D,D-heptose 1,7-bisphosphate phosphatase [Klebsiella pneumoniae CHS 80]
HAD family hydrolase( domain architecture ID 11483476)
The HAD (haloacid dehalogenase) family of hydrolase includes phosphoesterases, ATPases, phosphonatases, dehalogenases, and sugar phosphomutases acting on a remarkably diverse set of substrates
List of domain hits
Name | Accession | Description | Interval | E-value | ||||
PRK08942 | PRK08942 | D-glycero-beta-D-manno-heptose 1,7-bisphosphate 7-phosphatase; |
3-188 | 1.41e-116 | ||||
D-glycero-beta-D-manno-heptose 1,7-bisphosphate 7-phosphatase; : Pssm-ID: 236354 [Multi-domain] Cd Length: 181 Bit Score: 328.32 E-value: 1.41e-116
|
||||||||
Name | Accession | Description | Interval | E-value | ||||
PRK08942 | PRK08942 | D-glycero-beta-D-manno-heptose 1,7-bisphosphate 7-phosphatase; |
3-188 | 1.41e-116 | ||||
D-glycero-beta-D-manno-heptose 1,7-bisphosphate 7-phosphatase; Pssm-ID: 236354 [Multi-domain] Cd Length: 181 Bit Score: 328.32 E-value: 1.41e-116
|
||||||||
GmhB_yaeD | TIGR00213 | D,D-heptose 1,7-bisphosphate phosphatase; This family of proteins formerly designated yaeD ... |
5-180 | 6.76e-116 | ||||
D,D-heptose 1,7-bisphosphate phosphatase; This family of proteins formerly designated yaeD resembles the histidinol phosphatase domain of the bifunctional protein HisB. The member from E. coli has been characterized as D,D-heptose 1,7-bisphosphate phosphatase, GmhB, involved in inner core LPS assembly (). [Cell envelope, Biosynthesis and degradation of surface polysaccharides and lipopolysaccharides] Pssm-ID: 129317 [Multi-domain] Cd Length: 176 Bit Score: 326.49 E-value: 6.76e-116
|
||||||||
HisB1/GmhB | COG0241 | Histidinol phosphatase/D-glycero-mannoheptose bisphosphatephosphatase, HAD superfamily [Amino ... |
1-186 | 7.58e-93 | ||||
Histidinol phosphatase/D-glycero-mannoheptose bisphosphatephosphatase, HAD superfamily [Amino acid transport and metabolism]; Histidinol phosphatase/D-glycero-mannoheptose bisphosphatephosphatase, HAD superfamily is part of the Pathway/BioSystem: Histidine biosynthesis Pssm-ID: 440011 [Multi-domain] Cd Length: 176 Bit Score: 268.12 E-value: 7.58e-93
|
||||||||
HAD_HisB-N | cd07503 | histidinol phosphate phosphatase and related phosphatases; This family includes the N-terminal ... |
6-151 | 8.50e-76 | ||||
histidinol phosphate phosphatase and related phosphatases; This family includes the N-terminal domain of the Escherichia coli bifunctional enzyme histidinol-phosphate phosphatase/imidazole-glycerol-phosphate dehydratase, HisB. The N-terminal histidinol-phosphate phosphatase domain catalyzes the dephosphorylation of histidinol phosphate, the eight step of L-histidine biosynthesis. This family also includes Escherichia coli GmhB phosphatase which is highly specific for D-glycero-D-manno-heptose-1,7-bisphosphate, it removes the C(7)phosphate and not the C(1)phosphate, and this is the third essential step of lipopolysaccharide heptose biosynthesis. This family belongs to the haloacid dehalogenase-like (HAD) hydrolases, a large superfamily of diverse enzymes that catalyze carbon or phosphoryl group transfer reactions on a range of substrates, using an active site aspartate in nucleophilic catalysis. Members of this superfamily include 2-L-haloalkanoic acid dehalogenase, azetidine hydrolase, phosphonoacetaldehyde hydrolase, phosphoserine phosphatase, phosphomannomutase, P-type ATPases and many others. HAD hydrolases are found in all three kingdoms of life, and most genomes are predicted to contain multiple HAD-like proteins. Members possess a highly conserved alpha/beta core domain, and many also possess a small cap domain, the fold and function of which is variable. HAD hydrolases are sometimes referred to as belonging to the DDDD superfamily of phosphohydrolases. Pssm-ID: 319806 [Multi-domain] Cd Length: 142 Bit Score: 223.56 E-value: 8.50e-76
|
||||||||
Hydrolase_like | pfam13242 | HAD-hyrolase-like; |
109-179 | 1.39e-13 | ||||
HAD-hyrolase-like; Pssm-ID: 433056 [Multi-domain] Cd Length: 75 Bit Score: 62.63 E-value: 1.39e-13
|
||||||||
Name | Accession | Description | Interval | E-value | ||||
PRK08942 | PRK08942 | D-glycero-beta-D-manno-heptose 1,7-bisphosphate 7-phosphatase; |
3-188 | 1.41e-116 | ||||
D-glycero-beta-D-manno-heptose 1,7-bisphosphate 7-phosphatase; Pssm-ID: 236354 [Multi-domain] Cd Length: 181 Bit Score: 328.32 E-value: 1.41e-116
|
||||||||
