved in the progression of cancer, including human liver cancer and breast cancer, and may contribute to the tumorigenesis of rectal adenocarcinoma. Danio rerio PDZRN3-B may participate in neurogenesis: the first PDZ domain of Danio rerio Pdzrn3 interacts with Kidins220 (Kinase D-interacting substrate 220 kD, also named Ankyrin Repeat-Rich Membrane Spanning), a crucial mediator of signal transduction in neural tissues. PDZ domains usually bind in a sequence-specific manner to short peptide sequences located at the C-terminal end of their partner proteins (known as PDZ binding motifs). The PDZ superfamily includes canonical PDZ domains as well as those with circular permutations and domain swapping mediated by beta-strands. This PDZRN4-like family PDZ2 domain is a canonical PDZ domain containing six beta-strands A-F and two alpha-helices (alpha-helix 1 and 2), arranged in the order: beta-strands A, B, C, alpha-helix 1, beta-strands D, E, alpha-helix 2 and beta-strand F. Pssm-ID: 467200 [Multi-domain] Cd Length: 88 Bit Score: 43.80 E-value: 8.10e-05
|
|||||||||||||||
GST_N_2 | pfam13409 | Glutathione S-transferase, N-terminal domain; This family is closely related to pfam02798. |
16-80 | 8.24e-05 | |||||||||||
Glutathione S-transferase, N-terminal domain; This family is closely related to pfam02798. Pssm-ID: 433184 [Multi-domain] Cd Length: 68 Bit Score: 43.39 E-value: 8.24e-05
|
|||||||||||||||
GST_C_GTT2_like | cd03182 | C-terminal, alpha helical domain of GTT2-like Glutathione S-transferases; Glutathione ... |
89-199 | 9.37e-05 | |||||||||||
C-terminal, alpha helical domain of GTT2-like Glutathione S-transferases; Glutathione S-transferase (GST) C-terminal domain family, Saccharomyces cerevisiae GTT2-like subfamily; composed of predominantly uncharacterized proteins with similarity to the Saccharomyces cerevisiae GST protein, GTT2. GSTs are cytosolic dimeric proteins involved in cellular detoxification by catalyzing the conjugation of glutathione (GSH) with a wide range of endogenous and xenobiotic alkylating agents, including carcinogens, therapeutic drugs, environmental toxins, and products of oxidative stress. GSTs also show GSH peroxidase activity and are involved in the synthesis of prostaglandins and leukotrienes. The GST fold contains an N-terminal thioredoxin-fold domain and a C-terminal alpha helical domain, with an active site located in a cleft between the two domains. GSH binds to the N-terminal domain while the hydrophobic substrate occupies a pocket in the C-terminal domain. GTT2, a homodimer, exhibits GST activity with standard substrates. Strains with deleted GTT2 genes are viable but exhibit increased sensitivity to heat shock. Pssm-ID: 198291 [Multi-domain] Cd Length: 116 Bit Score: 44.62 E-value: 9.37e-05
|
|||||||||||||||
GST_N_Theta | cd03050 | GST_N family, Class Theta subfamily; composed of eukaryotic class Theta GSTs and bacterial ... |
46-83 | 1.33e-04 | |||||||||||
GST_N family, Class Theta subfamily; composed of eukaryotic class Theta GSTs and bacterial dichloromethane (DCM) dehalogenase. GSTs are cytosolic dimeric proteins involved in cellular detoxification by catalyzing the conjugation of glutathione (GSH) with a wide range of endogenous and xenobiotic alkylating agents, including carcinogens, therapeutic drugs, environmental toxins and products of oxidative stress. The GST fold contains an N-terminal TRX-fold domain and a C-terminal alpha helical domain, with an active site located in a cleft between the two domains. Mammalian class Theta GSTs show poor GSH conjugating activity towards the standard substrates, CDNB and ethacrynic acid, differentiating them from other mammalian GSTs. GSTT1-1 shows similar cataytic activity as bacterial DCM dehalogenase, catalyzing the GSH-dependent hydrolytic dehalogenation of dihalomethanes. This is an essential process in methylotrophic bacteria to enable them to use chloromethane and DCM as sole carbon and energy sources. The presence of polymorphisms in human GSTT1-1 and its relationship to the onset of diseases including cancer is subject of many studies. Human GSTT2-2 exhibits a highly specific sulfatase activity, catalyzing the cleavage of sulfate ions from aralkyl sufate esters, but not from aryl or alkyl sulfate esters. Pssm-ID: 239348 [Multi-domain] Cd Length: 76 Bit Score: 43.00 E-value: 1.33e-04
