NEK3 [Branchiostoma lanceolatum]
protein kinase family protein( domain architecture ID 229378)
protein kinase family protein may catalyze the transfer of the gamma-phosphoryl group from ATP to substrates such as serine/threonine and/or tyrosine residues on proteins, or may be a pseudokinase
List of domain hits
Name | Accession | Description | Interval | E-value | |||
PKc_like super family | cl21453 | Protein Kinases, catalytic domain; The protein kinase superfamily is mainly composed of the ... |
11-142 | 5.79e-17 | |||
Protein Kinases, catalytic domain; The protein kinase superfamily is mainly composed of the catalytic domains of serine/threonine-specific and tyrosine-specific protein kinases. It also includes RIO kinases, which are atypical serine protein kinases, aminoglycoside phosphotransferases, and choline kinases. These proteins catalyze the transfer of the gamma-phosphoryl group from ATP to hydroxyl groups in specific substrates such as serine, threonine, or tyrosine residues of proteins. The actual alignment was detected with superfamily member cd14014: Pssm-ID: 473864 [Multi-domain] Cd Length: 260 Bit Score: 76.47 E-value: 5.79e-17
|
|||||||
Name | Accession | Description | Interval | E-value | |||
STKc_PknB_like | cd14014 | Catalytic domain of bacterial Serine/Threonine kinases, PknB and similar proteins; STKs ... |
11-142 | 5.79e-17 | |||
Catalytic domain of bacterial Serine/Threonine kinases, PknB and similar proteins; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. This subfamily includes many bacterial eukaryotic-type STKs including Staphylococcus aureus PknB (also called PrkC or Stk1), Bacillus subtilis PrkC, and Mycobacterium tuberculosis Pkn proteins (PknB, PknD, PknE, PknF, PknL, and PknH), among others. S. aureus PknB is the only eukaryotic-type STK present in this species, although many microorganisms encode for several such proteins. It is important for the survival and pathogenesis of S. aureus as it is involved in the regulation of purine and pyrimidine biosynthesis, cell wall metabolism, autolysis, virulence, and antibiotic resistance. M. tuberculosis PknB is essential for growth and it acts on diverse substrates including proteins involved in peptidoglycan synthesis, cell division, transcription, stress responses, and metabolic regulation. B. subtilis PrkC is located at the inner membrane of endospores and functions to trigger spore germination. Bacterial STKs in this subfamily show varied domain architectures. The well-characterized members such as S. aureus and M. tuberculosis PknB, and B. subtilis PrkC, contain an N-terminal cytosolic kinase domain, a transmembrane (TM) segment, and mutliple C-terminal extracellular PASTA domains. The PknB subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270916 [Multi-domain] Cd Length: 260 Bit Score: 76.47 E-value: 5.79e-17
|
|||||||
SPS1 | COG0515 | Serine/threonine protein kinase [Signal transduction mechanisms]; |
11-142 | 1.20e-15 | |||
Serine/threonine protein kinase [Signal transduction mechanisms]; Pssm-ID: 440281 [Multi-domain] Cd Length: 482 Bit Score: 74.28 E-value: 1.20e-15
|
|||||||
S_TKc | smart00220 | Serine/Threonine protein kinases, catalytic domain; Phosphotransferases. Serine or ... |
47-142 | 4.51e-13 | |||
Serine/Threonine protein kinases, catalytic domain; Phosphotransferases. Serine or threonine-specific kinase subfamily. Pssm-ID: 214567 [Multi-domain] Cd Length: 254 Bit Score: 65.63 E-value: 4.51e-13
|
|||||||
PK_Tyr_Ser-Thr | pfam07714 | Protein tyrosine and serine/threonine kinase; Protein phosphorylation, which plays a key role ... |
7-142 | 8.26e-07 | |||
Protein tyrosine and serine/threonine kinase; Protein phosphorylation, which plays a key role in most cellular activities, is a reversible process mediated by protein kinases and phosphoprotein phosphatases. Protein kinases catalyze the transfer of the gamma phosphate from nucleotide triphosphates (often ATP) to one or more amino acid residues in a protein substrate side chain, resulting in a conformational change affecting protein function. Phosphoprotein phosphatases catalyze the reverse process. Protein kinases fall into three broad classes, characterized with respect to substrate specificity; Serine/threonine-protein kinases, tyrosine-protein kinases, and dual specificity protein kinases (e.g. MEK - phosphorylates both Thr and Tyr on target proteins). This entry represents the catalytic domain found in a number of serine/threonine- and tyrosine-protein kinases. It does not include the catalytic domain of dual specificity kinases. Pssm-ID: 462242 [Multi-domain] Cd Length: 258 Bit Score: 47.88 E-value: 8.26e-07
