M3 family oligoendopeptidase similar to oligoendopeptidase F (PepF) that hydrolyzes peptides containing between 7 and 17 amino acids with fairly broad specificity
Peptidase family M3B, oligopeptidase F (PepF); Peptidase family M3B oligopeptidase F (PepF; ...
37-596
0e+00
Peptidase family M3B, oligopeptidase F (PepF); Peptidase family M3B oligopeptidase F (PepF; Pz-peptidase B; EC 3.4.24.-) is mostly bacterial and includes oligoendopeptidase F from Lactococcus lactis. This enzyme hydrolyzes peptides containing between 7 and 17 amino acids with fairly broad specificity. The PepF gene is duplicated in L. lactis on the plasmid that bears it, while a shortened second copy is found in Bacillus subtilis. Most bacterial PepFs are cytoplasmic endopeptidases; however, the Bacillus amyloliquefaciens PepF oligopeptidase is a secreted protein and may facilitate the process of sporulation. Specifically, the yjbG gene encoding the homolog of the PepF1 and PepF2 oligoendopeptidases of Lactococcus lactis has been identified in Bacillus subtilis as an inhibitor of sporulation initiation when over-expressed from a multicopy plasmid. This PepF family includes Streptococcus agalactiae PepB, a group B streptococcal oligopeptidase which has been shown to degrade a variety of bioactive peptides as well as the synthetic collagen-like substrate N-(3-[2-furyl]acryloyl)-Leu-Gly- Pro-Ala in vitro.
:
Pssm-ID: 341071 [Multi-domain] Cd Length: 560 Bit Score: 839.40 E-value: 0e+00
Peptidase family M3B, oligopeptidase F (PepF); Peptidase family M3B oligopeptidase F (PepF; ...
37-596
0e+00
Peptidase family M3B, oligopeptidase F (PepF); Peptidase family M3B oligopeptidase F (PepF; Pz-peptidase B; EC 3.4.24.-) is mostly bacterial and includes oligoendopeptidase F from Lactococcus lactis. This enzyme hydrolyzes peptides containing between 7 and 17 amino acids with fairly broad specificity. The PepF gene is duplicated in L. lactis on the plasmid that bears it, while a shortened second copy is found in Bacillus subtilis. Most bacterial PepFs are cytoplasmic endopeptidases; however, the Bacillus amyloliquefaciens PepF oligopeptidase is a secreted protein and may facilitate the process of sporulation. Specifically, the yjbG gene encoding the homolog of the PepF1 and PepF2 oligoendopeptidases of Lactococcus lactis has been identified in Bacillus subtilis as an inhibitor of sporulation initiation when over-expressed from a multicopy plasmid. This PepF family includes Streptococcus agalactiae PepB, a group B streptococcal oligopeptidase which has been shown to degrade a variety of bioactive peptides as well as the synthetic collagen-like substrate N-(3-[2-furyl]acryloyl)-Leu-Gly- Pro-Ala in vitro.
Pssm-ID: 341071 [Multi-domain] Cd Length: 560 Bit Score: 839.40 E-value: 0e+00
oligoendopeptidase F; This family represents the oligoendopeptidase F clade of the family of ...
16-599
0e+00
oligoendopeptidase F; This family represents the oligoendopeptidase F clade of the family of larger M3 or thimet (for thiol-dependent metallopeptidase) oligopeptidase family. Lactococcus lactis PepF hydrolyzed peptides of 7 and 17 amino acids with fairly broad specificity. The homolog of lactococcal PepF in group B Streptococcus was named PepB (, with the name difference reflecting a difference in species of origin rather activity; substrate profiles were quite similar. Differences in substrate specificity should be expected in other species. The gene is duplicated in Lactococcus lactis on the plasmid that bears it. A shortened second copy is found in Bacillus subtilis. [Protein fate, Degradation of proteins, peptides, and glycopeptides]
Pssm-ID: 272947 [Multi-domain] Cd Length: 591 Bit Score: 644.36 E-value: 0e+00
Peptidase family M3; This is the Thimet oligopeptidase family, large family of mammalian and ...
207-587
8.15e-95
Peptidase family M3; This is the Thimet oligopeptidase family, large family of mammalian and bacterial oligopeptidases that cleave medium sized peptides. The group also contains mitochondrial intermediate peptidase which is encoded by nuclear DNA but functions within the mitochondria to remove the leader sequence.