|
|||||||||||||||
GST_N_3 | pfam13417 | Glutathione S-transferase, N-terminal domain; |
18-80 | 1.92e-04 | |||||||||||
Glutathione S-transferase, N-terminal domain; Pssm-ID: 433190 [Multi-domain] Cd Length: 75 Bit Score: 42.21 E-value: 1.92e-04
|
|||||||||||||||
PDZ | smart00228 | Domain present in PSD-95, Dlg, and ZO-1/2; Also called DHR (Dlg homologous region) or GLGF ... |
512-596 | 4.84e-04 | |||||||||||
Domain present in PSD-95, Dlg, and ZO-1/2; Also called DHR (Dlg homologous region) or GLGF (relatively well conserved tetrapeptide in these domains). Some PDZs have been shown to bind C-terminal polypeptides; others appear to bind internal (non-C-terminal) polypeptides. Different PDZs possess different binding specificities. Pssm-ID: 214570 [Multi-domain] Cd Length: 85 Bit Score: 41.60 E-value: 4.84e-04
|
|||||||||||||||
PDZ4_Scribble-like | cd06701 | PDZ domain 4 of Drosophila Scribble, human Scribble homolog, and related domains; PDZ (PSD-95 ... |
525-586 | 6.16e-04 | |||||||||||
PDZ domain 4 of Drosophila Scribble, human Scribble homolog, and related domains; PDZ (PSD-95 (Postsynaptic density protein 95), Dlg (Discs large protein), and ZO-1 (Zonula occludens-1)) domain 4 of Drosophila Scribble (also known as LAP4), human Scribble homolog (also known as hScrib, LAP4, CriB1, ScrB1 and Vartul), and related domains. They belong to the LAP family, which describes proteins that contain either one or four PDZ domains and 16 LRRs (leucine-rich repeats) and function in controlling cell shape, size and subcellular protein localization. In Drosophila, the Scribble complex, comprising Scribble, discs large, and lethal giant larvae, plays a role in apico-basal cell polarity, in other forms of polarity, including regulation of the actin cytoskeleton, cell signaling and vesicular trafficking, and in tumor development. Mammalian Scribble is important in many aspects of cancer development. Scribble and its homologs can be downregulated or overexpressed in cancer; they have a role in cancer beyond their function in loss of cell polarity. PDZ domains usually bind in a sequence-specific manner to short peptide sequences located at the C-terminal end of their partner proteins (known as PDZ binding motifs). The PDZ superfamily includes canonical PDZ domains as well as those with circular permutations and domain swapping mediated by beta-strands. This Scribble-like family PDZ4 domain is a canonical PDZ domain containing six beta-strands A-F and two alpha-helices (alpha-helix 1 and 2), arranged in the order: beta-strands A, B, C, alpha-helix 1, beta-strands D, E, alpha-helix 2 and beta-strand F. Pssm-ID: 467185 [Multi-domain] Cd Length: 98 Bit Score: 41.83 E-value: 6.16e-04
|
|||||||||||||||
PDZ3_MUPP1-like | cd06791 | PDZ domain 3 of multi-PDZ-domain protein 1 (MUPP1) and PATJ (protein-associated tight junction) ... |
528-594 | 6.28e-04 | |||||||||||
PDZ domain 3 of multi-PDZ-domain protein 1 (MUPP1) and PATJ (protein-associated tight junction) and related domains; PDZ (PSD-95 (Postsynaptic density protein 95), Dlg (Discs large protein), and ZO-1 (Zonula occludens-1)) domain 3 of MUPP1 and PATJ, and related domains. MUPP1 and PATJ serve as scaffolding proteins linking different proteins and protein complexes involved in the organization of tight junctions and epithelial polarity. MUPP1 contains an L27 (Lin-2 and Lin-7 binding) domain and 13 PDZ domains. PATJ (also known as INAD-like) contains an L27 domain and ten PDZ domains. MUPP1 and PATJ share several binding partners, including junctional adhesion molecules (JAM), zonula occludens (ZO)-3, Pals1 (protein associated with Lin-7), Par (partitioning defective)-6 proteins, and nectins (adherence junction adhesion molecules). PATJ lacks 3 PDZ domains seen in MUPP1: PDZ6, 9, and 13; consequently, MUPP1 PDZ7 and 8 align with PATJ PDZ6 and 7; and MUPP1 PDZ domains 10-12 align with PATJ PDZ domains 8-10. PDZ domains usually bind in a sequence-specific manner to short peptide sequences located at the C-terminal end of their partner proteins (known as PDZ binding motifs). The PDZ superfamily includes canonical PDZ domains as well as those with circular permutations and domain swapping mediated by beta-strands. This MUPP1-like family domain is a canonical PDZ domain containing six beta-strands A-F and two alpha-helices (alpha-helix 1 and 2), arranged in the order: beta-strands A, B, C, alpha-helix 1, beta-strands D, E, alpha-helix 2 and beta-strand F. Pssm-ID: 467253 [Multi-domain] Cd Length: 89 Bit Score: 41.45 E-value: 6.28e-04