GmhB_yaeD | TIGR00213 | D,D-heptose 1,7-bisphosphate phosphatase; This family of proteins formerly designated yaeD ... |
5-180 | 6.76e-116 | ||||
D,D-heptose 1,7-bisphosphate phosphatase; This family of proteins formerly designated yaeD resembles the histidinol phosphatase domain of the bifunctional protein HisB. The member from E. coli has been characterized as D,D-heptose 1,7-bisphosphate phosphatase, GmhB, involved in inner core LPS assembly (). [Cell envelope, Biosynthesis and degradation of surface polysaccharides and lipopolysaccharides] Pssm-ID: 129317 [Multi-domain] Cd Length: 176 Bit Score: 326.49 E-value: 6.76e-116
|
||||||||
HisB1/GmhB | COG0241 | Histidinol phosphatase/D-glycero-mannoheptose bisphosphatephosphatase, HAD superfamily [Amino ... |
1-186 | 7.58e-93 | ||||
Histidinol phosphatase/D-glycero-mannoheptose bisphosphatephosphatase, HAD superfamily [Amino acid transport and metabolism]; Histidinol phosphatase/D-glycero-mannoheptose bisphosphatephosphatase, HAD superfamily is part of the Pathway/BioSystem: Histidine biosynthesis Pssm-ID: 440011 [Multi-domain] Cd Length: 176 Bit Score: 268.12 E-value: 7.58e-93
|
||||||||
HAD_HisB-N | cd07503 | histidinol phosphate phosphatase and related phosphatases; This family includes the N-terminal ... |
6-151 | 8.50e-76 | ||||
histidinol phosphate phosphatase and related phosphatases; This family includes the N-terminal domain of the Escherichia coli bifunctional enzyme histidinol-phosphate phosphatase/imidazole-glycerol-phosphate dehydratase, HisB. The N-terminal histidinol-phosphate phosphatase domain catalyzes the dephosphorylation of histidinol phosphate, the eight step of L-histidine biosynthesis. This family also includes Escherichia coli GmhB phosphatase which is highly specific for D-glycero-D-manno-heptose-1,7-bisphosphate, it removes the C(7)phosphate and not the C(1)phosphate, and this is the third essential step of lipopolysaccharide heptose biosynthesis. This family belongs to the haloacid dehalogenase-like (HAD) hydrolases, a large superfamily of diverse enzymes that catalyze carbon or phosphoryl group transfer reactions on a range of substrates, using an active site aspartate in nucleophilic catalysis. Members of this superfamily include 2-L-haloalkanoic acid dehalogenase, azetidine hydrolase, phosphonoacetaldehyde hydrolase, phosphoserine phosphatase, phosphomannomutase, P-type ATPases and many others. HAD hydrolases are found in all three kingdoms of life, and most genomes are predicted to contain multiple HAD-like proteins. Members possess a highly conserved alpha/beta core domain, and many also possess a small cap domain, the fold and function of which is variable. HAD hydrolases are sometimes referred to as belonging to the DDDD superfamily of phosphohydrolases. Pssm-ID: 319806 [Multi-domain] Cd Length: 142 Bit Score: 223.56 E-value: 8.50e-76
|
||||||||
Histidinol-ppas | TIGR01656 | histidinol-phosphate phosphatase family domain; This domain is found in authentic ... |
6-147 | 6.29e-38 | ||||
histidinol-phosphate phosphatase family domain; This domain is found in authentic histidinol-phosphate phosphatases which are sometimes found as stand-alone entities and sometimes as fusions with imidazoleglycerol-phosphate dehydratase (TIGR01261). Additionally, a family of proteins including YaeD from E. coli (TIGR00213) and various other proteins are closely related but may not have the same substrate specificity. This domain is a member of the haloacid-dehalogenase (HAD) superfamily of aspartate-nucleophile hydrolases. This superfamily is distinguished by the presence of three motifs: an N-terminal motif containing the nucleophilic aspartate, a central motif containing an conserved serine or threonine, and a C-terminal motif containing a conserved lysine (or arginine) and conserved aspartates. More specifically, the domian modelled here is a member of subfamily III of the HAD-superfamily by virtue of lacking a "capping" domain in either of the two common positions, between motifs 1 and 2, or between motifs 2 and 3. Pssm-ID: 273737 Cd Length: 147 Bit Score: 127.51 E-value: 6.29e-38
|
||||||||
HAD-SF-IIIA | TIGR01662 | HAD-superfamily hydrolase, subfamily IIIA; This subfamily falls within the Haloacid ... |
6-147 | 1.55e-36 | ||||
