cytochrome c biogenesis protein/redoxin, with some similarity to DipZ, or DsbD, that is involved in disulfide bond formation of target proteins by transporting electrons from cytoplasmic thioredoxin to DsbC and DsbG
Protein Disulfide Oxidoreductases and Other Proteins with a Thioredoxin fold; The thioredoxin ...
254-378
1.17e-66
Protein Disulfide Oxidoreductases and Other Proteins with a Thioredoxin fold; The thioredoxin (TRX)-like superfamily is a large, diverse group of proteins containing a TRX fold. Many members contain a classic TRX domain with a redox active CXXC motif. They function as protein disulfide oxidoreductases (PDOs), altering the redox state of target proteins via the reversible oxidation of their active site dithiol. The PDO members of this superfamily include the families of TRX, protein disulfide isomerase (PDI), tlpA, glutaredoxin, NrdH redoxin, and bacterial Dsb proteins (DsbA, DsbC, DsbG, DsbE, DsbDgamma). Members of the superfamily that do not function as PDOs but contain a TRX-fold domain include phosducins, peroxiredoxins, glutathione (GSH) peroxidases, SCO proteins, GSH transferases (GST, N-terminal domain), arsenic reductases, TRX-like ferredoxins and calsequestrin, among others.
The actual alignment was detected with superfamily member cd03012:
Pssm-ID: 469754 [Multi-domain] Cd Length: 126 Bit Score: 207.54 E-value: 1.17e-66
TlpA-like family, DipZ-like subfamily; composed uncharacterized proteins containing a ...
254-378
1.17e-66
TlpA-like family, DipZ-like subfamily; composed uncharacterized proteins containing a TlpA-like TRX domain. Some members show domain architectures similar to that of E. coli DipZ protein (also known as DsbD). The only eukaryotic members of the TlpA family belong to this subfamily. TlpA is a disulfide reductase known to have a crucial role in the biogenesis of cytochrome aa3.
Pssm-ID: 239310 [Multi-domain] Cd Length: 126 Bit Score: 207.54 E-value: 1.17e-66
Cytochrome C biogenesis protein transmembrane region; This family consists of the ...
6-182
5.72e-07
Cytochrome C biogenesis protein transmembrane region; This family consists of the transmembrane (i.e. non-catalytic) region of Cytochrome C biogenesis proteins also known as disulphide interchange proteins. These proteins posses a protein disulphide isomerase like domain that is not found within the aligned region of this family.
Pssm-ID: 280792 [Multi-domain] Cd Length: 213 Bit Score: 49.71 E-value: 5.72e-07
TlpA-like family, DipZ-like subfamily; composed uncharacterized proteins containing a ...
254-378
1.17e-66
TlpA-like family, DipZ-like subfamily; composed uncharacterized proteins containing a TlpA-like TRX domain. Some members show domain architectures similar to that of E. coli DipZ protein (also known as DsbD). The only eukaryotic members of the TlpA family belong to this subfamily. TlpA is a disulfide reductase known to have a crucial role in the biogenesis of cytochrome aa3.
Pssm-ID: 239310 [Multi-domain] Cd Length: 126 Bit Score: 207.54 E-value: 1.17e-66
TlpA-like family; composed of TlpA, ResA, DsbE and similar proteins. TlpA, ResA and DsbE are ...
252-376
2.81e-29
TlpA-like family; composed of TlpA, ResA, DsbE and similar proteins. TlpA, ResA and DsbE are bacterial protein disulfide reductases with important roles in cytochrome maturation. They are membrane-anchored proteins with a soluble TRX domain containing a CXXC motif located in the periplasm. The TRX domains of this family contain an insert, approximately 25 residues in length, which correspond to an extra alpha helix and a beta strand when compared with TRX. TlpA catalyzes an essential reaction in the biogenesis of cytochrome aa3, while ResA and DsbE are essential proteins in cytochrome c maturation. Also included in this family are proteins containing a TlpA-like TRX domain with domain architectures similar to E. coli DipZ protein, and the N-terminal TRX domain of PilB protein from Neisseria which acts as a disulfide reductase that can recylce methionine sulfoxide reductases.
Pssm-ID: 239264 [Multi-domain] Cd Length: 116 Bit Score: 109.63 E-value: 2.81e-29
Peroxiredoxin (PRX)-like 1 family; hypothetical proteins that show sequence similarity to PRXs. ...
273-372
4.29e-08
Peroxiredoxin (PRX)-like 1 family; hypothetical proteins that show sequence similarity to PRXs. Members of this group contain a conserved cysteine that aligns to the first cysteine in the CXXC motif of TRX. This does not correspond to the peroxidatic cysteine found in PRXs, which aligns to the second cysteine in the CXXC motif of TRX. In addition, these proteins do not contain the other two conserved residues of the catalytic triad of PRX. PRXs confer a protective antioxidant role in cells through their peroxidase activity in which hydrogen peroxide, peroxynitrate, and organic hydroperoxides are reduced and detoxified using reducing equivalents derived from either thioredoxin, glutathione, trypanothione and AhpF.
Pssm-ID: 239267 [Multi-domain] Cd Length: 171 Bit Score: 52.24 E-value: 4.29e-08
Cytochrome C biogenesis protein transmembrane region; This family consists of the ...
6-182
5.72e-07
Cytochrome C biogenesis protein transmembrane region; This family consists of the transmembrane (i.e. non-catalytic) region of Cytochrome C biogenesis proteins also known as disulphide interchange proteins. These proteins posses a protein disulphide isomerase like domain that is not found within the aligned region of this family.
