Glycosyl transferase family 2 [Candidatus Woesebacteria bacterium GW2011_GWD1_38_10]
List of domain hits
Name | Accession | Description | Interval | E-value | ||||||
CESA_like_2 | cd06427 | CESA_like_2 is a member of the cellulose synthase superfamily; The cellulose synthase (CESA) ... |
147-387 | 1.03e-143 | ||||||
CESA_like_2 is a member of the cellulose synthase superfamily; The cellulose synthase (CESA) superfamily includes a wide variety of glycosyltransferase family 2 enzymes that share the common characteristic of catalyzing the elongation of polysaccharide chains. The members include cellulose synthase catalytic subunit, chitin synthase, Glucan Biosynthesis protein and other families of CESA-like proteins. Cellulose synthase catalyzes the polymerization reaction of cellulose, an aggregate of unbranched polymers of beta-1,4-linked glucose residues in plants, most algae, some bacteria and fungi, and even some animals. In bacteria, algae and lower eukaryotes, there is a second unrelated type of cellulose synthase (Type II), which produces acylated cellulose, a derivative of cellulose. Chitin synthase catalyzes the incorporation of GlcNAc from substrate UDP-GlcNAc into chitin, which is a linear homopolymer of beta-(1,4)-linked GlcNAc residues and Glucan Biosynthesis protein catalyzes the elongation of beta-1,2 polyglucose chains of glucan. : Pssm-ID: 133049 [Multi-domain] Cd Length: 241 Bit Score: 427.83 E-value: 1.03e-143
|
||||||||||
GT4_PimA-like | cd03801 | phosphatidyl-myo-inositol mannosyltransferase; This family is most closely related to the GT4 ... |
610-970 | 5.00e-62 | ||||||
phosphatidyl-myo-inositol mannosyltransferase; This family is most closely related to the GT4 family of glycosyltransferases and named after PimA in Propionibacterium freudenreichii, which is involved in the biosynthesis of phosphatidyl-myo-inositol mannosides (PIM) which are early precursors in the biosynthesis of lipomannans (LM) and lipoarabinomannans (LAM), and catalyzes the addition of a mannosyl residue from GDP-D-mannose (GDP-Man) to the position 2 of the carrier lipid phosphatidyl-myo-inositol (PI) to generate a phosphatidyl-myo-inositol bearing an alpha-1,2-linked mannose residue (PIM1). Glycosyltransferases catalyze the transfer of sugar moieties from activated donor molecules to specific acceptor molecules, forming glycosidic bonds. The acceptor molecule can be a lipid, a protein, a heterocyclic compound, or another carbohydrate residue. This group of glycosyltransferases is most closely related to the previously defined glycosyltransferase family 1 (GT1). The members of this family may transfer UDP, ADP, GDP, or CMP linked sugars. The diverse enzymatic activities among members of this family reflect a wide range of biological functions. The protein structure available for this family has the GTB topology, one of the two protein topologies observed for nucleotide-sugar-dependent glycosyltransferases. GTB proteins have distinct N- and C- terminal domains each containing a typical Rossmann fold. The two domains have high structural homology despite minimal sequence homology. The large cleft that separates the two domains includes the catalytic center and permits a high degree of flexibility. The members of this family are found mainly in certain bacteria and archaea. : Pssm-ID: 340831 [Multi-domain] Cd Length: 366 Bit Score: 215.48 E-value: 5.00e-62
|
||||||||||
Name | Accession | Description | Interval | E-value | ||||||
CESA_like_2 | cd06427 | CESA_like_2 is a member of the cellulose synthase superfamily; The cellulose synthase (CESA) ... |
147-387 | 1.03e-143 | ||||||
CESA_like_2 is a member of the cellulose synthase superfamily; The cellulose synthase (CESA) superfamily includes a wide variety of glycosyltransferase family 2 enzymes that share the common characteristic of catalyzing the elongation of polysaccharide chains. The members include cellulose synthase catalytic subunit, chitin synthase, Glucan Biosynthesis protein and other families of CESA-like proteins. Cellulose synthase catalyzes the polymerization reaction of cellulose, an aggregate of unbranched polymers of beta-1,4-linked glucose residues in plants, most algae, some bacteria and fungi, and even some animals. In bacteria, algae and lower eukaryotes, there is a second unrelated type of cellulose synthase (Type II), which produces acylated cellulose, a derivative of cellulose. Chitin synthase catalyzes the incorporation of GlcNAc from substrate UDP-GlcNAc into chitin, which is a linear homopolymer of beta-(1,4)-linked GlcNAc residues and Glucan Biosynthesis protein catalyzes the elongation of beta-1,2 polyglucose chains of glucan. Pssm-ID: 133049 [Multi-domain] Cd Length: 241 Bit Score: 427.83 E-value: 1.03e-143
|
||||||||||
GT4_PimA-like | cd03801 | phosphatidyl-myo-inositol mannosyltransferase; This family is most closely related to the GT4 ... |
610-970 | 5.00e-62 | ||||||
phosphatidyl-myo-inositol mannosyltransferase; This family is most closely related to the GT4 family of glycosyltransferases and named after PimA in Propionibacterium freudenreichii, which is involved in the biosynthesis of phosphatidyl-myo-inositol mannosides (PIM) which are early precursors in the biosynthesis of lipomannans (LM) and lipoarabinomannans (LAM), and catalyzes the addition of a mannosyl residue from GDP-D-mannose (GDP-Man) to the position 2 of the carrier lipid phosphatidyl-myo-inositol (PI) to generate a phosphatidyl-myo-inositol bearing an alpha-1,2-linked mannose residue (PIM1). Glycosyltransferases catalyze the transfer of sugar moieties from activated donor molecules to specific acceptor molecules, forming glycosidic bonds. The acceptor molecule can be a lipid, a protein, a heterocyclic compound, or another carbohydrate residue. This group of glycosyltransferases is most closely related to the previously defined glycosyltransferase family 1 (GT1). The members of this family may transfer UDP, ADP, GDP, or CMP linked sugars. The diverse enzymatic activities among members of this family reflect a wide range of biological functions. The protein structure available for this family has the GTB topology, one of the two protein topologies observed for nucleotide-sugar-dependent glycosyltransferases. GTB proteins have distinct N- and C- terminal domains each containing a typical Rossmann fold. The two domains have high structural homology despite minimal sequence homology. The large cleft that separates the two domains includes the catalytic center and permits a high degree of flexibility. The members of this family are found mainly in certain bacteria and archaea. Pssm-ID: 340831 [Multi-domain] Cd Length: 366 Bit Score: 215.48 E-value: 5.00e-62
|
||||||||||
BcsA | COG1215 | Glycosyltransferase, catalytic subunit of cellulose synthase and poly-beta-1, ... |
106-457 | 4.38e-43 | ||||||
Glycosyltransferase, catalytic subunit of cellulose synthase and poly-beta-1,6-N-acetylglucosamine synthase [Cell motility]; Pssm-ID: 440828 [Multi-domain] Cd Length: 303 Bit Score: 159.14 E-value: 4.38e-43