HAD-superfamily hydrolase, subfamily IIIA; This subfamily falls within the Haloacid Dehalogenase (HAD) superfamily of aspartate-nucleophile hydrolases. The Class III subfamilies are characterized by the lack of any domains located between either between the first and second conserved catalytic motifs (as in the Class I subfamilies, TIGR01493, TIGR01509, TIGR01488 and TIGR01494) or between the second and third conserved catalytic motifs (as in the Class II subfamilies, TIGR01460 and TIGR01484) of the superfamily domain. The IIIA subfamily contains five major clades: histidinol-phosphatase (TIGR01261) and histidinol-phosphatase-related protein (TIGR00213) which together form a subfamily (TIGR01656), DNA 3'-phosphatase (TIGR01663, TIGR01664), YqeG (TIGR01668) and YrbI (TIGR01670). In the case of histidinol phosphatase and PNK-3'-phosphatase, this model represents a domain of a bifunctional system. In the histidinol phosphatase HisB, a C-terminal domain is an imidazoleglycerol-phosphate dehydratase which catalyzes a related step in histidine biosynthesis. In PNK-3'-phosphatase, N- and C-terminal domains constitute the polynucleotide kinase and DNA-binding components of the enzyme. [Unknown function, Enzymes of unknown specificity] Pssm-ID: 273742 [Multi-domain] Cd Length: 135 Bit Score: 123.67 E-value: 1.55e-36
|
||||||||
PRK06769 | PRK06769 | HAD-IIIA family hydrolase; |
7-178 | 4.79e-31 | ||||
HAD-IIIA family hydrolase; Pssm-ID: 180686 [Multi-domain] Cd Length: 173 Bit Score: 110.97 E-value: 4.79e-31
|
||||||||
PRK05446 | PRK05446 | bifunctional histidinol-phosphatase/imidazoleglycerol-phosphate dehydratase HisB; |
6-144 | 3.87e-26 | ||||
bifunctional histidinol-phosphatase/imidazoleglycerol-phosphate dehydratase HisB; Pssm-ID: 235471 [Multi-domain] Cd Length: 354 Bit Score: 102.18 E-value: 3.87e-26
|
||||||||
hisB_Nterm | TIGR01261 | histidinol-phosphatase; This model describes histidinol phosphatase. All known examples in the ... |
6-144 | 2.88e-25 | ||||
histidinol-phosphatase; This model describes histidinol phosphatase. All known examples in the scope of this model are bifunctional proteins with a histidinol phosphatase domain followed by an imidazoleglycerol-phosphate dehydratase domain. These enzymatic domains catalyze the ninth and seventh steps, respectively, of histidine biosynthesis. [Amino acid biosynthesis, Histidine family] Pssm-ID: 130328 [Multi-domain] Cd Length: 161 Bit Score: 95.55 E-value: 2.88e-25
|
||||||||
Gph | COG0546 | Phosphoglycolate phosphatase, HAD superfamily [Energy production and conversion]; |
24-185 | 7.39e-17 | ||||
Phosphoglycolate phosphatase, HAD superfamily [Energy production and conversion]; Pssm-ID: 440312 [Multi-domain] Cd Length: 214 Bit Score: 74.97 E-value: 7.39e-17
|
||||||||
Hydrolase_like | pfam13242 | HAD-hyrolase-like; |
109-179 | 1.39e-13 | ||||
HAD-hyrolase-like; Pssm-ID: 433056 [Multi-domain] Cd Length: 75 Bit Score: 62.63 E-value: 1.39e-13
|
||||||||
YigB | COG1011 | FMN and 5-amino-6-(5-phospho-D-ribitylamino)uracil phosphatase YigB, HAD superfamily ... |
27-183 | 8.87e-12 | ||||
FMN and 5-amino-6-(5-phospho-D-ribitylamino)uracil phosphatase YigB, HAD superfamily (riboflavin biosynthesis) [Coenzyme transport and metabolism]; Pssm-ID: 440635 [Multi-domain] Cd Length: 220 Bit Score: 61.20 E-value: 8.87e-12
|
||||||||
PRK13222 | PRK13222 | N-acetylmuramic acid 6-phosphate phosphatase MupP; |
33-186 | 1.14e-10 | ||||
N-acetylmuramic acid 6-phosphate phosphatase MupP; Pssm-ID: 237310 [Multi-domain] Cd Length: 226 Bit Score: 58.28 E-value: 1.14e-10
|
||||||||
NagD | COG0647 | Ribonucleotide monophosphatase NagD, HAD superfamily [Nucleotide transport and metabolism]; |
111-179 | 7.29e-10 | ||||
Ribonucleotide monophosphatase NagD, HAD superfamily [Nucleotide transport and metabolism]; Pssm-ID: 440412 [Multi-domain] Cd Length: 259 Bit Score: 56.27 E-value: 7.29e-10
|
||||||||
HAD_PGPase | cd07512 | haloacid dehalogenase-like superfamily phosphoglycolate phosphatase, similar to Rhodobacter ... |
33-183 | 7.55e-09 | ||||
haloacid dehalogenase-like superfamily phosphoglycolate phosphatase, similar to Rhodobacter sphaeroides CbbZ; Phosphoglycolate phosphatase catalyzes the dephosphorylation of phosphoglycolate; its activity requires divalent cations, especially Mg++. This family belongs to the haloacid dehalogenase-like (HAD) hydrolases, a large superfamily of diverse enzymes that catalyze carbon or phosphoryl group transfer reactions on a range of substrates, using an active site aspartate in nucleophilic catalysis. Members of this superfamily include 2-L-haloalkanoic acid dehalogenase, azetidine hydrolase, phosphonoacetaldehyde hydrolase, phosphoserine phosphatase, phosphomannomutase, P-type ATPases and many others. HAD hydrolases are found in all three kingdoms of life, and most genomes are predicted to contain multiple HAD-like proteins. Members possess a highly conserved alpha/beta core domain, and many also possess a small cap domain, the fold and function of which is variable. HAD hydrolases are sometimes referred to as belonging to the DDDD superfamily of phosphohydrolases. Pssm-ID: 319815 [Multi-domain] Cd Length: 214 Bit Score: 53.09 E-value: 7.55e-09