|
|||||||||||||||
PDZ7_MUPP1-PD6_PATJ-like | cd06671 | PDZ domain 7 of multi-PDZ-domain protein 1 (MUPP1), PDZ domain 6 of PATJ (protein-associated ... |
537-563 | 8.95e-04 | |||||||||||
PDZ domain 7 of multi-PDZ-domain protein 1 (MUPP1), PDZ domain 6 of PATJ (protein-associated tight junction) and related domains; PDZ (PSD-95 (Postsynaptic density protein 95), Dlg (Discs large protein), and ZO-1 (Zonula occludens-1)) domain 7 of MUPP1 and PDZ domain 6 of PATJ, and related domains. MUPP1 and PATJ serve as scaffolding proteins linking different proteins and protein complexes involved in the organization of tight junctions and epithelial polarity. MUPP1 contains an L27 (Lin-2 and Lin-7 binding) domain and 13 PDZ domains. PATJ (also known as INAD-like) contains an L27 domain and ten PDZ domains. MUPP1 and PATJ share several binding partners, including junctional adhesion molecules (JAM), zonula occludens (ZO)-3, Pals1 (protein associated with Lin-7), Par (partitioning defective)-6 proteins, and nectins (adherence junction adhesion molecules). PATJ lacks 3 PDZ domains seen in MUPP1: PDZ6, 9, and 13; consequently, MUPP1 PDZ7 and 8 align with PATJ PDZ6 and 7; and MUPP1 PDZ domains 10-12 align with PATJ PDZ domains 8-10. PDZ domains usually bind in a sequence-specific manner to short peptide sequences located at the C-terminal end of their partner proteins (known as PDZ binding motifs). The PDZ superfamily includes canonical PDZ domains as well as those with circular permutations and domain swapping mediated by beta-strands. This MUPP1-like family PDZ7 domain is a canonical PDZ domain containing six beta-strands A-F and two alpha-helices (alpha-helix 1 and 2), arranged in the order: beta-strands A, B, C, alpha-helix 1, beta-strands D, E, alpha-helix 2 and beta-strand F. Pssm-ID: 467159 [Multi-domain] Cd Length: 96 Bit Score: 41.15 E-value: 8.95e-04
|
|||||||||||||||
GST_C_Arc1p_N_like | cd10304 | Glutathione S-transferase C-terminal-like, alpha helical domain of the Aminoacyl tRNA ... |
91-170 | 1.02e-03 | |||||||||||
Glutathione S-transferase C-terminal-like, alpha helical domain of the Aminoacyl tRNA synthetase cofactor 1 and similar proteins; Glutathione S-transferase (GST) C-terminal domain family, Aminoacyl tRNA synthetase cofactor 1 (Arc1p)-like subfamily; Arc1p, also called GU4 nucleic binding protein 1 (G4p1) or p42, is a tRNA-aminoacylation and nuclear-export cofactor. It contains a domain in the N-terminal region with similarity to the C-terminal alpha helical domain of GSTs. This domain mediates the association of the aminoacyl tRNA synthetases (aaRSs), MetRS and GluRS, in yeast to form a stable stoichiometric ternany complex. The GST_C-like domain of Arc1p is a protein-protein interaction domain containing two binding sites which enable it to bind the two aaRSs simultaneously and independently. The MetRS-Arc1p-GluRS complex selectively recruits and aminoacylates its cognate tRNAs without additional cofactors. Arc1p also plays a role in the transport of tRNA from the nucleus to the cytoplasm. It may also control the subcellular distribution of GluRS in the cytoplasm, nucleoplasm, and the mitochondrial matrix. Pssm-ID: 198337 [Multi-domain] Cd Length: 100 Bit Score: 41.20 E-value: 1.02e-03
|
|||||||||||||||
GST_N_2 | cd03047 | GST_N family, unknown subfamily 2; composed of uncharacterized bacterial proteins with ... |
45-81 | 1.16e-03 | |||||||||||
GST_N family, unknown subfamily 2; composed of uncharacterized bacterial proteins with similarity to GSTs. GSTs are cytosolic dimeric proteins involved in cellular detoxification by catalyzing the conjugation of glutathione (GSH) with a wide range of endogenous and xenobiotic alkylating agents, including carcinogens, therapeutic drugs, environmental toxins and products of oxidative stress. GSTs also show GSH peroxidase activity and are involved in the synthesis of prostaglandins and leukotrienes. The GST fold contains an N-terminal TRX-fold domain and a C-terminal alpha helical domain, with an active site located in a cleft between the two domains. The sequence from Burkholderia cepacia was identified as part of a gene cluster involved in the degradation of 2,4,5-trichlorophenoxyacetic acid. Some GSTs (e.g. Class Zeta and Delta) are known to catalyze dechlorination reactions. Pssm-ID: 239345 [Multi-domain] Cd Length: 73 Bit Score: 39.99 E-value: 1.16e-03