|
|||||||
pk1 | PHA03390 | serine/threonine-protein kinase 1; Provisional |
54-113 | 1.27e-06 | |||
serine/threonine-protein kinase 1; Provisional Pssm-ID: 223069 [Multi-domain] Cd Length: 267 Bit Score: 47.54 E-value: 1.27e-06
|
|||||||
PknB_PASTA_kin | NF033483 | Stk1 family PASTA domain-containing Ser/Thr kinase; |
11-142 | 6.35e-05 | |||
Stk1 family PASTA domain-containing Ser/Thr kinase; Pssm-ID: 468045 [Multi-domain] Cd Length: 563 Bit Score: 42.86 E-value: 6.35e-05
|
|||||||
Name | Accession | Description | Interval | E-value | ||||
STKc_PknB_like | cd14014 | Catalytic domain of bacterial Serine/Threonine kinases, PknB and similar proteins; STKs ... |
11-142 | 5.79e-17 | ||||
Catalytic domain of bacterial Serine/Threonine kinases, PknB and similar proteins; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. This subfamily includes many bacterial eukaryotic-type STKs including Staphylococcus aureus PknB (also called PrkC or Stk1), Bacillus subtilis PrkC, and Mycobacterium tuberculosis Pkn proteins (PknB, PknD, PknE, PknF, PknL, and PknH), among others. S. aureus PknB is the only eukaryotic-type STK present in this species, although many microorganisms encode for several such proteins. It is important for the survival and pathogenesis of S. aureus as it is involved in the regulation of purine and pyrimidine biosynthesis, cell wall metabolism, autolysis, virulence, and antibiotic resistance. M. tuberculosis PknB is essential for growth and it acts on diverse substrates including proteins involved in peptidoglycan synthesis, cell division, transcription, stress responses, and metabolic regulation. B. subtilis PrkC is located at the inner membrane of endospores and functions to trigger spore germination. Bacterial STKs in this subfamily show varied domain architectures. The well-characterized members such as S. aureus and M. tuberculosis PknB, and B. subtilis PrkC, contain an N-terminal cytosolic kinase domain, a transmembrane (TM) segment, and mutliple C-terminal extracellular PASTA domains. The PknB subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270916 [Multi-domain] Cd Length: 260 Bit Score: 76.47 E-value: 5.79e-17
|
||||||||
PKc | cd00180 | Catalytic domain of Protein Kinases; PKs catalyze the transfer of the gamma-phosphoryl group ... |
5-188 | 1.08e-15 | ||||
Catalytic domain of Protein Kinases; PKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine or tyrosine residues on protein substrates. PKs make up a large family of serine/threonine kinases (STKs), protein tyrosine kinases (PTKs), and dual-specificity PKs that phosphorylate both serine/threonine and tyrosine residues of target proteins. Majority of protein phosphorylation occurs on serine residues while only 1% occurs on tyrosine residues. Protein phosphorylation is a mechanism by which a wide variety of cellular proteins, such as enzymes and membrane channels, are reversibly regulated in response to certain stimuli. PKs often function as components of signal transduction pathways in which one kinase activates a second kinase, which in turn, may act on other kinases; this sequential action transmits a signal from the cell surface to target proteins, which results in cellular responses. The PK family is one of the largest known protein families with more than 100 homologous yeast enzymes and more than 500 human proteins. A fraction of PK family members are pseudokinases that lack crucial residues for catalytic activity. The mutiplicity of kinases allows for specific regulation according to substrate, tissue distribution, and cellular localization. PKs regulate many cellular processes including proliferation, division, differentiation, motility, survival, metabolism, cell-cycle progression, cytoskeletal rearrangement, immunity, and neuronal functions. Many kinases are implicated in the development of various human diseases including different types of cancer. The PK family is part of a larger superfamily that includes the catalytic domains of RIO kinases, aminoglycoside phosphotransferase, choline kinase, phosphoinositide 3-kinase (PI3K), and actin-fragmin kinase. Pssm-ID: 270622 [Multi-domain] Cd Length: 215 Bit Score: 71.92 E-value: 1.08e-15
|
||||||||
SPS1 | COG0515 | Serine/threonine protein kinase [Signal transduction mechanisms]; |
11-142 | 1.20e-15 | ||||
Serine/threonine protein kinase [Signal transduction mechanisms]; Pssm-ID: 440281 [Multi-domain] Cd Length: 482 Bit Score: 74.28 E-value: 1.20e-15
|
||||||||
STKc_MLCK-like | cd14006 | Catalytic kinase domain of Myosin Light Chain Kinase-like Serine/Threonine Kinases; STKs ... |