|
||||||||
Hydrolase | pfam00702 | haloacid dehalogenase-like hydrolase; This family is structurally different from the alpha ... |
21-148 | 7.47e-08 | ||||
haloacid dehalogenase-like hydrolase; This family is structurally different from the alpha/beta hydrolase family (pfam00561). This family includes L-2-haloacid dehalogenase, epoxide hydrolases and phosphatases. The structure of the family consists of two domains. One is an inserted four helix bundle, which is the least well conserved region of the alignment, between residues 16 and 96 of Swiss:P24069. The rest of the fold is composed of the core alpha/beta domain. Those members with the characteriztic DxD triad at the N-terminus are probably phosphatidylglycerolphosphate (PGP) phosphatases involved in cardiolipin biosynthesis in the mitochondria. Pssm-ID: 459910 [Multi-domain] Cd Length: 191 Bit Score: 50.28 E-value: 7.47e-08
|
||||||||
CTE7 | TIGR02253 | HAD superfamily (subfamily IA) hydrolase, TIGR02253; This family of sequences from archaea and ... |
34-180 | 2.45e-07 | ||||
HAD superfamily (subfamily IA) hydrolase, TIGR02253; This family of sequences from archaea and metazoans includes the human uncharacterized protein CTE7. Pyrococcus species appear to have three different forms of this enzyme, so it is unclear whether all members of this family have the same function. This family is a member of the haloacid dehalogenase (HAD) superfamily of hydrolases which are characterized by three conserved sequence motifs. By virtue of an alpha helical domain in-between the first and second conserved motif, this family is a member of subfamily IA (TIGR01549). Pssm-ID: 274057 [Multi-domain] Cd Length: 221 Bit Score: 48.94 E-value: 2.45e-07
|
||||||||
PNK3P | pfam08645 | Polynucleotide kinase 3 phosphatase; Polynucleotide kinase 3 phosphatases play a role in the ... |
7-136 | 6.61e-07 | ||||
Polynucleotide kinase 3 phosphatase; Polynucleotide kinase 3 phosphatases play a role in the repair of single breaks in DNA induced by DNA-damaging agents such as gamma radiation and camptothecin. Pssm-ID: 370030 Cd Length: 161 Bit Score: 46.87 E-value: 6.61e-07
|
||||||||
HAD_2 | pfam13419 | Haloacid dehalogenase-like hydrolase; |
27-154 | 9.38e-07 | ||||
Haloacid dehalogenase-like hydrolase; Pssm-ID: 404323 [Multi-domain] Cd Length: 178 Bit Score: 46.81 E-value: 9.38e-07
|
||||||||
HAD_like | cd01427 | Haloacid dehalogenase-like hydrolases; The haloacid dehalogenase-like (HAD) superfamily ... |
7-155 | 1.02e-06 | ||||
Haloacid dehalogenase-like hydrolases; The haloacid dehalogenase-like (HAD) superfamily includes L-2-haloacid dehalogenase, epoxide hydrolase, phosphoserine phosphatase, phosphomannomutase, phosphoglycolate phosphatase, P-type ATPase, and many others. This superfamily includes a variety of enzymes that catalyze the cleavage of substrate C-Cl, P-C, and P-OP bonds via nucleophilic substitution pathways. All of which use a nucleophilic aspartate in their phosphoryl transfer reaction. They catalyze nucleophilic substitution reactions at phosphorus or carbon centers, using a conserved Asp carboxylate in covalent catalysis. All members possess a highly conserved alpha/beta core domain, and many also possess a small cap domain, the fold and function of which is variable. Members of this superfamily are sometimes referred to as belonging to the DDDD superfamily of phosphohydrolases. Pssm-ID: 319763 [Multi-domain] Cd Length: 106 Bit Score: 45.46 E-value: 1.02e-06
|
||||||||
PGP_bact | TIGR01449 | 2-phosphoglycolate phosphatase, prokaryotic; PGP is an essential enzyme in the glycolate ... |
33-183 | 2.75e-06 | ||||