Pssm-ID: 280792 [Multi-domain] Cd Length: 213 Bit Score: 49.71 E-value: 5.72e-07
TlpA-like family, suppressor for copper sensitivity D protein (ScsD) and actinobacterial DsbE ...
263-368
4.58e-06
TlpA-like family, suppressor for copper sensitivity D protein (ScsD) and actinobacterial DsbE homolog subfamily; composed of ScsD, the DsbE homolog of Mycobacterium tuberculosis (MtbDsbE) and similar proteins, all containing a redox-active CXXC motif. The Salmonella typhimurium ScsD is a thioredoxin-like protein which confers copper tolerance to copper-sensitive mutants of E. coli. MtbDsbE has been characterized as an oxidase in vitro, catalyzing the disulfide bond formation of substrates like hirudin. The reduced form of MtbDsbE is more stable than its oxidized form, consistent with an oxidase function. This is in contrast to the function of DsbE from gram-negative bacteria which is a specific reductase of apocytochrome c.
Pssm-ID: 239309 [Multi-domain] Cd Length: 123 Bit Score: 45.37 E-value: 4.58e-06
TlpA-like family, DsbE (also known as CcmG and CycY) subfamily; DsbE is a membrane-anchored, ...
247-314
2.93e-03
TlpA-like family, DsbE (also known as CcmG and CycY) subfamily; DsbE is a membrane-anchored, periplasmic TRX-like reductase containing a CXXC motif that specifically donates reducing equivalents to apocytochrome c via CcmH, another cytochrome c maturation (Ccm) factor with a redox active CXXC motif. Assembly of cytochrome c requires the ligation of heme to reduced thiols of the apocytochrome. In bacteria, this assembly occurs in the periplasm. The reductase activity of DsbE in the oxidizing environment of the periplasm is crucial in the maturation of cytochrome c.
Pssm-ID: 239308 [Multi-domain] Cd Length: 127 Bit Score: 37.56 E-value: 2.93e-03
Database: CDSEARCH/cdd Low complexity filter: no Composition Based Adjustment: yes E-value threshold: 0.01
References:
Wang J et al. (2023), "The conserved domain database in 2023", Nucleic Acids Res.51(D)384-8.
Lu S et al. (2020), "The conserved domain database in 2020", Nucleic Acids Res.48(D)265-8.
Marchler-Bauer A et al. (2017), "CDD/SPARCLE: functional classification of proteins via subfamily domain architectures.", Nucleic Acids Res.45(D)200-3.
of the residues that compose this conserved feature have been mapped to the query sequence.
Click on the triangle to view details about the feature, including a multiple sequence alignment
of your query sequence and the protein sequences used to curate the domain model,
where hash marks (#) above the aligned sequences show the location of the conserved feature residues.
The thumbnail image, if present, provides an approximate view of the feature's location in 3 dimensions.
Click on the triangle for interactive 3D structure viewing options.
Functional characterization of the conserved domain architecture found on the query.
Click here to see more details.
This image shows a graphical summary of conserved domains identified on the query sequence.
The Show Concise/Full Display button at the top of the page can be used to select the desired level of detail: only top scoring hits
(labeled illustration) or all hits
(labeled illustration).
Domains are color coded according to superfamilies
to which they have been assigned. Hits with scores that pass a domain-specific threshold
(specific hits) are drawn in bright colors.
Others (non-specific hits) and
superfamily placeholders are drawn in pastel colors.
if a domain or superfamily has been annotated with functional sites (conserved features),
they are mapped to the query sequence and indicated through sets of triangles
with the same color and shade of the domain or superfamily that provides the annotation. Mouse over the colored bars or triangles to see descriptions of the domains and features.
click on the bars or triangles to view your query sequence embedded in a multiple sequence alignment of the proteins used to develop the corresponding domain model.
The table lists conserved domains identified on the query sequence. Click on the plus sign (+) on the left to display full descriptions, alignments, and scores.
Click on the domain model's accession number to view the multiple sequence alignment of the proteins used to develop the corresponding domain model.
To view your query sequence embedded in that multiple sequence alignment, click on the colored bars in the Graphical Summary portion of the search results page,
or click on the triangles, if present, that represent functional sites (conserved features)
mapped to the query sequence.
Concise Display shows only the best scoring domain model, in each hit category listed below except non-specific hits, for each region on the query sequence.
(labeled illustration) Standard Display shows only the best scoring domain model from each source, in each hit category listed below for each region on the query sequence.
(labeled illustration) Full Display shows all domain models, in each hit category below, that meet or exceed the RPS-BLAST threshold for statistical significance.
(labeled illustration) Four types of hits can be shown, as available,
for each region on the query sequence:
specific hits meet or exceed a domain-specific e-value threshold
(illustrated example)
and represent a very high confidence that the query sequence belongs to the same protein family as the sequences use to create the domain model
non-specific hits
meet or exceed the RPS-BLAST threshold for statistical significance (default E-value cutoff of 0.01, or an E-value selected by user via the
advanced search options)
the domain superfamily to which the specific and non-specific hits belong
multi-domain models that were computationally detected and are likely to contain multiple single domains
Retrieve proteins that contain one or more of the domains present in the query sequence, using the Conserved Domain Architecture Retrieval Tool
(CDART).
Modify your query to search against a different database and/or use advanced search options