|
||||||||||
Glycos_transf_1 | pfam00534 | Glycosyl transferases group 1; Mutations in this domain of Swiss:P37287 lead to disease ... |
801-952 | 8.01e-42 | ||||||
Glycosyl transferases group 1; Mutations in this domain of Swiss:P37287 lead to disease (Paroxysmal Nocturnal haemoglobinuria). Members of this family transfer activated sugars to a variety of substrates, including glycogen, Fructose-6-phosphate and lipopolysaccharides. Members of this family transfer UDP, ADP, GDP or CMP linked sugars. The eukaryotic glycogen synthases may be distant members of this family. Pssm-ID: 425737 [Multi-domain] Cd Length: 158 Bit Score: 150.12 E-value: 8.01e-42
|
||||||||||
RfaB | COG0438 | Glycosyltransferase involved in cell wall bisynthesis [Cell wall/membrane/envelope biogenesis]; ... |
853-971 | 5.22e-24 | ||||||
Glycosyltransferase involved in cell wall bisynthesis [Cell wall/membrane/envelope biogenesis]; Pssm-ID: 440207 [Multi-domain] Cd Length: 123 Bit Score: 98.14 E-value: 5.22e-24
|
||||||||||
Glyco_trans_2_3 | pfam13632 | Glycosyl transferase family group 2; Members of this family of prokaryotic proteins include ... |
233-426 | 2.62e-18 | ||||||
Glycosyl transferase family group 2; Members of this family of prokaryotic proteins include putative glucosyltransferases, which are involved in bacterial capsule biosynthesis. Pssm-ID: 433365 [Multi-domain] Cd Length: 192 Bit Score: 83.92 E-value: 2.62e-18
|
||||||||||
PLN02871 | PLN02871 | UDP-sulfoquinovose:DAG sulfoquinovosyltransferase |
797-963 | 3.42e-13 | ||||||
UDP-sulfoquinovose:DAG sulfoquinovosyltransferase Pssm-ID: 215469 [Multi-domain] Cd Length: 465 Bit Score: 73.21 E-value: 3.42e-13
|
||||||||||
PelF | NF038011 | GT4 family glycosyltransferase PelF; Proteins of this family are components of the ... |
782-902 | 7.71e-04 | ||||||
GT4 family glycosyltransferase PelF; Proteins of this family are components of the exopolysaccharide Pel transporter. It has been reported that PelF is a soluble glycosyltransferase that uses UDP-glucose as the substrate for the synthesis of exopolysaccharide Pel, whereas PelG is a Wzx-like and PST family exopolysaccharide transporter. Pssm-ID: 411604 [Multi-domain] Cd Length: 489 Bit Score: 43.38 E-value: 7.71e-04
|
||||||||||
Name | Accession | Description | Interval | E-value | ||||||
CESA_like_2 | cd06427 | CESA_like_2 is a member of the cellulose synthase superfamily; The cellulose synthase (CESA) ... |
147-387 | 1.03e-143 | ||||||
CESA_like_2 is a member of the cellulose synthase superfamily; The cellulose synthase (CESA) superfamily includes a wide variety of glycosyltransferase family 2 enzymes that share the common characteristic of catalyzing the elongation of polysaccharide chains. The members include cellulose synthase catalytic subunit, chitin synthase, Glucan Biosynthesis protein and other families of CESA-like proteins. Cellulose synthase catalyzes the polymerization reaction of cellulose, an aggregate of unbranched polymers of beta-1,4-linked glucose residues in plants, most algae, some bacteria and fungi, and even some animals. In bacteria, algae and lower eukaryotes, there is a second unrelated type of cellulose synthase (Type II), which produces acylated cellulose, a derivative of cellulose. Chitin synthase catalyzes the incorporation of GlcNAc from substrate UDP-GlcNAc into chitin, which is a linear homopolymer of beta-(1,4)-linked GlcNAc residues and Glucan Biosynthesis protein catalyzes the elongation of beta-1,2 polyglucose chains of glucan. Pssm-ID: 133049 [Multi-domain] Cd Length: 241 Bit Score: 427.83 E-value: 1.03e-143
|
||||||||||
GT4_PimA-like | cd03801 | phosphatidyl-myo-inositol mannosyltransferase; This family is most closely related to the GT4 ... |
610-970 | 5.00e-62 | ||||||
phosphatidyl-myo-inositol mannosyltransferase; This family is most closely related to the GT4 family of glycosyltransferases and named after PimA in Propionibacterium freudenreichii, which is involved in the biosynthesis of phosphatidyl-myo-inositol mannosides (PIM) which are early precursors in the biosynthesis of lipomannans (LM) and lipoarabinomannans (LAM), and catalyzes the addition of a mannosyl residue from GDP-D-mannose (GDP-Man) to the position 2 of the carrier lipid phosphatidyl-myo-inositol (PI) to generate a phosphatidyl-myo-inositol bearing an alpha-1,2-linked mannose residue (PIM1). Glycosyltransferases catalyze the transfer of sugar moieties from activated donor molecules to specific acceptor molecules, forming glycosidic bonds. The acceptor molecule can be a lipid, a protein, a heterocyclic compound, or another carbohydrate residue. This group of glycosyltransferases is most closely related to the previously defined glycosyltransferase family 1 (GT1). The members of this family may transfer UDP, ADP, GDP, or CMP linked sugars. The diverse enzymatic activities among members of this family reflect a wide range of biological functions. The protein structure available for this family has the GTB topology, one of the two protein topologies observed for nucleotide-sugar-dependent glycosyltransferases. GTB proteins have distinct N- and C- terminal domains each containing a typical Rossmann fold. The two domains have high structural homology despite minimal sequence homology. The large cleft that separates the two domains includes the catalytic center and permits a high degree of flexibility. The members of this family are found mainly in certain bacteria and archaea. Pssm-ID: 340831 [Multi-domain] Cd Length: 366 Bit Score: 215.48 E-value: 5.00e-62
|
||||||||||
BcsA | COG1215 | Glycosyltransferase, catalytic subunit of cellulose synthase and poly-beta-1, ... |
106-457 | 4.38e-43 | ||||||
Glycosyltransferase, catalytic subunit of cellulose synthase and poly-beta-1,6-N-acetylglucosamine synthase [Cell motility]; Pssm-ID: 440828 [Multi-domain] Cd Length: 303 Bit Score: 159.14 E-value: 4.38e-43
|
||||||||||
Glycos_transf_1 | pfam00534 | Glycosyl transferases group 1; Mutations in this domain of Swiss:P37287 lead to disease ... |
801-952 | 8.01e-42 | ||||||
Glycosyl transferases group 1; Mutations in this domain of Swiss:P37287 lead to disease (Paroxysmal Nocturnal haemoglobinuria). Members of this family transfer activated sugars to a variety of substrates, including glycogen, Fructose-6-phosphate and lipopolysaccharides. Members of this family transfer UDP, ADP, GDP or CMP linked sugars. The eukaryotic glycogen synthases may be distant members of this family. Pssm-ID: 425737 [Multi-domain] Cd Length: 158 Bit Score: 150.12 E-value: 8.01e-42
|
||||||||||
GT4_MtfB-like | cd03809 | glycosyltransferases MtfB, WbpX, and similar proteins; This family is most closely related to ... |
611-963 | 6.84e-41 | ||||||
glycosyltransferases MtfB, WbpX, and similar proteins; This family is most closely related to the GT4 family of glycosyltransferases. MtfB (mannosyltransferase B) in E. coli has been shown to direct the growth of the O9-specific polysaccharide chain. It transfers two mannoses into the position 3 of the previously synthesized polysaccharide. Pssm-ID: 340838 [Multi-domain] Cd Length: 362 Bit Score: 154.44 E-value: 6.84e-41