|
|||||||||||||||
GST_C_YfcG_like | cd10291 | C-terminal, alpha helical domain of Escherichia coli YfcG Glutathione S-transferases and ... |
95-192 | 1.46e-03 | |||||||||||
C-terminal, alpha helical domain of Escherichia coli YfcG Glutathione S-transferases and related uncharacterized proteins; Glutathione S-transferase (GST) C-terminal domain family, YfcG-like subfamily; composed of the Escherichia coli YfcG and related proteins. GSTs are cytosolic dimeric proteins involved in cellular detoxification by catalyzing the conjugation of glutathione (GSH) with a wide range of endogenous and xenobiotic alkylating agents, including carcinogens, therapeutic drugs, environmental toxins and products of oxidative stress. GSTs also show GSH peroxidase activity and are involved in the synthesis of prostaglandins and leukotrienes. The GST active site is located in a cleft between the N- and C-terminal domains. GSH binds to the N-terminal domain while the hydrophobic substrate occupies a pocket in the C-terminal domain. YfcG is one of nine GST homologs in Escherichia coli. It is expressed predominantly during the late stationary phase where the predominant form of GSH is glutathionylspermidine (GspSH), suggesting that YfcG might interact with GspSH. It has very low or no GSH transferase or peroxidase activity, but displays a unique disulfide bond reductase activity that is comparable to thioredoxins (TRXs) and glutaredoxins (GRXs). However, unlike TRXs and GRXs, YfcG does not contain a redox active cysteine residue and may use a bound thiol disulfide couple such as 2GSH/GSSG for activity. The crystal structure of YcfG reveals a bound GSSG molecule in its active site. The actual physiological substrates for YfcG are yet to be identified. Pssm-ID: 198324 [Multi-domain] Cd Length: 110 Bit Score: 41.10 E-value: 1.46e-03
|
|||||||||||||||
DegQ | COG0265 | Periplasmic serine protease, S1-C subfamily, contain C-terminal PDZ domain [Posttranslational ... |
534-598 | 1.55e-03 | |||||||||||
Periplasmic serine protease, S1-C subfamily, contain C-terminal PDZ domain [Posttranslational modification, protein turnover, chaperones]; Pssm-ID: 440035 [Multi-domain] Cd Length: 274 Bit Score: 43.60 E-value: 1.55e-03
|
|||||||||||||||
GST_N_Ure2p_like | cd03048 | GST_N family, Ure2p-like subfamily; composed of the Saccharomyces cerevisiae Ure2p and related ... |
46-79 | 1.72e-03 | |||||||||||
GST_N family, Ure2p-like subfamily; composed of the Saccharomyces cerevisiae Ure2p and related GSTs. Ure2p is a regulator for nitrogen catabolism in yeast. It represses the expression of several gene products involved in the use of poor nitrogen sources when rich sources are available. A transmissible conformational change of Ure2p results in a prion called [Ure3], an inactive, self-propagating and infectious amyloid. Ure2p displays a GST fold containing an N-terminal TRX-fold domain and a C-terminal alpha helical domain, with an active site located in a cleft between the two domains. The N-terminal TRX-fold domain is sufficient to induce the [Ure3] phenotype and is also called the prion domain of Ure2p. In addition to its role in nitrogen regulation, Ure2p confers protection to cells against heavy metal ion and oxidant toxicity, and shows glutathione (GSH) peroxidase activity. Characterized GSTs in this subfamily include Aspergillus fumigatus GSTs 1 and 2, and Schizosaccharomyces pombe GST-I. GSTs are cytosolic dimeric proteins involved in cellular detoxification by catalyzing the conjugation of GSH with a wide range of endogenous and xenobiotic alkylating agents, including carcinogens, therapeutic drugs, environmental toxins and products of oxidative stress. GSTs also show GSH peroxidase activity and are involved in the synthesis of prostaglandins and leukotrienes. Pssm-ID: 239346 [Multi-domain] Cd Length: 81 Bit Score: 39.83 E-value: 1.72e-03
|
|||||||||||||||
GST_C_Theta | cd03183 | C-terminal, alpha helical domain of Class Theta Glutathione S-transferases; Glutathione ... |