Pssm-ID: 396149 [Multi-domain] Cd Length: 450 Bit Score: 298.15 E-value: 8.15e-95
Peptidase family M3B, oligopeptidase F (PepF); Peptidase family M3B oligopeptidase F (PepF; ...
37-596
0e+00
Peptidase family M3B, oligopeptidase F (PepF); Peptidase family M3B oligopeptidase F (PepF; Pz-peptidase B; EC 3.4.24.-) is mostly bacterial and includes oligoendopeptidase F from Lactococcus lactis. This enzyme hydrolyzes peptides containing between 7 and 17 amino acids with fairly broad specificity. The PepF gene is duplicated in L. lactis on the plasmid that bears it, while a shortened second copy is found in Bacillus subtilis. Most bacterial PepFs are cytoplasmic endopeptidases; however, the Bacillus amyloliquefaciens PepF oligopeptidase is a secreted protein and may facilitate the process of sporulation. Specifically, the yjbG gene encoding the homolog of the PepF1 and PepF2 oligoendopeptidases of Lactococcus lactis has been identified in Bacillus subtilis as an inhibitor of sporulation initiation when over-expressed from a multicopy plasmid. This PepF family includes Streptococcus agalactiae PepB, a group B streptococcal oligopeptidase which has been shown to degrade a variety of bioactive peptides as well as the synthetic collagen-like substrate N-(3-[2-furyl]acryloyl)-Leu-Gly- Pro-Ala in vitro.
Pssm-ID: 341071 [Multi-domain] Cd Length: 560 Bit Score: 839.40 E-value: 0e+00
oligoendopeptidase F; This family represents the oligoendopeptidase F clade of the family of ...
16-599
0e+00
oligoendopeptidase F; This family represents the oligoendopeptidase F clade of the family of larger M3 or thimet (for thiol-dependent metallopeptidase) oligopeptidase family. Lactococcus lactis PepF hydrolyzed peptides of 7 and 17 amino acids with fairly broad specificity. The homolog of lactococcal PepF in group B Streptococcus was named PepB (, with the name difference reflecting a difference in species of origin rather activity; substrate profiles were quite similar. Differences in substrate specificity should be expected in other species. The gene is duplicated in Lactococcus lactis on the plasmid that bears it. A shortened second copy is found in Bacillus subtilis. [Protein fate, Degradation of proteins, peptides, and glycopeptides]
Pssm-ID: 272947 [Multi-domain] Cd Length: 591 Bit Score: 644.36 E-value: 0e+00
Peptidase family M3B, oligopeptidase F (PepF); Peptidase family M3B oligopeptidase F (PepF; ...
15-585
4.74e-134
Peptidase family M3B, oligopeptidase F (PepF); Peptidase family M3B oligopeptidase F (PepF; Pz-peptidase B; EC 3.4.24.-) is mostly bacterial and is similar to oligoendopeptidase F from Lactococcus lactis. This enzyme hydrolyzes peptides containing between 7 and 17 amino acids with fairly broad specificity. The PepF gene is duplicated in L. lactis on the plasmid that bears it, while a shortened second copy is found in Bacillus subtilis. Most bacterial PepFs are cytoplasmic endopeptidases; however, the Bacillus amyloliquefaciens PepF oligopeptidase is a secreted protein and may facilitate the process of sporulation. Specifically, the yjbG gene encoding the homolog of the PepF1 and PepF2 oligoendopeptidases of Lactococcus lactis has been identified in Bacillus subtilis as an inhibitor of sporulation initiation when over-expressed from a multicopy plasmid.
Pssm-ID: 341072 [Multi-domain] Cd Length: 586 Bit Score: 403.89 E-value: 4.74e-134
Peptidase family M3B, oligopeptidase F (PepF); Peptidase family M3B oligopeptidase F (PepF; ...
56-590
8.46e-112
Peptidase family M3B, oligopeptidase F (PepF); Peptidase family M3B oligopeptidase F (PepF; Pz-peptidase B; EC 3.4.24.-) is mostly bacterial and is similar to oligoendopeptidase F from Lactococcus lactis. This enzyme hydrolyzes peptides containing between 7 and 17 amino acids with fairly broad specificity. The PepF gene is duplicated in L. lactis on the plasmid that bears it, while a shortened second copy is found in Bacillus subtilis. Most bacterial PepFs are cytoplasmic endopeptidases; however, the Bacillus amyloliquefaciens PepF oligopeptidase is a secreted protein and may facilitate the process of sporulation. Specifically, the yjbG gene encoding the homolog of the PepF1 and PepF2 oligoendopeptidases of Lactococcus lactis has been identified in Bacillus subtilis as an inhibitor of sporulation initiation when over-expressed from a multicopy plasmid.