|
||||||||||
GT4_AmsD-like | cd03820 | amylovoran biosynthesis glycosyltransferase AmsD and similar proteins; This family is most ... |
625-960 | 2.51e-39 | ||||||
amylovoran biosynthesis glycosyltransferase AmsD and similar proteins; This family is most closely related to the GT4 family of glycosyltransferases. AmSD in Erwinia amylovora has been shown to be involved in the biosynthesis of amylovoran, the acidic exopolysaccharide acting as a virulence factor. This enzyme may be responsible for the formation of galactose alpha-1,6 linkages in amylovoran. Pssm-ID: 340847 [Multi-domain] Cd Length: 351 Bit Score: 149.70 E-value: 2.51e-39
|
||||||||||
GT4_GT28_WabH-like | cd03811 | family 4 and family 28 glycosyltransferases similar to Klebsiella WabH; This family is most ... |
625-935 | 2.62e-35 | ||||||
family 4 and family 28 glycosyltransferases similar to Klebsiella WabH; This family is most closely related to the GT1 family of glycosyltransferases. WabH in Klebsiella pneumoniae has been shown to transfer a GlcNAc residue from UDP-GlcNAc onto the acceptor GalUA residue in the cellular outer core. Pssm-ID: 340839 [Multi-domain] Cd Length: 351 Bit Score: 137.87 E-value: 2.62e-35
|
||||||||||
GT4_CapM-like | cd03808 | capsular polysaccharide biosynthesis glycosyltransferase CapM and similar proteins; This ... |
625-951 | 7.09e-33 | ||||||
capsular polysaccharide biosynthesis glycosyltransferase CapM and similar proteins; This family is most closely related to the GT4 family of glycosyltransferases. CapM in Staphylococcus aureus is required for the synthesis of type 1 capsular polysaccharides. Pssm-ID: 340837 [Multi-domain] Cd Length: 358 Bit Score: 131.18 E-value: 7.09e-33
|
||||||||||
Glyco_trans_1_4 | pfam13692 | Glycosyl transferases group 1; |
801-935 | 5.98e-32 | ||||||
Glycosyl transferases group 1; Pssm-ID: 463957 [Multi-domain] Cd Length: 138 Bit Score: 121.46 E-value: 5.98e-32
|
||||||||||
CESA_like | cd06423 | CESA_like is the cellulose synthase superfamily; The cellulose synthase (CESA) superfamily ... |
151-333 | 2.15e-30 | ||||||
CESA_like is the cellulose synthase superfamily; The cellulose synthase (CESA) superfamily includes a wide variety of glycosyltransferase family 2 enzymes that share the common characteristic of catalyzing the elongation of polysaccharide chains. The members include cellulose synthase catalytic subunit, chitin synthase, glucan biosynthesis protein and other families of CESA-like proteins. Cellulose synthase catalyzes the polymerization reaction of cellulose, an aggregate of unbranched polymers of beta-1,4-linked glucose residues in plants, most algae, some bacteria and fungi, and even some animals. In bacteria, algae and lower eukaryotes, there is a second unrelated type of cellulose synthase (Type II), which produces acylated cellulose, a derivative of cellulose. Chitin synthase catalyzes the incorporation of GlcNAc from substrate UDP-GlcNAc into chitin, which is a linear homopolymer of beta-(1,4)-linked GlcNAc residues and Glucan Biosynthesis protein catalyzes the elongation of beta-1,2 polyglucose chains of Glucan. Pssm-ID: 133045 [Multi-domain] Cd Length: 180 Bit Score: 118.48 E-value: 2.15e-30
|
||||||||||
GT4_UGDG-like | cd03817 | UDP-Glc:1,2-diacylglycerol 3-a-glucosyltransferase and similar proteins; This family is most ... |
713-957 | 3.23e-30 | ||||||
UDP-Glc:1,2-diacylglycerol 3-a-glucosyltransferase and similar proteins; This family is most closely related to the GT1 family of glycosyltransferases. UDP-glucose-diacylglycerol glucosyltransferase (EC 2.4.1.337, UGDG; also known as 1,2-diacylglycerol 3-glucosyltransferase) catalyzes the transfer of glucose from UDP-glucose to 1,2-diacylglycerol forming 3-D-glucosyl-1,2-diacylglycerol. Pssm-ID: 340844 [Multi-domain] Cd Length: 372 Bit Score: 123.54 E-value: 3.23e-30
|
||||||||||
GT4_WavL-like | cd03819 | Vibrio cholerae WavL and similar sequences; This family is most closely related to the GT4 ... |
625-951 | 1.43e-29 | ||||||
Vibrio cholerae WavL and similar sequences; This family is most closely related to the GT4 family of glycosyltransferases. WavL in Vibrio cholerae has been shown to be involved in the biosynthesis of the lipopolysaccharide core. Pssm-ID: 340846 [Multi-domain] Cd Length: 345 Bit Score: 120.92 E-value: 1.43e-29
|
||||||||||
GT4_ExpE7-like | cd03823 | glycosyltransferase ExpE7 and similar proteins; This family is most closely related to the GT4 ... |
625-950 | 8.08e-29 | ||||||
glycosyltransferase ExpE7 and similar proteins; This family is most closely related to the GT4 family of glycosyltransferases. ExpE7 in Sinorhizobium meliloti has been shown to be involved in the biosynthesis of galactoglucans (exopolysaccharide II). Pssm-ID: 340850 [Multi-domain] Cd Length: 357 Bit Score: 118.97 E-value: 8.08e-29
|
||||||||||
GT4_sucrose_synthase | cd03800 | sucrose-phosphate synthase and similar proteins; This family is most closely related to the ... |
776-964 | 3.05e-28 | ||||||
sucrose-phosphate synthase and similar proteins; This family is most closely related to the GT4 family of glycosyltransferases. The sucrose-phosphate synthases in this family may be unique to plants and photosynthetic bacteria. This enzyme catalyzes the synthesis of sucrose 6-phosphate from fructose 6-phosphate and uridine 5'-diphosphate-glucose, a key regulatory step of sucrose metabolism. The activity of this enzyme is regulated by phosphorylation and moderated by the concentration of various metabolites and light. Pssm-ID: 340830 [Multi-domain] Cd Length: 398 Bit Score: 118.11 E-value: 3.05e-28
|
||||||||||
GT4_WbnK-like | cd03807 | Shigella dysenteriae WbnK and similar proteins; This family is most closely related to the GT4 ... |
625-949 | 6.05e-27 | ||||||
Shigella dysenteriae WbnK and similar proteins; This family is most closely related to the GT4 family of glycosyltransferases. WbnK in Shigella dysenteriae has been shown to be involved in the type 7 O-antigen biosynthesis. Pssm-ID: 340836 [Multi-domain] Cd Length: 362 Bit Score: 113.57 E-value: 6.05e-27
|
||||||||||
GT4_WlbH-like | cd03798 | Bordetella parapertussis WlbH and similar proteins; This family is most closely related to the ... |
621-962 | 1.07e-26 | ||||||
Bordetella parapertussis WlbH and similar proteins; This family is most closely related to the GT4 family of glycosyltransferases. Staphylococcus aureus CapJ may be involved in capsule polysaccharide biosynthesis. WlbH in Bordetella parapertussis has been shown to be required for the biosynthesis of a trisaccharide that, when attached to the B. pertussis lipopolysaccharide (LPS) core (band B), generates band A LPS. Pssm-ID: 340828 [Multi-domain] Cd Length: 376 Bit Score: 113.24 E-value: 1.07e-26
|
||||||||||
GT4_WfcD-like | cd03795 | Escherichia coli alpha-1,3-mannosyltransferase WfcD and similar proteins; This family is most ... |