113-169 | 2.14e-03 | |||||||||||
C-terminal, alpha helical domain of Class Theta Glutathione S-transferases; Glutathione S-transferase (GST) C-terminal domain family, Class Theta subfamily; composed of eukaryotic class Theta GSTs and bacterial dichloromethane (DCM) dehalogenase. GSTs are cytosolic dimeric proteins involved in cellular detoxification by catalyzing the conjugation of glutathione (GSH) with a wide range of endogenous and xenobiotic alkylating agents, including carcinogens, therapeutic drugs, environmental toxins and products of oxidative stress. The GST fold contains an N-terminal thioredoxin-fold domain and a C-terminal alpha helical domain, with an active site located in a cleft between the two domains. GSH binds to the N-terminal domain while the hydrophobic substrate occupies a pocket in the C-terminal domain. Mammalian class Theta GSTs show poor GSH conjugating activity towards the standard substrates, CDNB and ethacrynic acid, differentiating them from other mammalian GSTs. GSTT1-1 shows similar cataytic activity as bacterial DCM dehalogenase, catalyzing the GSH-dependent hydrolytic dehalogenation of dihalomethanes. This is an essential process in methylotrophic bacteria to enable them to use chloromethane and DCM as sole carbon and energy sources. The presence of polymorphisms in human GSTT1-1 and its relationship to the onset of diseases including cancer is the subject of many studies. Human GSTT2-2 exhibits a highly specific sulfatase activity, catalyzing the cleavage of sulfate ions from aralkyl sufate esters, but not from the aryl or alkyl sulfate esters. Pssm-ID: 198292 [Multi-domain] Cd Length: 126 Bit Score: 41.04 E-value: 2.14e-03
|
|||||||||||||||
GST_C_Phi | cd03187 | C-terminal, alpha helical domain of Class Phi Glutathione S-transferases; Glutathione ... |
91-205 | 2.54e-03 | |||||||||||
C-terminal, alpha helical domain of Class Phi Glutathione S-transferases; Glutathione S-transferase (GST) C-terminal domain family, Class Phi subfamily; composed of plant-specific class Phi GSTs and related fungal and bacterial proteins. GSTs are cytosolic dimeric proteins involved in cellular detoxification by catalyzing the conjugation of glutathione (GSH) with a wide range of endogenous and xenobiotic alkylating agents, including carcinogens, therapeutic drugs, environmental toxins, and products of oxidative stress. The GST fold contains an N-terminal thioredoxin-fold domain and a C-terminal alpha helical domain, with an active site located in a cleft between the two domains. GSH binds to the N-terminal domain while the hydrophobic substrate occupies a pocket in the C-terminal domain. The class Phi GST subfamily has experience extensive gene duplication. The Arabidopsis and Oryza genomes contain 13 and 16 Tau GSTs, respectively. They are primarily responsible for herbicide detoxification together with class Tau GSTs, showing class specificity in substrate preference. Phi enzymes are highly reactive toward chloroacetanilide and thiocarbamate herbicides. Some Phi GSTs have other functions including transport of flavonoid pigments to the vacuole, shoot regeneration and GSH peroxidase activity. Pssm-ID: 198296 [Multi-domain] Cd Length: 118 Bit Score: 40.29 E-value: 2.54e-03
|
|||||||||||||||
GST_C_5 | cd03196 | C-terminal, alpha helical domain of an unknown subfamily 5 of Glutathione S-transferases; ... |
116-204 | 2.74e-03 | |||||||||||
C-terminal, alpha helical domain of an unknown subfamily 5 of Glutathione S-transferases; Glutathione S-transferase (GST) C-terminal domain family, unknown subfamily 5; composed of uncharacterized bacterial proteins with similarity to GSTs. GSTs are cytosolic dimeric proteins involved in cellular detoxification by catalyzing the conjugation of glutathione (GSH) with a wide range of endogenous and xenobiotic alkylating agents, including carcinogens, therapeutic drugs, environmental toxins, and products of oxidative stress. GSTs also show GSH peroxidase activity and are involved in the synthesis of prostaglandins and leukotrienes. The GST fold contains an N-terminal thioredoxin-fold domain and a C-terminal alpha helical domain, with an active site located in a cleft between the two domains. GSH binds to the N-terminal domain while the hydrophobic substrate occupies a pocket in the C-terminal domain. Pssm-ID: 198305 [Multi-domain] Cd Length: 115 Bit Score: 40.21 E-value: 2.74e-03