2-phosphoglycolate phosphatase, prokaryotic; PGP is an essential enzyme in the glycolate salvage pathway in higher organisms (photorespiration in plants). Phosphoglycolate results from the oxidase activity of RubisCO in the Calvin cycle when concentrations of carbon dioxide are low relative to oxygen. In Ralstonia (Alcaligenes) eutropha and Rhodobacter sphaeroides, the PGP gene (CbbZ) is located on an operon along with other Calvin cycle enzymes including RubisCO. The only other pertinent experimental evidence concerns the gene from E. coli. The in vitro activity of the Ralstonia and Escherichia enzymes was determined with crude cell extracts of strains containing PGP on expression plasmids and compared to controls. In E. coli, however, there does not appear to be a functional Calvin cycle (RubisCO is absent), although the E. coli PGP gene (gph) is on the same operon (dam) with ribulose-5-phosphate-3-epimerase (rpe), a gene in the pentose-phosphate pathway (along with other, unrelated genes). The E. coli enzyme is not expressed under normal laboratory conditions; the pathway to which it belongs has not been determined. In fact, the possibility exists, although unlikely, that the E. coli enzyme and others within this equivalog have as their physiological substrate another, closely related molecule. The other seed chosen for this model, from Xylella fastidiosa has no experimental evidence, but is a plant pathogen and thus may obtain phosphoglycolate from its host. This model has been restricted to encompass only proteobacteria as no related PGP has been verified outside of this clade. Sequences from Aquifex aeolicus and Treponema pallidum fall between the trusted and noise cutoffs. Just below the noise cutoff is a gene which is part of the operon for the biosynthesis of the blue pigment, indigoidine, from Erwinia (Pectobacterium) chrysanthemi, a plant pathogen. It does not seem likely, considering the proposed biosynthetic mechanism, that the dephosphorylation of phosphoglycolate or a closely related compound is required. Possibly, this gene is fortuitously located in this operon, or has an indirect relationship to the necessity for the biosynthesis of this compound. Sequences from 11 species have been annotated as PGP or putative PGP but fall below the noise cutoff. None of these have experimental validation. This enzyme is a member of the Haloacid Dehalogenase (HAD) superfamily of aspartate-nucleophile hydrolase enzymes (pfam00702). [Energy metabolism, Sugars] Pssm-ID: 130516 [Multi-domain] Cd Length: 213 Bit Score: 45.97 E-value: 2.75e-06
|
||||||||
Hydrolase_6 | pfam13344 | Haloacid dehalogenase-like hydrolase; This family is part of the HAD superfamily. |
8-71 | 2.85e-06 | ||||
Haloacid dehalogenase-like hydrolase; This family is part of the HAD superfamily. Pssm-ID: 433132 Cd Length: 101 Bit Score: 43.99 E-value: 2.85e-06
|
||||||||
HAD_like | cd07533 | uncharacterized family of the haloacid dehalogenase-like (HAD) hydrolase superfamily, similar ... |
33-179 | 3.96e-06 | ||||
uncharacterized family of the haloacid dehalogenase-like (HAD) hydrolase superfamily, similar to Parvibaculum lavamentivorans HAD-superfamily hydrolase, subfamily IA, variant 1; This family belongs to the haloacid dehalogenase-like (HAD) hydrolases, a large superfamily of diverse enzymes that catalyze carbon or phosphoryl group transfer reactions on a range of substrates, using an active site aspartate in nucleophilic catalysis. Members of this superfamily include 2-L-haloalkanoic acid dehalogenase, azetidine hydrolase, phosphonoacetaldehyde hydrolase, phosphoserine phosphatase, phosphomannomutase, P-type ATPases and many others. HAD hydrolases are found in all three kingdoms of life, and most genomes are predicted to contain multiple HAD-like proteins. Members possess a highly conserved alpha/beta core domain, and many also possess a small cap domain, the fold and function of which is variable. HAD hydrolases are sometimes referred to as belonging to the DDDD superfamily of phosphohydrolases. Pssm-ID: 319835 [Multi-domain] Cd Length: 207 Bit Score: 45.47 E-value: 3.96e-06
|
||||||||
HAD_PGPase | cd16417 | Escherichia coli Gph phosphoglycolate phosphatase and related proteins; belongs to the ... |
33-180 | 4.10e-06 | ||||