624-949 | 5.29e-25 | ||||||
Escherichia coli alpha-1,3-mannosyltransferase WfcD and similar proteins; This family is most closely related to the GT4 family of glycosyltransferases. Glycosyltransferases catalyze the transfer of sugar moieties from activated donor molecules to specific acceptor molecules, forming glycosidic bonds. The acceptor molecule can be a lipid, a protein, a heterocyclic compound, or another carbohydrate residue. This group of glycosyltransferases is most closely related to the previously defined glycosyltransferase family 1 (GT1). The members of this family may transfer UDP, ADP, GDP, or CMP-linked sugars. The diverse enzymatic activities among members of this family reflect a wide range of biological functions. The protein structure available for this family has the GTB topology, one of the two protein topologies observed for nucleotide-sugar-dependent glycosyltransferases. GTB proteins have distinct N- and C- terminal domains each containing a typical Rossmann fold. The two domains have high structural homology despite minimal sequence homology. The large cleft that separates the two domains includes the catalytic center and permits a high degree of flexibility. The members of this family are found mainly in bacteria and eukaryotes. Pssm-ID: 340826 [Multi-domain] Cd Length: 355 Bit Score: 107.75 E-value: 5.29e-25
|
||||||||||
RfaB | COG0438 | Glycosyltransferase involved in cell wall bisynthesis [Cell wall/membrane/envelope biogenesis]; ... |
853-971 | 5.22e-24 | ||||||
Glycosyltransferase involved in cell wall bisynthesis [Cell wall/membrane/envelope biogenesis]; Pssm-ID: 440207 [Multi-domain] Cd Length: 123 Bit Score: 98.14 E-value: 5.22e-24
|
||||||||||
GT4_WbuB-like | cd03794 | Escherichia coli WbuB and similar proteins; This family is most closely related to the GT1 ... |
610-966 | 8.72e-24 | ||||||
Escherichia coli WbuB and similar proteins; This family is most closely related to the GT1 family of glycosyltransferases. WbuB in E. coli is involved in the biosynthesis of the O26 O-antigen. It has been proposed to function as an N-acetyl-L-fucosamine (L-FucNAc) transferase. Pssm-ID: 340825 [Multi-domain] Cd Length: 391 Bit Score: 104.73 E-value: 8.72e-24
|
||||||||||
GT4_GtfA-like | cd04949 | accessory Sec system glycosyltransferase GtfA and similar proteins; This family is most ... |
801-957 | 1.31e-22 | ||||||
accessory Sec system glycosyltransferase GtfA and similar proteins; This family is most closely related to the GT4 family of glycosyltransferases and is named after gtfA in Streptococcus gordonii, where it plays a role in the O-linked glycosylation of GspB, a cell surface glycoprotein involved in platelet binding. In general glycosyltransferases catalyze the transfer of sugar moieties from activated donor molecules to specific acceptor molecules, forming glycosidic bonds. The acceptor molecule can be a lipid, a protein, a heterocyclic compound, or another carbohydrate residue. This group of glycosyltransferases is most closely related to the previously defined glycosyltransferase family 1 (GT1). The members of this family may transfer UDP, ADP, GDP, or CMP linked sugars. The diverse enzymatic activities among members of this family reflect a wide range of biological functions. The protein structure available for this family has the GTB topology, one of the two protein topologies observed for nucleotide-sugar-dependent glycosyltransferases. GTB proteins have distinct N- and C- terminal domains each containing a typical Rossmann fold. The two domains have high structural homology despite minimal sequence homology. The large cleft that separates the two domains includes the catalytic center and permits a high degree of flexibility. The members of this family are found in bacteria. Pssm-ID: 340855 [Multi-domain] Cd Length: 328 Bit Score: 100.07 E-value: 1.31e-22
|
||||||||||
CESA_CaSu_A2 | cd06437 | Cellulose synthase catalytic subunit A2 (CESA2) is a catalytic subunit or a catalytic subunit ... |
147-375 | 3.74e-22 | ||||||
Cellulose synthase catalytic subunit A2 (CESA2) is a catalytic subunit or a catalytic subunit substitute of the cellulose synthase complex; Cellulose synthase (CESA) catalyzes the polymerization reaction of cellulose using UDP-glucose as the substrate. Cellulose is an aggregate of unbranched polymers of beta-1,4-linked glucose residues, which is an abundant polysaccharide produced by plants and in varying degrees by several other organisms including algae, bacteria, fungi, and even some animals. Genomes from higher plants harbor multiple CESA genes. There are ten in Arabidopsis. At least three different CESA proteins are required to form a functional complex. In Arabidopsis, CESA1, 3 and 6 and CESA4, 7 and 8, are required for cellulose biosynthesis during primary and secondary cell wall formation. CESA2 is very closely related to CESA6 and is viewed as a prime substitute for CESA6. They functionally compensate each other. The cesa2 and cesa6 double mutant plants were significantly smaller, while the single mutant plants were almost normal. Pssm-ID: 133059 [Multi-domain] Cd Length: 232 Bit Score: 96.23 E-value: 3.74e-22
|
||||||||||
Glycosyltransferase_GTB-type | cd01635 | glycosyltransferase family 1 and related proteins with GTB topology; Glycosyltransferases ... |
801-920 | 3.37e-21 | ||||||
glycosyltransferase family 1 and related proteins with GTB topology; Glycosyltransferases catalyze the transfer of sugar moieties from activated donor molecules to specific acceptor molecules, forming glycosidic bonds. The acceptor molecule can be a lipid, a protein, a heterocyclic compound, or another carbohydrate residue. The structures of the formed glycoconjugates are extremely diverse, reflecting a wide range of biological functions. The members of this family share a common GTB topology, one of the two protein topologies observed for nucleotide-sugar-dependent glycosyltransferases. GTB proteins have distinct N- and C- terminal domains each containing a typical Rossmann fold. The two domains have high structural homology despite minimal sequence homology. The large cleft that separates the two domains includes the catalytic center and permits a high degree of flexibility. Pssm-ID: 340816 [Multi-domain] Cd Length: 235 Bit Score: 93.62 E-value: 3.37e-21
|
||||||||||
GT4_Bme6-like | cd03821 | Brucella melitensis Bme6 and similar proteins; This family is most closely related to the GT4 ... |
801-967 | 1.45e-20 | ||||||
Brucella melitensis Bme6 and similar proteins; This family is most closely related to the GT4 family of glycosyltransferases. Bme6 in Brucella melitensis has been shown to be involved in the biosynthesis of a polysaccharide. Pssm-ID: 340848 [Multi-domain] Cd Length: 377 Bit Score: 94.74 E-value: 1.45e-20
|
||||||||||
CESA_CelA_like | cd06421 | CESA_CelA_like are involved in the elongation of the glucan chain of cellulose; Family of ... |
147-379 | 2.94e-20 | ||||||