|
|||||||||||||||
AsmA | COG2982 | Uncharacterized conserved protein AsmA involved in outer membrane biogenesis [Cell wall ... |
1561-2019 | 3.20e-03 | |||||||||||
Uncharacterized conserved protein AsmA involved in outer membrane biogenesis [Cell wall/membrane/envelope biogenesis]; Pssm-ID: 442221 [Multi-domain] Cd Length: 491 Bit Score: 43.10 E-value: 3.20e-03
|
|||||||||||||||
PDZ_SYNJ2BP-like | cd06709 | PDZ domain of synaptojanin-2-binding protein (SYNJ2BP), and related domains; PDZ (PSD-95 ... |
535-593 | 4.63e-03 | |||||||||||
PDZ domain of synaptojanin-2-binding protein (SYNJ2BP), and related domains; PDZ (PSD-95 (Postsynaptic density protein 95), Dlg (Discs large protein), and ZO-1 (Zonula occludens-1)) domain of SYNJ2BP, and related domains. SYNJ2BP (also known as mitochondrial outer membrane protein 25, OMP25) regulates endocytosis of activin type 2 receptor kinases through the Ral/RALBP1-dependent pathway and may be involved in suppression of activin-induced signal transduction. Binding partners of the SYNJ2BP PDZ domain include activin type II receptors (ActR-II), and SYNJ2. SYNJ2BP interacts with the PDZ binding motif of the Notch Delta-like ligand 1 (DLL1) and DLL4, promoting Delta-Notch signaling, and inhibiting sprouting angiogenesis. PDZ domains usually bind in a sequence-specific manner to short peptide sequences located at the C-terminal end of their partner proteins (known as PDZ binding motifs). The PDZ superfamily includes canonical PDZ domains as well as those with circular permutations and domain swapping mediated by beta-strands. This SYNJ2BP-like family domain is a canonical PDZ domain containing six beta-strands A-F and two alpha-helices (alpha-helix 1 and 2), arranged in the order: beta-strands A, B, C, alpha-helix 1, beta-strands D, E, alpha-helix 2 and beta-strand F. Pssm-ID: 467193 [Multi-domain] Cd Length: 86 Bit Score: 38.81 E-value: 4.63e-03
|
|||||||||||||||
GST_C_Sigma_like | cd03192 | C-terminal, alpha helical domain of Class Sigma-like Glutathione S-transferases; Glutathione ... |
126-169 | 5.11e-03 | |||||||||||
C-terminal, alpha helical domain of Class Sigma-like Glutathione S-transferases; Glutathione S-transferase (GST) C-terminal domain family, Class Sigma_like; composed of GSTs belonging to class Sigma and similar proteins, including GSTs from class Mu, Pi, and Alpha. GSTs are cytosolic dimeric proteins involved in cellular detoxification by catalyzing the conjugation of glutathione (GSH) with a wide range of endogenous and xenobiotic alkylating agents, including carcinogens, therapeutic drugs, environmental toxins, and products of oxidative stress. The GST fold contains an N-terminal thioredoxin-fold domain and a C-terminal alpha helical domain, with an active site located in a cleft between the two domains. GSH binds to the N-terminal domain while the hydrophobic substrate occupies a pocket in the C-terminal domain. Vertebrate class Sigma GSTs are characterized as GSH-dependent hematopoietic prostaglandin (PG) D synthases and are responsible for the production of PGD2 by catalyzing the isomerization of PGH2. The functions of PGD2 include the maintenance of body temperature, inhibition of platelet aggregation, bronchoconstriction, vasodilation, and mediation of allergy and inflammation. Other class Sigma-like members include the class II insect GSTs, S-crystallins from cephalopods, nematode-specific GSTs, and 28-kDa GSTs from parasitic flatworms. Drosophila GST2 is associated with indirect flight muscle and exhibits preference for catalyzing GSH conjugation to lipid peroxidation products, indicating an anti-oxidant role. S-crystallin constitutes the major lens protein in cephalopod eyes and is responsible for lens transparency and proper refractive index. The 28-kDa GST from Schistosoma is a multifunctional enzyme, exhibiting GSH transferase, GSH peroxidase, and PGD2 synthase activities, and may play an important role in host-parasite interactions. Members also include novel GSTs from the fungus Cunninghamella elegans, designated as class Gamma, and from the protozoan Blepharisma japonicum, described as a light-inducible GST. Pssm-ID: 198301 [Multi-domain] Cd Length: 104 Bit Score: 39.14 E-value: 5.11e-03
|