Escherichia coli Gph phosphoglycolate phosphatase and related proteins; belongs to the haloacid dehalogenase-like superfamily; Phosphoglycolate phosphatase (PGP; EC 3.1.3.18) catalyzes the conversion of 2-phosphoglycolate into glycolate and phosphate. Members of this family belong to the haloacid dehalogenase-like (HAD) hydrolases, a large superfamily of diverse enzymes that catalyze carbon or phosphoryl group transfer reactions on a range of substrates, using an active site aspartate in nucleophilic catalysis. Members of this superfamily include 2-L-haloalkanoic acid dehalogenase (C-Cl bond hydrolysis), azetidine hydrolase (C-N bond hydrolysis); phosphonoacetaldehyde hydrolase (C-P bond hydrolysis), phosphoserine phosphatase and phosphomannomutase (CO-P bond hydrolysis), P-type ATPases (PO-P bond hydrolysis) and many others. HAD hydrolases are found in all three kingdoms of life, and most genomes are predicted to contain multiple HAD-like proteins. Members possess a highly conserved alpha/beta core domain, and many also possess a small cap domain, the fold and function of which is variable. HAD hydrolases are sometimes referred to as belonging to the DDDD superfamily of phosphohydrolases. Pssm-ID: 319854 [Multi-domain] Cd Length: 212 Bit Score: 45.30 E-value: 4.10e-06
|
||||||||
YcjU | COG0637 | Beta-phosphoglucomutase, HAD superfamily [Carbohydrate transport and metabolism]; |
25-179 | 1.13e-05 | ||||
Beta-phosphoglucomutase, HAD superfamily [Carbohydrate transport and metabolism]; Pssm-ID: 440402 [Multi-domain] Cd Length: 208 Bit Score: 44.04 E-value: 1.13e-05
|
||||||||
HAD_Pase_UmpH-like | cd07530 | UmpH/NagD family phosphatase, similar to Escherichia coli UmpH UMP phosphatase/NagD nucleotide ... |
111-178 | 3.20e-05 | ||||
UmpH/NagD family phosphatase, similar to Escherichia coli UmpH UMP phosphatase/NagD nucleotide phosphatase and Mycobacterium tuberculosis Rv1692 glycerol 3-phosphate phosphatase; Escherichia coli UmpH/NagD is a ribonucleoside tri-, di-, and monophosphatase with a preference for purines, it shows peak activity with UMP and functions in UMP-degradation. It is also an effective phosphatase with AMP, GMP and CMP. Mycobacterium tuberculosis phosphatase, Rv1692 is a glycerol 3-phosphate phosphatase. Rv1692 is the final enzyme involved in glycerophospholipid recycling/catabolism. This subfamily belongs to the UmpH/NagD phosphatase family, and to the haloacid dehalogenase-like (HAD) hydrolases, a large superfamily of diverse enzymes that catalyze carbon or phosphoryl group transfer reactions on a range of substrates, using an active site aspartate in nucleophilic catalysis. Members of this superfamily include 2-L-haloalkanoic acid dehalogenase, azetidine hydrolase, phosphonoacetaldehyde hydrolase, phosphoserine phosphatase, phosphomannomutase, P-type ATPases and many others. HAD hydrolases are found in all three kingdoms of life, and most genomes are predicted to contain multiple HAD-like proteins. Members possess a highly conserved alpha/beta core domain, and many also possess a small cap domain, the fold and function of which is variable. HAD hydrolases are sometimes referred to as belonging to the DDDD superfamily of phosphohydrolases. Pssm-ID: 319832 [Multi-domain] Cd Length: 247 Bit Score: 42.96 E-value: 3.20e-05
|
||||||||
HAD_PPase | cd07509 | inorganic pyrophosphatase similar to a human phospholysine phosphohistidine inorganic ... |
105-183 | 1.38e-04 | ||||
inorganic pyrophosphatase similar to a human phospholysine phosphohistidine inorganic pyrophosphate phosphatase (LHPP); LHPP hydrolyzes nitrogen-phosphorus bonds in phospholysine, phosphohistidine and imidodiphosphate as well as oxygen-phosphorus bonds in inorganic pyrophosphate in vitro. This family also includes human haloacid dehalogenase like hydrolase domain containing 2 protine (HDHD2) a phosphatase which may be involved in polygenic hypertension. Members of this family belong to the haloacid dehalogenase-like (HAD) hydrolases, a large superfamily of diverse enzymes that catalyze carbon or phosphoryl group transfer reactions on a range of substrates, using an active site aspartate in nucleophilic catalysis. Members of this superfamily include 2-L-haloalkanoic acid dehalogenase, azetidine hydrolase, phosphonoacetaldehyde hydrolase, phosphoserine phosphatase, phosphomannomutase, P-type ATPases and many others. HAD hydrolases are found in all three kingdoms of life, and most genomes are predicted to contain multiple HAD-like proteins. Members possess a highly conserved alpha/beta core domain, and many also possess a small cap domain, the fold and function of which is variable. HAD hydrolases are sometimes referred to as belonging to the DDDD superfamily of phosphohydrolases. Pssm-ID: 319812 [Multi-domain] Cd Length: 248 Bit Score: 41.11 E-value: 1.38e-04
|
||||||||