CESA_CelA_like are involved in the elongation of the glucan chain of cellulose; Family of proteins related to Agrobacterium tumefaciens CelA and Gluconacetobacter xylinus BscA. These proteins are involved in the elongation of the glucan chain of cellulose, an aggregate of unbranched polymers of beta-1,4-linked glucose residues. They are putative catalytic subunit of cellulose synthase, which is a glycosyltransferase using UDP-glucose as the substrate. The catalytic subunit is an integral membrane protein with 6 transmembrane segments and it is postulated that the protein is anchored in the membrane at the N-terminal end. Pssm-ID: 133043 [Multi-domain] Cd Length: 234 Bit Score: 90.71 E-value: 2.94e-20
|
||||||||||
GT4_WbaZ-like | cd03804 | mannosyltransferase WbaZ and similar proteins; This family is most closely related to the GT4 ... |
799-954 | 1.84e-19 | ||||||
mannosyltransferase WbaZ and similar proteins; This family is most closely related to the GT4 family of glycosyltransferases. WbaZ in Salmonella enterica has been shown to possess mannosyltransferase activity. Pssm-ID: 340833 [Multi-domain] Cd Length: 356 Bit Score: 91.19 E-value: 1.84e-19
|
||||||||||
GT4_BshA-like | cd04962 | N-acetyl-alpha-D-glucosaminyl L-malate synthase BshA and similar proteins; This family is most ... |
750-955 | 2.19e-18 | ||||||
N-acetyl-alpha-D-glucosaminyl L-malate synthase BshA and similar proteins; This family is most closely related to the GT1 family of glycosyltransferases. Glycosyltransferases catalyze the transfer of sugar moieties from activated donor molecules to specific acceptor molecules, forming glycosidic bonds. The acceptor molecule can be a lipid, a protein, a heterocyclic compound, or another carbohydrate residue. This group of glycosyltransferases is most closely related to the previously defined glycosyltransferase family 1 (GT1). The members of this family may transfer UDP, ADP, GDP, or CMP linked sugars. The diverse enzymatic activities among members of this family reflect a wide range of biological functions. The protein structure available for this family has the GTB topology, one of the two protein topologies observed for nucleotide-sugar-dependent glycosyltransferases. GTB proteins have distinct N- and C- terminal domains each containing a typical Rossmann fold. The two domains have high structural homology despite minimal sequence homology. The large cleft that separates the two domains includes the catalytic center and permits a high degree of flexibility. The members of this family are found mainly in bacteria, while some of them are also found in Archaea and eukaryotes. Pssm-ID: 340859 [Multi-domain] Cd Length: 370 Bit Score: 88.18 E-value: 2.19e-18
|
||||||||||
Glyco_trans_2_3 | pfam13632 | Glycosyl transferase family group 2; Members of this family of prokaryotic proteins include ... |
233-426 | 2.62e-18 | ||||||
Glycosyl transferase family group 2; Members of this family of prokaryotic proteins include putative glucosyltransferases, which are involved in bacterial capsule biosynthesis. Pssm-ID: 433365 [Multi-domain] Cd Length: 192 Bit Score: 83.92 E-value: 2.62e-18
|
||||||||||
CESA_NdvC_like | cd06435 | NdvC_like proteins in this family are putative bacterial beta-(1,6)-glucosyltransferase; ... |
150-383 | 2.70e-18 | ||||||
NdvC_like proteins in this family are putative bacterial beta-(1,6)-glucosyltransferase; NdvC_like proteins in this family are putative bacterial beta-(1,6)-glucosyltransferase. Bradyrhizobium japonicum synthesizes periplasmic cyclic beta-(1,3),beta-(1,6)-D-glucans during growth under hypoosmotic conditions. Two genes (ndvB, ndvC) are involved in the beta-(1, 3), beta-(1,6)-glucan synthesis. The ndvC mutant strain resulted in synthesis of altered cyclic beta-glucans composed almost entirely of beta-(1, 3)-glycosyl linkages. The periplasmic cyclic beta-(1,3),beta-(1,6)-D-glucans function for osmoregulation. The ndvC mutation also affects the ability of the bacteria to establish a successful symbiotic interaction with host plant. Thus, the beta-glucans may function as suppressors of a host defense response. Pssm-ID: 133057 [Multi-domain] Cd Length: 236 Bit Score: 85.14 E-value: 2.70e-18
|
||||||||||
GT4-like | cd05844 | glycosyltransferase family 4 proteins; Glycosyltransferases catalyze the transfer of sugar ... |
737-949 | 4.64e-18 | ||||||
glycosyltransferase family 4 proteins; Glycosyltransferases catalyze the transfer of sugar moieties from activated donor molecules to specific acceptor molecules, forming glycosidic bonds. The acceptor molecule can be a lipid, a protein, a heterocyclic compound, or another carbohydrate residue. This group of glycosyltransferases is most closely related to glycosyltransferase family 4 (GT4). The members of this family may transfer UDP, ADP, GDP, or CMP linked sugars. The diverse enzymatic activities among members of this family reflect a wide range of biological functions. The protein structure available for this family has the GTB topology, one of the two protein topologies observed for nucleotide-sugar-dependent glycosyltransferases. GTB proteins have distinct N- and C- terminal domains each containing a typical Rossmann fold. The two domains have high structural homology despite minimal sequence homology. The large cleft that separates the two domains includes the catalytic center and permits a high degree of flexibility. Pssm-ID: 340860 [Multi-domain] Cd Length: 365 Bit Score: 87.12 E-value: 4.64e-18
|
||||||||||
GT4-like | cd03813 | glycosyltransferase family 4 proteins; This family is most closely related to the GT4 family ... |
735-956 | 9.38e-17 | ||||||
glycosyltransferase family 4 proteins; This family is most closely related to the GT4 family of glycosyltransferases. Glycosyltransferases catalyze the transfer of sugar moieties from activated donor molecules to specific acceptor molecules, forming glycosidic bonds. The acceptor molecule can be a lipid, a protein, a heterocyclic compound, or another carbohydrate residue. This group of glycosyltransferases is most closely related to the previously defined glycosyltransferase family 1 (GT1). The members of this family may transfer UDP, ADP, GDP, or CMP linked sugars. The diverse enzymatic activities among members of this family reflect a wide range of biological functions. The protein structure available for this family has the GTB topology, one of the two protein topologies observed for nucleotide-sugar-dependent glycosyltransferases. GTB proteins have distinct N- and C- terminal domains each containing a typical Rossmann fold. The two domains have high structural homology despite minimal sequence homology. The large cleft that separates the two domains includes the catalytic center and permits a high degree of flexibility. The members of this family are found mainly in bacteria, while some of them are also found in Archaea and eukaryotes. Pssm-ID: 340841 [Multi-domain] Cd Length: 474 Bit Score: 84.31 E-value: 9.38e-17
|
||||||||||