|||||||||||||||
cpPDZ_Deg_HtrA-like | cd06779 | permuted PDZ domain of Deg/high-temperature requirement factor A (HtrA) family of housekeeping ... |
534-601 | 5.37e-03 | |||||||||||
permuted PDZ domain of Deg/high-temperature requirement factor A (HtrA) family of housekeeping serine proteases and related domains; PDZ (PSD-95 (Postsynaptic density protein 95), Dlg (Discs large protein), and ZO-1 (Zonula occludens-1)) domain of Deg/HtrA-type serine proteases that participate in folding and degradation of aberrant proteins, and in processing and maturation of native proteins. Typically, these proteases have an N-terminal serine protease domain and at least one C-terminal PDZ domain that recognizes substrates, and in some cases activates the protease function. An exception is yeast Nma11p which has two protease domains and four PDZ domains; its N-terminal half is comprised of a protease domain, followed by two PDZ domains, and its C-terminal half has a similar domain arrangement. HtrA-type proteases include the human HtrA1-4 and MBTPS2, tricorn protease, DegS, DegP and C-terminal processing peptidase, cyanobacterial serine proteases Hhoa, HhoB, and HtrA, and yeast Nma11p. PDZ domains usually bind in a sequence-specific manner to short peptide sequences located at the C-termini of their partner proteins (known as PDZ binding motifs). The PDZ superfamily includes canonical PDZ domains and as well as those with circular permutations and domain swapping of beta-strands. The canonical PDZ domain contains six beta-strands A-F and two alpha-helices (alpha-helix 1 and 2); arranged as A, B, C, alpha-helix 1, beta-strands D, E, alpha-helix 2 and beta-strand F. This Deg/HtrA family PDZ domain is a circularly permuted PDZ domain which places beta-strand A at the C-terminus. Another permutation exists in the PDZ superfamily which places both beta-strands A and B on the C-terminus. Pssm-ID: 467621 [Multi-domain] Cd Length: 91 Bit Score: 38.81 E-value: 5.37e-03
|
|||||||||||||||
GST_C_YghU_like | cd10292 | C-terminal, alpha helical domain of Escherichia coli Yghu Glutathione S-transferases and ... |
114-165 | 6.19e-03 | |||||||||||
C-terminal, alpha helical domain of Escherichia coli Yghu Glutathione S-transferases and related uncharacterized proteins; Glutathione S-transferase (GST) C-terminal domain family, YghU-like subfamily; composed of the Escherichia coli YghU and related proteins. GSTs are cytosolic dimeric proteins involved in cellular detoxification by catalyzing the conjugation of glutathione (GSH) with a wide range of endogenous and xenobiotic alkylating agents, including carcinogens, therapeutic drugs, environmental toxins and products of oxidative stress. GSTs also show GSH peroxidase activity and are involved in the synthesis of prostaglandins and leukotrienes. The GST active site is located in a cleft between the N- and C-terminal domains. GSH binds to the N-terminal domain while the hydrophobic substrate occupies a pocket in the C-terminal domain. YghU is one of nine GST homologs in the genome of Escherichia coli. It is similar to Escherichia coli YfcG in that it has poor GSH transferase activity towards typical substrates. It shows modest reductase activity towards some organic hydroperoxides. Like YfcG, YghU also shows good disulfide bond oxidoreductase activity comparable to the activities of glutaredoxins and thioredoxins. YghU does not contain a redox active cysteine residue, and may use a bound thiol disulfide couple such as 2GSH/GSSG for activity. The crystal structure of YghU reveals two GSH molecules bound in its active site. Pssm-ID: 198325 [Multi-domain] Cd Length: 118 Bit Score: 39.37 E-value: 6.19e-03
|
|||||||||||||||
GST_C_Ure2p | cd10293 | C-terminal, alpha helical domain of fungal Ure2p Glutathione S-transferases; Glutathione ... |
93-166 | 6.21e-03 | |||||||||||