Pssm-ID: 341073 [Multi-domain] Cd Length: 532 Bit Score: 344.52 E-value: 8.46e-112
Peptidase family M3B, oligopeptidase F (PepF); Peptidase family M3B oligopeptidase F (PepF; ...
54-590
5.38e-110
Peptidase family M3B, oligopeptidase F (PepF); Peptidase family M3B oligopeptidase F (PepF; Pz-peptidase B; EC 3.4.24.-) is mostly bacterial and includes oligoendopeptidase F from Lactococcus lactis. This enzyme hydrolyzes peptides containing between 7 and 17 amino acids with fairly broad specificity. The PepF gene is duplicated in L. lactis on the plasmid that bears it, while a shortened second copy is found in Bacillus subtilis. Most bacterial PepFs are cytoplasmic endopeptidases; however, the Bacillus amyloliquefaciens PepF oligopeptidase is a secreted protein and may facilitate the process of sporulation. Specifically, the yjbG gene encoding the homolog of the PepF1 and PepF2 oligoendopeptidases of Lactococcus lactis has been identified in Bacillus subtilis as an inhibitor of sporulation initiation when over-expressed from a multicopy plasmid.
Pssm-ID: 341053 [Multi-domain] Cd Length: 539 Bit Score: 340.25 E-value: 5.38e-110
Peptidase family M3; This is the Thimet oligopeptidase family, large family of mammalian and ...
207-587
8.15e-95
Peptidase family M3; This is the Thimet oligopeptidase family, large family of mammalian and bacterial oligopeptidases that cleave medium sized peptides. The group also contains mitochondrial intermediate peptidase which is encoded by nuclear DNA but functions within the mitochondria to remove the leader sequence.
Pssm-ID: 396149 [Multi-domain] Cd Length: 450 Bit Score: 298.15 E-value: 8.15e-95
Peptidase family M3B, oligopeptidase F (PepF); Peptidase family M3B Oligopeptidase F (PepF; ...
19-596
1.82e-74
Peptidase family M3B, oligopeptidase F (PepF); Peptidase family M3B Oligopeptidase F (PepF; Pz-peptidase B; EC 3.4.24.-) is mostly bacterial and is similar to oligoendopeptidase F from Lactococcus lactis. This enzyme hydrolyzes peptides containing between 7 and 17 amino acids with fairly broad specificity. The PepF gene is duplicated in L. lactis on the plasmid that bears it, while a shortened second copy is found in Bacillus subtilis. Most bacterial PepFs are cytoplasmic endopeptidases; however, the Bacillus amyloliquefaciens PepF oligopeptidase is a secreted protein and may facilitate the process of sporulation. Specifically, the yjbG gene encoding the homolog of the PepF1 and PepF2 oligoendopeptidases of Lactococcus lactis has been identified in Bacillus subtilis as an inhibitor of sporulation initiation when over-expressed from a multicopy plasmid.
Pssm-ID: 341070 [Multi-domain] Cd Length: 580 Bit Score: 248.61 E-value: 1.82e-74
M3-like Peptidases, zincin metallopeptidases, include M2_ACE, M3A, M3B_PepF, and M32 families; ...