GT4_AviGT4-like | cd03802 | UDP-Glc:tetrahydrobiopterin alpha-glucosyltransferase and similar proteins; This family is ... |
625-939 | 1.31e-16 | ||||||
UDP-Glc:tetrahydrobiopterin alpha-glucosyltransferase and similar proteins; This family is most closely related to the GT4 family of glycosyltransferases. aviGT4 in Streptomyces viridochromogenes has been shown to be involved in biosynthesis of oligosaccharide antibiotic avilamycin A. Inactivation of aviGT4 resulted in a mutant that accumulated a novel avilamycin derivative lacking the terminal eurekanate residue. Pssm-ID: 340832 [Multi-domain] Cd Length: 333 Bit Score: 82.34 E-value: 1.31e-16
|
||||||||||
GT4_mannosyltransferase-like | cd03822 | mannosyltransferases of glycosyltransferase family 4 and similar proteins; This family is most ... |
710-970 | 6.79e-16 | ||||||
mannosyltransferases of glycosyltransferase family 4 and similar proteins; This family is most closely related to the GT1 family of glycosyltransferases. ORF704 in E. coli has been shown to be involved in the biosynthesis of O-specific mannose homopolysaccharides. Pssm-ID: 340849 [Multi-domain] Cd Length: 370 Bit Score: 80.51 E-value: 6.79e-16
|
||||||||||
Glyco_tranf_2_3 | pfam13641 | Glycosyltransferase like family 2; Members of this family of prokaryotic proteins include ... |
147-375 | 1.33e-15 | ||||||
Glycosyltransferase like family 2; Members of this family of prokaryotic proteins include putative glucosyltransferase, which are involved in bacterial capsule biosynthesis. Pssm-ID: 433372 [Multi-domain] Cd Length: 230 Bit Score: 77.03 E-value: 1.33e-15
|
||||||||||
GT4-like | cd03814 | glycosyltransferase family 4 proteins; This family is most closely related to the GT4 family ... |
726-958 | 2.84e-15 | ||||||
glycosyltransferase family 4 proteins; This family is most closely related to the GT4 family of glycosyltransferases and includes a sequence annotated as alpha-D-mannose-alpha(1-6)phosphatidyl myo-inositol monomannoside transferase from Bacillus halodurans. Glycosyltransferases catalyze the transfer of sugar moieties from activated donor molecules to specific acceptor molecules, forming glycosidic bonds. The acceptor molecule can be a lipid, a protein, a heterocyclic compound, or another carbohydrate residue. This group of glycosyltransferases is most closely related to the previously defined glycosyltransferase family 1 (GT1). The members of this family may transfer UDP, ADP, GDP, or CMP linked sugars. The diverse enzymatic activities among members of this family reflect a wide range of biological functions. The protein structure available for this family has the GTB topology, one of the two protein topologies observed for nucleotide-sugar-dependent glycosyltransferases. GTB proteins have distinct N- and C- terminal domains each containing a typical Rossmann fold. The two domains have high structural homology despite minimal sequence homology. The large cleft that separates the two domains includes the catalytic center and permits a high degree of flexibility. The members of this family are found mainly in bacteria and eukaryotes. Pssm-ID: 340842 [Multi-domain] Cd Length: 365 Bit Score: 78.49 E-value: 2.84e-15
|
||||||||||
GT4_ALG2-like | cd03805 | alpha-1,3/1,6-mannosyltransferase ALG2 and similar proteins; This family is most closely ... |
635-952 | 4.96e-15 | ||||||
alpha-1,3/1,6-mannosyltransferase ALG2 and similar proteins; This family is most closely related to the GT4 family of glycosyltransferases. ALG2, a 1,3-mannosyltransferase, in yeast catalyzes the mannosylation of Man(2)GlcNAc(2)-dolichol diphosphate and Man(1)GlcNAc(2)-dolichol diphosphate to form Man(3)GlcNAc(2)-dolichol diphosphate. A deficiency of this enzyme causes an abnormal accumulation of Man1GlcNAc2-PP-dolichol and Man2GlcNAc2-PP-dolichol, which is associated with a type of congenital disorders of glycosylation (CDG), designated CDG-Ii, in humans. Pssm-ID: 340834 [Multi-domain] Cd Length: 392 Bit Score: 78.40 E-value: 4.96e-15
|
||||||||||
GT4_AmsK-like | cd03799 | Erwinia amylovora AmsK and similar proteins; This is a family of GT4 glycosyltransferases ... |
774-972 | 4.49e-14 | ||||||
Erwinia amylovora AmsK and similar proteins; This is a family of GT4 glycosyltransferases found specifically in certain bacteria. AmsK in Erwinia amylovora, has been reported to be involved in the biosynthesis of amylovoran, a exopolysaccharide acting as a virulence factor. Pssm-ID: 340829 [Multi-domain] Cd Length: 350 Bit Score: 74.79 E-value: 4.49e-14
|
||||||||||
Glyco_transf_4 | pfam13439 | Glycosyltransferase Family 4; |
625-785 | 1.45e-13 | ||||||
Glycosyltransferase Family 4; Pssm-ID: 463877 [Multi-domain] Cd Length: 169 Bit Score: 69.48 E-value: 1.45e-13
|
||||||||||
PLN02871 | PLN02871 | UDP-sulfoquinovose:DAG sulfoquinovosyltransferase |
797-963 | 3.42e-13 | ||||||
UDP-sulfoquinovose:DAG sulfoquinovosyltransferase Pssm-ID: 215469 [Multi-domain] Cd Length: 465 Bit Score: 73.21 E-value: 3.42e-13
|
||||||||||
GT4_WcaC-like | cd03825 | putative colanic acid biosynthesis glycosyl transferase WcaC and similar proteins; This family ... |
746-968 | 3.45e-13 | ||||||
putative colanic acid biosynthesis glycosyl transferase WcaC and similar proteins; This family is most closely related to the GT4 family of glycosyltransferases. Escherichia coli WcaC has been predicted to function in colanic acid biosynthesis. WcfI in Bacteroides fragilis has been shown to be involved in the capsular polysaccharide biosynthesis. Pssm-ID: 340851 [Multi-domain] Cd Length: 364 Bit Score: 72.36 E-value: 3.45e-13
|
||||||||||
GT4_WbdM_like | cd04951 | LPS/UnPP-GlcNAc-Gal a-1,4-glucosyltransferase WbdM and similar proteins; This family is most ... |
803-948 | 4.72e-13 | ||||||
LPS/UnPP-GlcNAc-Gal a-1,4-glucosyltransferase WbdM and similar proteins; This family is most closely related to the GT4 family of glycosyltransferases and is named after WbdM in Escherichia coli. In general glycosyltransferases catalyze the transfer of sugar moieties from activated donor molecules to specific acceptor molecules, forming glycosidic bonds. The acceptor molecule can be a lipid, a protein, a heterocyclic compound, or another carbohydrate residue. This group of glycosyltransferases is most closely related to the previously defined glycosyltransferase family 1 (GT1). The members of this family may transfer UDP, ADP, GDP, or CMP linked sugars. The diverse enzymatic activities among members of this family reflect a wide range of biological functions. The protein structure available for this family has the GTB topology, one of the two protein topologies observed for nucleotide-sugar-dependent glycosyltransferases. GTB proteins have distinct N- and C- terminal domains each containing a typical Rossmann fold. The two domains have high structural homology despite minimal sequence homology. The large cleft that separates the two domains includes the catalytic center and permits a high degree of flexibility. The members of this family are found in bacteria. Pssm-ID: 340857 [Multi-domain] Cd Length: 360 Bit Score: 71.71 E-value: 4.72e-13