C-terminal, alpha helical domain of fungal Ure2p Glutathione S-transferases; Glutathione S-transferase (GST) C-terminal domain family, Ure2p subfamily; composed of the Saccharomyces cerevisiae Ure2p and related fungal proteins. Ure2p is a regulator for nitrogen catabolism in yeast. It represses the expression of several gene products involved in the use of poor nitrogen sources when rich sources are available. A transmissible conformational change of Ure2p results in a prion called [Ure3], an inactive, self-propagating and infectious amyloid. Ure2p displays a GST fold containing an N-terminal thioredoxin-fold domain and a C-terminal alpha helical domain. The N-terminal thioredoxin-fold domain is sufficient to induce the [Ure3] phenotype and is also called the prion domain of Ure2p. In addition to its role in nitrogen regulation, Ure2p confers protection to cells against heavy metal ion and oxidant toxicity, and shows glutathione (GSH) peroxidase activity. GSTs are cytosolic dimeric proteins involved in cellular detoxification by catalyzing the conjugation of GSH with a wide range of endogenous and xenobiotic alkylating agents, including carcinogens, therapeutic drugs, environmental toxins and products of oxidative stress. GSTs also show GSH peroxidase activity and are involved in the synthesis of prostaglandins and leukotrienes. The GST active site is located in a cleft between the N- and C-terminal domains. GSH binds to the N-terminal domain while the hydrophobic substrate occupies a pocket in the C-terminal domain. Pssm-ID: 198326 [Multi-domain] Cd Length: 117 Bit Score: 39.33 E-value: 6.21e-03
|
|||||||||||||||
PDZ_RapGEF2_RapGEF6-like | cd06755 | PDZ domain of Rap guanine nucleotide exchange factor 2 and Rap guanine nucleotide exchange ... |
537-585 | 6.74e-03 | |||||||||||
PDZ domain of Rap guanine nucleotide exchange factor 2 and Rap guanine nucleotide exchange factor 6, and related domains; PDZ (PSD-95 (Postsynaptic density protein 95), Dlg (Discs large protein), and ZO-1 (Zonula occludens-1)) domain of Rap guanine nucleotide exchange factor 2 (RapGEF2, also named RA-GEF-1, PDZ-GEF1, CNrasGEF and nRapGEP) and Rap guanine nucleotide exchange factor 6 (RapGEF6, also named RA-GEF-2 and PDZ-GEF2). RapGEF2 and RapGEF6 constitute a subfamily of guanine nucleotide exchange factors (GEFs) for RAP small GTPases that is characterized by the possession of the PDZ and Ras/Rap-associating domains. They activate Rap small GTPases, by catalyzing the release of GDP from the inactive GDP-bound forms, thereby accelerating GTP loading to yield the active GTP-bound forms. The PDZ domain of RapGEF6 (also known as PDZ-GEF2) binds junctional adhesion molecule A (JAM-A). PDZ domains usually bind in a sequence-specific manner to short peptide sequences located at the C-terminal end of their partner proteins (known as PDZ binding motifs). The PDZ superfamily includes canonical PDZ domains as well as those with circular permutations and domain swapping mediated by beta-strands. This RapGEF2 and RapGEF6 family domain is a canonical PDZ domain containing six beta-strands A-F and two alpha-helices (alpha-helix 1 and 2), arranged in the order: beta-strands A, B, C, alpha-helix 1, beta-strands D, E, alpha-helix 2 and beta-strand F. Pssm-ID: 467237 [Multi-domain] Cd Length: 83 Bit Score: 38.40 E-value: 6.74e-03
|
|||||||||||||||
GST_N_GTT2_like | cd03051 | GST_N family, Saccharomyces cerevisiae GTT2-like subfamily; composed of predominantly ... |
45-80 | 6.92e-03 | |||||||||||
GST_N family, Saccharomyces cerevisiae GTT2-like subfamily; composed of predominantly uncharacterized proteins with similarity to the S. cerevisiae GST protein, GTT2. GSTs are cytosolic dimeric proteins involved in cellular detoxification by catalyzing the conjugation of glutathione (GSH) with a wide range of endogenous and xenobiotic alkylating agents, including carcinogens, therapeutic drugs, environmental toxins and products of oxidative stress. GSTs also show GSH peroxidase activity and are involved in the synthesis of prostaglandins and leukotrienes. The GST fold contains an N-terminal TRX-fold domain and a C-terminal alpha helical domain, with an active site located in a cleft between the two domains. GTT2, a homodimer, exhibits GST activity with standard substrates. Strains with deleted GTT2 genes are viable but exhibit increased sensitivity to heat shock. Pssm-ID: 239349 [Multi-domain] Cd Length: 74 Bit Score: 38.05 E-value: 6.92e-03
|
|||||||||||||||
PRK13972 | PRK13972 | GSH-dependent disulfide bond oxidoreductase; Provisional |
48-163 | 9.54e-03 | |||||||||||
GSH-dependent disulfide bond oxidoreductase; Provisional Pssm-ID: 172475 [Multi-domain] Cd Length: 215 Bit Score: 40.44 E-value: 9.54e-03
|
|||||||||||||||
Blast search parameters | ||||
|