HAD_PNP | cd01625 | polynucleotide 3'-phosphatase domain similar to the phosphatase domain of the bifunctional ... |
33-136 | 4.51e-04 | ||||
polynucleotide 3'-phosphatase domain similar to the phosphatase domain of the bifunctional enzyme polynucleotide 5'-kinase/3'-phosphatase; Polynucleotide 3'-phosphatase (PNP) domain. This domain dephosphorylates single-stranded as well as double-stranded 3'-phospho termini. It is found in bifunctional enzyme polynucleotide kinase/phosphatase (PNKP) which contain both kinase and phosphatase domains. PNKP plays a key role in both base excision repair and non-homologous end-joining DNA repair pathway. DNA strand breaks can result from DNA damage by ionizing radiation and chemical agents, such as alkylating agents or anticancer agents. Such DNA damage often results in DNA strands with 5'-hydroxyl and 3'-phosphate termini. However, the repair of DNA damage by DNA polymerases and ligases requires 5'-phosphate and 3'-hydroxyl termini. PNKP acts as a 5'-kinase/3'-phosphatase to create 5'-phosphate/3'-hydroxyl termini, which are a necessary prerequisite for ligation during repair. This family belongs to the haloacid dehalogenase-like (HAD) hydrolases, a large superfamily of diverse enzymes that catalyze carbon or phosphoryl group transfer reactions on a range of substrates, using an active site aspartate in nucleophilic catalysis. Members of this superfamily include 2-L-haloalkanoic acid dehalogenase, azetidine hydrolase, phosphonoacetaldehyde hydrolase, phosphoserine phosphatase, phosphomannomutase, P-type ATPases and many others. HAD hydrolases are found in all three kingdoms of life, and most genomes are predicted to contain multiple HAD-like proteins. Members possess a highly conserved alpha/beta core domain, and many also possess a small cap domain, the fold and function of which is variable. HAD hydrolases are sometimes referred to as belonging to the DDDD superfamily of phosphohydrolases. Pssm-ID: 319766 Cd Length: 154 Bit Score: 38.87 E-value: 4.51e-04
|
||||||||
HAD_PPase | cd02616 | pyrophosphatase similar to Bacillus subtilis PpaX; This family includes Bacillus subtilis PpaX ... |
24-179 | 8.84e-04 | ||||
pyrophosphatase similar to Bacillus subtilis PpaX; This family includes Bacillus subtilis PpaX which hydrolyzes pyrophosphate formed during serine-46-phosphorylated HPr (P-Ser-HPr) dephosphorylation by the bifunctional enzyme HPr kinase/phosphorylase. This family belongs to the haloacid dehalogenase-like (HAD) hydrolases, a large superfamily of diverse enzymes that catalyze carbon or phosphoryl group transfer reactions on a range of substrates, using an active site aspartate in nucleophilic catalysis. Members of this superfamily include 2-L-haloalkanoic acid dehalogenase, azetidine hydrolase, phosphonoacetaldehyde hydrolase, phosphoserine phosphatase, phosphomannomutase, P-type ATPases and many others. HAD hydrolases are found in all three kingdoms of life, and most genomes are predicted to contain multiple HAD-like proteins. Members possess a highly conserved alpha/beta core domain, and many also possess a small cap domain, the fold and function of which is variable. HAD hydrolases are sometimes referred to as belonging to the DDDD superfamily of phosphohydrolases. Pssm-ID: 319797 [Multi-domain] Cd Length: 207 Bit Score: 38.41 E-value: 8.84e-04
|
||||||||
PNK-3'Pase | TIGR01663 | polynucleotide 5'-kinase 3'-phosphatase; This model represents the metazoan 5 ... |
39-136 | 1.18e-03 | ||||
polynucleotide 5'-kinase 3'-phosphatase; This model represents the metazoan 5'-polynucleotide-kinase-3'-phosphatase, PNKP, which is believed to be involved in repair of oxidative DNA damage. Removal of 3' phosphates is essential for the further processing of the break by DNA polymerases. The central phosphatase domain is a member of the IIIA subfamily (TIGR01662) of the haloacid dehalogenase (HAD) superfamily of aspartate-nucleophile hydrolases. As is common in this superfamily, the enzyme is magnesium dependent. A difference between this enzyme and other HAD-superfamily phosphatases is in the third conserved catalytic motif which usually contains two conserved aspartate residues believed to be involved in binding the magnesium ion. Here, the second aspartate is replaced by a conserved arginine residue which may indicate an interaction with the phosphate backbone of the substrate. Very close relatives of this domain are also found