|
||||||||||
GT4_trehalose_phosphorylase | cd03792 | trehalose phosphorylase and similar proteins; Trehalose phosphorylase (TP) reversibly ... |
804-920 | 1.38e-11 | ||||||
trehalose phosphorylase and similar proteins; Trehalose phosphorylase (TP) reversibly catalyzes trehalose synthesis and degradation from alpha-glucose-1-phosphate (alpha-Glc-1-P) and glucose. The catalyzing activity includes the phosphorolysis of trehalose, which produce alpha-Glc-1-P and glucose, and the subsequent synthesis of trehalose. This family is most closely related to the GT4 family of glycosyltransferases. Pssm-ID: 340823 [Multi-domain] Cd Length: 378 Bit Score: 67.35 E-value: 1.38e-11
|
||||||||||
Glycos_transf_2 | pfam00535 | Glycosyl transferase family 2; Diverse family, transferring sugar from UDP-glucose, ... |
150-306 | 1.81e-11 | ||||||
Glycosyl transferase family 2; Diverse family, transferring sugar from UDP-glucose, UDP-N-acetyl- galactosamine, GDP-mannose or CDP-abequose, to a range of substrates including cellulose, dolichol phosphate and teichoic acids. Pssm-ID: 425738 [Multi-domain] Cd Length: 166 Bit Score: 63.57 E-value: 1.81e-11
|
||||||||||
Glyco_trans_4_4 | pfam13579 | Glycosyl transferase 4-like domain; |
625-782 | 3.17e-11 | ||||||
Glycosyl transferase 4-like domain; Pssm-ID: 433325 [Multi-domain] Cd Length: 158 Bit Score: 62.42 E-value: 3.17e-11
|
||||||||||
GT4_CapH-like | cd03812 | capsular polysaccharide biosynthesis glycosyltransferase CapH and similar proteins; This ... |
625-904 | 3.20e-11 | ||||||
capsular polysaccharide biosynthesis glycosyltransferase CapH and similar proteins; This family is most closely related to the GT4 family of glycosyltransferases. capH in Staphylococcus aureus has been shown to be required for the biosynthesis of the type 1 capsular polysaccharide (CP1). Pssm-ID: 340840 [Multi-domain] Cd Length: 357 Bit Score: 66.16 E-value: 3.20e-11
|
||||||||||
GT4_ALG11-like | cd03806 | alpha-1,2-mannosyltransferase ALG11 and similar proteins; This family is most closely related ... |
700-949 | 4.52e-11 | ||||||
alpha-1,2-mannosyltransferase ALG11 and similar proteins; This family is most closely related to the GT4 family of glycosyltransferases. ALG11 in yeast is involved in adding the final 1,2-linked Man to the Man5GlcNAc2-PP-Dol synthesized on the cytosolic face of the ER. The deletion analysis of ALG11 was shown to block the early steps of core biosynthesis that takes place on the cytoplasmic face of the ER and lead to a defect in the assembly of lipid-linked oligosaccharides. Pssm-ID: 340835 [Multi-domain] Cd Length: 419 Bit Score: 66.09 E-value: 4.52e-11
|
||||||||||
GT4_ExpC-like | cd03818 | Rhizobium meliloti ExpC and similar proteins; This family is most closely related to the GT4 ... |
797-949 | 2.62e-10 | ||||||
Rhizobium meliloti ExpC and similar proteins; This family is most closely related to the GT4 family of glycosyltransferases. ExpC in Rhizobium meliloti has been shown to be involved in the biosynthesis of galactoglucan (exopolysaccharide II). Pssm-ID: 340845 [Multi-domain] Cd Length: 396 Bit Score: 63.54 E-value: 2.62e-10
|
||||||||||
GT5_Glycogen_synthase_DULL1-like | cd03791 | Glycogen synthase GlgA and similar proteins; This family is most closely related to the GT5 ... |
797-968 | 3.04e-09 | ||||||
Glycogen synthase GlgA and similar proteins; This family is most closely related to the GT5 family of glycosyltransferases. Glycogen synthase (EC:2.4.1.21) catalyzes the formation and elongation of the alpha-1,4-glucose backbone using ADP-glucose, the second and key step of glycogen biosynthesis. This family includes starch synthases of plants, such as DULL1 in Zea mays and glycogen synthases of various organisms. Pssm-ID: 340822 [Multi-domain] Cd Length: 474 Bit Score: 60.65 E-value: 3.04e-09
|
||||||||||
PLN02949 | PLN02949 | transferase, transferring glycosyl groups |
733-957 | 4.49e-09 | ||||||
transferase, transferring glycosyl groups Pssm-ID: 215511 [Multi-domain] Cd Length: 463 Bit Score: 60.14 E-value: 4.49e-09
|
||||||||||
CESA_like_1 | cd06439 | CESA_like_1 is a member of the cellulose synthase (CESA) superfamily; This is a subfamily of ... |
146-379 | 6.39e-09 | ||||||
CESA_like_1 is a member of the cellulose synthase (CESA) superfamily; This is a subfamily of cellulose synthase (CESA) superfamily. CESA superfamily includes a wide variety of glycosyltransferase family 2 enzymes that share the common characteristic of catalyzing the elongation of polysaccharide chains. The members of the superfamily include cellulose synthase catalytic subunit, chitin synthase, glucan biosynthesis protein and other families of CESA-like proteins. Pssm-ID: 133061 [Multi-domain] Cd Length: 251 Bit Score: 57.98 E-value: 6.39e-09
|
||||||||||
GlgA | COG0297 | Glycogen synthase [Carbohydrate transport and metabolism]; |
803-968 | 9.86e-09 | ||||||
Glycogen synthase [Carbohydrate transport and metabolism]; Pssm-ID: 440066 [Multi-domain] Cd Length: 476 Bit Score: 58.95 E-value: 9.86e-09
|
||||||||||
GT_2_like_e | cd04192 | Subfamily of Glycosyltransferase Family GT2 of unknown function; GT-2 includes diverse ... |
151-375 | 9.91e-09 | ||||||
Subfamily of Glycosyltransferase Family GT2 of unknown function; GT-2 includes diverse families of glycosyltransferases with a common GT-A type structural fold, which has two tightly associated beta/alpha/beta domains that tend to form a continuous central sheet of at least eight beta-strands. These are enzymes that catalyze the transfer of sugar moieties from activated donor molecules to specific acceptor molecules, forming glycosidic bonds. Glycosyltransferases have been classified into more than 90 distinct sequence based families. Pssm-ID: 133035 [Multi-domain] Cd Length: 229 Bit Score: 56.91 E-value: 9.91e-09
|
||||||||||
WcaA | COG0463 | Glycosyltransferase involved in cell wall bisynthesis [Cell wall/membrane/envelope biogenesis]; ... |
147-367 | 1.58e-08 | ||||||
Glycosyltransferase involved in cell wall bisynthesis [Cell wall/membrane/envelope biogenesis]; Pssm-ID: 440231 [Multi-domain] Cd Length: 208 Bit Score: 55.86 E-value: 1.58e-08
|
||||||||||
PRK15484 | PRK15484 | lipopolysaccharide N-acetylglucosaminyltransferase; |
775-958 | 1.94e-08 | ||||||
lipopolysaccharide N-acetylglucosaminyltransferase; Pssm-ID: 185381 [Multi-domain] Cd Length: 380 Bit Score: 57.49 E-value: 1.94e-08
|
||||||||||
PHA01633 | PHA01633 | putative glycosyl transferase group 1 |
744-929 | 4.97e-07 | ||||||
putative glycosyl transferase group 1 Pssm-ID: 107050 [Multi-domain] Cd Length: 335 Bit Score: 53.06 E-value: 4.97e-07
|
||||||||||
Glyco_tranf_GTA_type | cd00761 | Glycosyltransferase family A (GT-A) includes diverse families of glycosyl transferases with a ... |
151-264 | 5.74e-06 | ||||||