271-576
1.17e-33
M3-like Peptidases, zincin metallopeptidases, include M2_ACE, M3A, M3B_PepF, and M32 families; The peptidase M3-like family, also called neurolysin-like family, is part of the "zincin" metallopeptidases, and includes the M2, M3 and M32 families of metallopeptidases. The M2 angiotensin converting enzyme (ACE, EC 3.4.15.1) is a membrane-bound, zinc-dependent dipeptidase that catalyzes the conversion of the decapeptide angiotensin I to the potent vasopressor octapeptide angiotensin II. The M3 family is subdivided into two subfamilies: the widespread M3A, which comprises a number of high-molecular mass endo- and exopeptidases from bacteria, archaea, protozoa, fungi, plants and animals, and the small M3B, whose members are enzymes primarily from bacteria. Well-known mammalian/eukaryotic M3A endopeptidases are the thimet oligopeptidase (TOP; endopeptidase 3.4.24.15), neurolysin (alias endopeptidase 3.4.24.16), and the mitochondrial intermediate peptidase. The first two are intracellular oligopeptidases, which act only on relatively short substrates of less than 20 amino acid residues, while the latter cleaves N-terminal octapeptides from proteins during their import into the mitochondria. The M3A subfamily also contains several bacterial endopeptidases, called oligopeptidases A, as well as a large number of bacterial carboxypeptidases, called dipeptidyl peptidases (Dcp; Dcp II; peptidyl dipeptidase; EC 3.4.15.5). M3B subfamily consists of oligopeptidase F (PepF) which hydrolyzes peptides containing 7-17 amino acid residues with fairly broad specificity. Peptidases in the M3 family contain the HEXXH motif that forms part of the active site in conjunction with a C-terminally-located Glutamic acid (Glu) residue. A single zinc ion is ligated by the side-chains of the two Histidine (His) residues, and the more C-terminal Glu. Most of the peptidases are synthesized without signal peptides or propeptides, and function intracellularly. There are similarities to the thermostable carboxypeptidases from Pyrococcus furiosus carboxypeptidase (PfuCP), and Thermus aquaticus (TaqCP), belonging to peptidase family M32. Little is known about function of this family, including carboxypeptidases Taq and Pfu.
Pssm-ID: 341049 [Multi-domain] Cd Length: 473 Bit Score: 134.09 E-value: 1.17e-33
Peptidase family M3B, oligopeptidase F (PepF); Peptidase family M3 oligopeptidase F ...
27-574
3.24e-27
Peptidase family M3B, oligopeptidase F (PepF); Peptidase family M3 oligopeptidase F (oligendopeptidase) is mostly bacterial and includes oligoendopeptidase F from Geobacillus stearothermophilus. This enzyme hydrolyzes peptides containing between 7 and 17 amino acids and may cleave proteins at Leu-Gly. The PepF gene is duplicated in Lactococcus lactis on the plasmid that bears it, while a shortened second copy is found in Bacillus subtilis. Most bacterial PepFs are cytoplasmic endopeptidases; however, the Bacillus amyloliquefaciens PepF oligopeptidase is a secreted protein and may facilitate the process of sporulation. Specifically, the yjbG gene encoding the homolog of the PepF1 and PepF2 oligoendopeptidases of Lactococcus lactis has been identified in Bacillus subtilis as an inhibitor of sporulation initiation when over-expressed from a multicopy plasmid.
Pssm-ID: 341069 [Multi-domain] Cd Length: 543 Bit Score: 116.03 E-value: 3.24e-27
oligoendopeptidase, M3 family; This family consists of probable oligoendopeptidases in the M3 ...
29-597
6.50e-24
oligoendopeptidase, M3 family; This family consists of probable oligoendopeptidases in the M3 family, related to lactococcal PepF and group B streptococcal PepB (TIGR00181) but in a distinct clade with considerable sequence differences. The likely substrate is small peptides and not whole proteins, as with PepF, but members are not characterized and the activity profile may differ. Several bacteria have both a member of this family and a member of the PepF family.
Pssm-ID: 274068 [Multi-domain] Cd Length: 549 Bit Score: 105.99 E-value: 6.50e-24
Oligopeptidase F; This domain is found to the N-terminus of the pfam01432 domain in bacterial ...
117-186
6.18e-19
Oligopeptidase F; This domain is found to the N-terminus of the pfam01432 domain in bacterial and archaeal proteins including Oligoendopeptidase F. An example of this protein is Lactococcus lactis PepF.