separate from the N- and C-terminal domains seen here, as in the 3'-phosphatase found in plants. The larger family of these domains is described by TIGR01664. Outside of the phosphatase domain is a P-loop ATP-binding motif associated with the kinase activity. The entry for the mouse homolog appears to be missing a large piece of sequence corresponding to the first conserved catalytic motif of the phosphatase domain as well as the conserved threonine of the second motif. Either this is a sequencing artifact or this may represent a pseudo- or non-functional gene. Note that the EC number for the kinase function is: 2.7.1.78 Pssm-ID: 130724 [Multi-domain] Cd Length: 526 Bit Score: 38.85 E-value: 1.18e-03
|
||||||||
PflA | COG1180 | Pyruvate-formate lyase-activating enzyme [Posttranslational modification, protein turnover, ... |
31-81 | 1.43e-03 | ||||
Pyruvate-formate lyase-activating enzyme [Posttranslational modification, protein turnover, chaperones]; Pssm-ID: 440793 [Multi-domain] Cd Length: 242 Bit Score: 38.24 E-value: 1.43e-03
|
||||||||
ATPase-IB1_Cu | TIGR01511 | copper-(or silver)-translocating P-type ATPase; This model describes the P-type ATPase ... |
133-188 | 4.22e-03 | ||||
copper-(or silver)-translocating P-type ATPase; This model describes the P-type ATPase primarily responsible for translocating copper ions accross biological membranes. These transporters are found in prokaryotes and eukaryotes. This model encompasses those species which pump copper ions out of cells or organelles (efflux pumps such as CopA of Escherichia coli) as well as those which pump the ion into cells or organelles either for the purpose of supporting life in extremely low-copper environments (for example CopA of Enterococcus hirae) or for the specific delivery of copper to a biological complex for which it is a necessary component (for example FixI of Bradyrhizobium japonicum, or CtaA and PacS of Synechocystis). The substrate specificity of these transporters may, to a varying degree, include silver ions (for example, CopA from Archaeoglobus fulgidus). Copper transporters from this family are well known as the genes which are mutated in two human disorders of copper metabolism, Wilson's and Menkes' diseases. The sequences contributing to the seed of this model are all experimentally characterized. The copper P-type ATPases have been characterized as Type IB based on a phylogenetic analysis which combines the copper-translocating ATPases with the cadmium-translocating species. This model and that describing the cadmium-ATPases (TIGR01512) are well separated, and thus we further type the copper-ATPases as IB1 (and the cadmium-ATPases as IB2). Several sequences which have not been characterized experimentally fall just below the cutoffs for both of these models (SP|Q9CCL1 from Mycobacterium leprae, GP|13816263 from Sulfolobus solfataricus, OMNI|NTL01CJ01098 from Campylobacter jejuni, OMNI|NTL01HS01687 from Halobacterium sp., GP|6899169 from Ureaplasma urealyticum and OMNI|HP1503 from Helicobacter pylori). Accession PIR|A29576 from Enterococcus faecalis scores very high against this model, but yet is annotated as an "H+/K+ exchanging ATPase". BLAST of this sequence does not hit anything else annotated in this way. This error may come from the characterization paper published in 1987. Accession GP|7415611 from Saccharomyces cerevisiae appears to be mis-annotated as a cadmium resistance protein. Accession OMNI|NTL01HS00542 from Halobacterium which scores above trusted for this model is annotated as "molybdenum-binding protein" although no evidence can be found for this classification. [Cellular processes, Detoxification, Transport and binding proteins, Cations and iron carrying compounds] Pssm-ID: 273664 [Multi-domain] Cd Length: 562 Bit Score: 37.25 E-value: 4.22e-03
|
||||||||
ATPase-IB_hvy | TIGR01525 | heavy metal translocating P-type ATPase; This model encompasses two equivalog models for the ... |
133-188 | 5.72e-03 | ||||
heavy metal translocating P-type ATPase; This model encompasses two equivalog models for the copper and cadmium-type heavy metal transporting P-type ATPases (TIGR01511 and TIGR01512) as well as those species which score ambiguously between both models. For more comments and references, see the files on TIGR01511 and 01512. Pssm-ID: 273669 [Multi-domain] Cd Length: 558 Bit Score: 36.84 E-value: 5.72e-03
|
||||||||
Blast search parameters | ||||
|