Glycosyltransferase family A (GT-A) includes diverse families of glycosyl transferases with a common GT-A type structural fold; Glycosyltransferases (GTs) are enzymes that synthesize oligosaccharides, polysaccharides, and glycoconjugates by transferring the sugar moiety from an activated nucleotide-sugar donor to an acceptor molecule, which may be a growing oligosaccharide, a lipid, or a protein. Based on the stereochemistry of the donor and acceptor molecules, GTs are classified as either retaining or inverting enzymes. To date, all GT structures adopt one of two possible folds, termed GT-A fold and GT-B fold. This hierarchy includes diverse families of glycosyl transferases with a common GT-A type structural fold, which has two tightly associated beta/alpha/beta domains that tend to form a continuous central sheet of at least eight beta-strands. The majority of the proteins in this superfamily are Glycosyltransferase family 2 (GT-2) proteins. But it also includes families GT-43, GT-6, GT-8, GT13 and GT-7; which are evolutionarily related to GT-2 and share structure similarities. Pssm-ID: 132997 [Multi-domain] Cd Length: 156 Bit Score: 47.50 E-value: 5.74e-06
|
||||||||||
EpsO_like | cd06438 | EpsO protein participates in the methanolan synthesis; The Methylobacillus sp EpsO protein is ... |
151-333 | 6.12e-06 | ||||||
EpsO protein participates in the methanolan synthesis; The Methylobacillus sp EpsO protein is predicted to participate in the methanolan synthesis. Methanolan is an exopolysaccharide (EPS), composed of glucose, mannose and galactose. A 21 genes cluster was predicted to participate in the methanolan synthesis. Gene disruption analysis revealed that EpsO is one of the glycosyltransferase enzymes involved in the synthesis of repeating sugar units onto the lipid carrier. Pssm-ID: 133060 [Multi-domain] Cd Length: 183 Bit Score: 47.60 E-value: 6.12e-06
|
||||||||||
PRK15179 | PRK15179 | Vi polysaccharide biosynthesis protein TviE; Provisional |
691-955 | 6.76e-06 | ||||||
Vi polysaccharide biosynthesis protein TviE; Provisional Pssm-ID: 185101 [Multi-domain] Cd Length: 694 Bit Score: 50.03 E-value: 6.76e-06
|
||||||||||
Glyco_trans_1_2 | pfam13524 | Glycosyl transferases group 1; |
874-956 | 7.15e-06 | ||||||
Glycosyl transferases group 1; Pssm-ID: 433281 [Multi-domain] Cd Length: 93 Bit Score: 45.29 E-value: 7.15e-06
|
||||||||||
GT4_AmsK-like | cd04946 | amylovoran biosynthesis glycosyltransferase AmsK and similar proteins; This family is most ... |
805-967 | 1.88e-05 | ||||||
amylovoran biosynthesis glycosyltransferase AmsK and similar proteins; This family is most closely related to the GT4 family of glycosyltransferases. AmsK is involved in the biosynthesis of amylovoran, which functions as a virulence factor. It functions as a glycosyl transferase which transfers galactose from UDP-galactose to a lipid-linked amylovoran-subunit precursor. The members of this family are found mainly in bacteria and Archaea. Pssm-ID: 340854 [Multi-domain] Cd Length: 401 Bit Score: 48.23 E-value: 1.88e-05
|
||||||||||
GT4_PIG-A-like | cd03796 | phosphatidylinositol N-acetylglucosaminyltransferase subunit A and similar proteins; This ... |
801-906 | 4.84e-05 | ||||||
phosphatidylinositol N-acetylglucosaminyltransferase subunit A and similar proteins; This family is most closely related to the GT4 family of glycosyltransferases. Phosphatidylinositol glycan-class A (PIG-A), an X-linked gene in humans, is necessary for the synthesis of N-acetylglucosaminyl-phosphatidylinositol, a very early intermediate in glycosyl phosphatidylinositol (GPI)-anchor biosynthesis. The GPI-anchor is an important cellular structure that facilitates the attachment of many proteins to cell surfaces. Somatic mutations in PIG-A have been associated with Paroxysmal Nocturnal Hemoglobinuria (PNH), an acquired hematological disorder. Pssm-ID: 340827 [Multi-domain] Cd Length: 398 Bit Score: 46.85 E-value: 4.84e-05
|
||||||||||
Succinoglycan_BP_ExoA | cd02525 | ExoA is involved in the biosynthesis of succinoglycan; Succinoglycan Biosynthesis Protein ExoA ... |
150-383 | 5.05e-05 | ||||||
ExoA is involved in the biosynthesis of succinoglycan; Succinoglycan Biosynthesis Protein ExoA catalyzes the formation of a beta-1,3 linkage of the second sugar (glucose) of the succinoglycan with the galactose on the lipid carrie. Succinoglycan is an acidic exopolysaccharide that is important for invasion of the nodules. Succinoglycan is a high-molecular-weight polymer composed of repeating octasaccharide units. These units are synthesized on membrane-bound isoprenoid lipid carriers, beginning with galactose followed by seven glucose molecules, and modified by the addition of acetate, succinate, and pyruvate. ExoA is a membrane protein with a transmembrance domain at c-terminus. Pssm-ID: 133016 [Multi-domain] Cd Length: 249 Bit Score: 46.07 E-value: 5.05e-05
|
||||||||||
PRK09922 | PRK09922 | lipopolysaccharide 1,6-galactosyltransferase; |
801-933 | 6.08e-05 | ||||||
lipopolysaccharide 1,6-galactosyltransferase; Pssm-ID: 182148 [Multi-domain] Cd Length: 359 Bit Score: 46.24 E-value: 6.08e-05
|
||||||||||
glgA | PRK00654 | glycogen synthase GlgA; |
797-963 | 5.70e-04 | ||||||
glycogen synthase GlgA; Pssm-ID: 234809 [Multi-domain] Cd Length: 466 Bit Score: 43.57 E-value: 5.70e-04
|
||||||||||
PelF | NF038011 | GT4 family glycosyltransferase PelF; Proteins of this family are components of the ... |
782-902 | 7.71e-04 | ||||||
GT4 family glycosyltransferase PelF; Proteins of this family are components of the exopolysaccharide Pel transporter. It has been reported that PelF is a soluble glycosyltransferase that uses UDP-glucose as the substrate for the synthesis of exopolysaccharide Pel, whereas PelG is a Wzx-like and PST family exopolysaccharide transporter. Pssm-ID: 411604 [Multi-domain] Cd Length: 489 Bit Score: 43.38 E-value: 7.71e-04
|
||||||||||
GT2_HAS | cd06434 | Hyaluronan synthases catalyze polymerization of hyaluronan; Hyaluronan synthases (HASs) are ... |
150-376 | 2.06e-03 | ||||||
Hyaluronan synthases catalyze polymerization of hyaluronan; Hyaluronan synthases (HASs) are bi-functional glycosyltransferases that catalyze polymerization of hyaluronan. HASs transfer both GlcUA and GlcNAc in beta-(1,3) and beta-(1,4) linkages, respectively to the hyaluronan chain using UDP-GlcNAc and UDP-GlcUA as substrates. HA is made as a free glycan, not attached to a protein or lipid. HASs do not need a primer for HA synthesis; they initiate HA biosynthesis de novo with only UDP-GlcNAc, UDP-GlcUA, and Mg2+. Hyaluronan (HA) is a linear heteropolysaccharide composed of (1-3)-linked beta-D-GlcUA-beta-D-GlcNAc disaccharide repeats. It can be found in vertebrates and a few microbes and is typically on the cell surface or in the extracellular space, but is also found inside mammalian cells. Hyaluronan has several physiochemical and biological functions such as space filling, lubrication, and providing a hydrated matrix through which cells can migrate. Pssm-ID: 133056 [Multi-domain] Cd Length: 235 Bit Score: 41.09 E-value: 2.06e-03
|
||||||||||
Blast search parameters | ||||
|