Pssm-ID: 429999 [Multi-domain] Cd Length: 70 Bit Score: 80.98 E-value: 6.18e-19
Peptidase M3 mitochondrial intermediate peptidase (MIP); Peptidase M3 mitochondrial intermediate peptidase (MIP; EC 3.4.24.59) belongs to the widespread subfamily M3A, that shows similarity to Thimet oligopeptidase (TOP). It is one of three peptidases responsible for the proteolytic processing of both nuclear and mitochondrial encoded precursor polypeptides targeted to various subcompartments of the mitochondria. It cleaves intermediate-size proteins initially processed by mitochondrial processing peptidase (MPP) to yield a processing intermediate with a typical N-terminal octapeptide that is sequentially cleaved by MIP to mature-size protein. MIP cleaves precursor proteins of respiratory components, including subunits of the electron transport chain and tri-carboxylic acid cycle enzymes, and components of the mitochondrial genetic machinery, including ribosomal proteins, translation factors, and proteins required for mitochondrial DNA metabolism. It has been suggested that the human MIP (HMIP polypeptide (gene symbol MIPEP) may be one of the loci predicted to influence the clinical manifestations of Friedreich's ataxia (FRDA), an autosomal recessive neurodegenerative disease caused by the lack of human frataxin. These proteins are enriched in cysteine residues, two of which are highly conserved, suggesting their importance to stability as well as in formation of metal binding sites, thus playing a role in MIP activity.
Pssm-ID: 341052 [Multi-domain] Cd Length: 613 Bit Score: 46.01 E-value: 6.82e-05
Database: CDSEARCH/cdd Low complexity filter: no Composition Based Adjustment: yes E-value threshold: 0.01
References:
Wang J et al. (2023), "The conserved domain database in 2023", Nucleic Acids Res.51(D)384-8.
Lu S et al. (2020), "The conserved domain database in 2020", Nucleic Acids Res.48(D)265-8.
Marchler-Bauer A et al. (2017), "CDD/SPARCLE: functional classification of proteins via subfamily domain architectures.", Nucleic Acids Res.45(D)200-3.
of the residues that compose this conserved feature have been mapped to the query sequence.
Click on the triangle to view details about the feature, including a multiple sequence alignment
of your query sequence and the protein sequences used to curate the domain model,
where hash marks (#) above the aligned sequences show the location of the conserved feature residues.
The thumbnail image, if present, provides an approximate view of the feature's location in 3 dimensions.
Click on the triangle for interactive 3D structure viewing options.
Functional characterization of the conserved domain architecture found on the query.
Click here to see more details.
This image shows a graphical summary of conserved domains identified on the query sequence.
The Show Concise/Full Display button at the top of the page can be used to select the desired level of detail: only top scoring hits
(labeled illustration) or all hits
(labeled illustration).
Domains are color coded according to superfamilies
to which they have been assigned. Hits with scores that pass a domain-specific threshold
(specific hits) are drawn in bright colors.
Others (non-specific hits) and
superfamily placeholders are drawn in pastel colors.
if a domain or superfamily has been annotated with functional sites (conserved features),
they are mapped to the query sequence and indicated through sets of triangles
with the same color and shade of the domain or superfamily that provides the annotation. Mouse over the colored bars or triangles to see descriptions of the domains and features.
click on the bars or triangles to view your query sequence embedded in a multiple sequence alignment of the proteins used to develop the corresponding domain model.
The table lists conserved domains identified on the query sequence. Click on the plus sign (+) on the left to display full descriptions, alignments, and scores.
Click on the domain model's accession number to view the multiple sequence alignment of the proteins used to develop the corresponding domain model.
To view your query sequence embedded in that multiple sequence alignment, click on the colored bars in the Graphical Summary portion of the search results page,
or click on the triangles, if present, that represent functional sites (conserved features)
mapped to the query sequence.
Concise Display shows only the best scoring domain model, in each hit category listed below except non-specific hits, for each region on the query sequence.
(labeled illustration) Standard Display shows only the best scoring domain model from each source, in each hit category listed below for each region on the query sequence.
(labeled illustration) Full Display shows all domain models, in each hit category below, that meet or exceed the RPS-BLAST threshold for statistical significance.
(labeled illustration) Four types of hits can be shown, as available,
for each region on the query sequence:
specific hits meet or exceed a domain-specific e-value threshold
(illustrated example)
and represent a very high confidence that the query sequence belongs to the same protein family as the sequences use to create the domain model
non-specific hits
meet or exceed the RPS-BLAST threshold for statistical significance (default E-value cutoff of 0.01, or an E-value selected by user via the
advanced search options)
the domain superfamily to which the specific and non-specific hits belong
multi-domain models that were computationally detected and are likely to contain multiple single domains
Retrieve proteins that contain one or more of the domains present in the query sequence, using the Conserved Domain Architecture Retrieval Tool
(CDART).
Modify your query to search against a different database and/or use advanced search options