33-145 | 1.82e-15 | ||||
Catalytic kinase domain of Myosin Light Chain Kinase-like Serine/Threonine Kinases; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. This family is composed of MLCKs and related MLCK-like kinase domains from giant STKs such as titin, obscurin, SPEG, Unc-89, Trio, kalirin, and Twitchin. Also included in this family are Death-Associated Protein Kinases (DAPKs) and Death-associated protein kinase-Related Apoptosis-inducing protein Kinase (DRAKs). MLCK phosphorylates myosin regulatory light chain and controls the contraction of all muscle types. Titin, obscurin, Twitchin, and SPEG are muscle proteins involved in the contractile apparatus. The giant STKs are multidomain proteins containing immunoglobulin (Ig), fibronectin type III (FN3), SH3, RhoGEF, PH and kinase domains. Titin, obscurin, Twitchin, and SPEG contain many Ig domain repeats at the N-terminus, while Trio and Kalirin contain spectrin-like repeats. The MLCK-like family is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270908 [Multi-domain] Cd Length: 247 Bit Score: 71.92 E-value: 1.82e-15
|
||||||||
PKc_STE | cd05122 | Catalytic domain of STE family Protein Kinases; PKs catalyze the transfer of the ... |
55-142 | 2.13e-14 | ||||
Catalytic domain of STE family Protein Kinases; PKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine (ST) or tyrosine residues on protein substrates. This family is composed of STKs, and some dual-specificity PKs that phosphorylate both threonine and tyrosine residues of target proteins. Most members are kinases involved in mitogen-activated protein kinase (MAPK) signaling cascades, acting as MAPK kinases (MAPKKs), MAPKK kinases (MAPKKKs), or MAPKKK kinases (MAP4Ks). The MAPK signaling pathways are important mediators of cellular responses to extracellular signals. The pathways involve a triple kinase core cascade comprising of the MAPK, which is phosphorylated and activated by a MAPKK, which itself is phosphorylated and activated by a MAPKKK. Each MAPK cascade is activated either by a small GTP-binding protein or by an adaptor protein, which transmits the signal either directly to a MAPKKK to start the triple kinase core cascade or indirectly through a mediator kinase, a MAP4K. Other STE family members include p21-activated kinases (PAKs) and class III myosins, among others. PAKs are Rho family GTPase-regulated kinases that serve as important mediators in the function of Cdc42 (cell division cycle 42) and Rac. Class III myosins are motor proteins containing an N-terminal kinase catalytic domain and a C-terminal actin-binding domain, which can phosphorylate several cytoskeletal proteins, conventional myosin regulatory light chains, as well as autophosphorylate the C-terminal motor domain. They play an important role in maintaining the structural integrity of photoreceptor cell microvilli. The STE family is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270692 [Multi-domain] Cd Length: 254 Bit Score: 69.15 E-value: 2.13e-14
|
||||||||
S_TKc | smart00220 | Serine/Threonine protein kinases, catalytic domain; Phosphotransferases. Serine or ... |
47-142 | 4.51e-13 | ||||
Serine/Threonine protein kinases, catalytic domain; Phosphotransferases. Serine or threonine-specific kinase subfamily. Pssm-ID: 214567 [Multi-domain] Cd Length: 254 Bit Score: 65.63 E-value: 4.51e-13
|
||||||||
STKc_PASK | cd14004 | Catalytic domain of the Serine/Threonine kinase, Per-ARNT-Sim (PAS) domain Kinase; STKs ... |
27-144 | 1.27e-12 | ||||
Catalytic domain of the Serine/Threonine kinase, Per-ARNT-Sim (PAS) domain Kinase; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. PASK (or PASKIN) is a nutrient and energy sensor and thus, plays an important role in maintaining cellular energy homeostasis. It coordinates the utilization of glucose in response to metabolic demand. It contains an N-terminal PAS domain which directly interacts and inhibits a C-terminal catalytic kinase domain. The PAS domain serves as a sensory module for different environmental signals such as light, redox state, and various metabolites. Binding of ligands to the PAS domain causes structural changes which leads to kinase activation and the phosphorylation of substrates to trigger the appropriate cellular response. The PASK subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270906 [Multi-domain] Cd Length: 256 Bit Score: 64.33 E-value: 1.27e-12
|
||||||||
STKc_MAPKKK | cd06606 | Catalytic domain of the Serine/Threonine Kinase, Mitogen-Activated Protein Kinase Kinase ... |
10-142 | 1.68e-12 | ||||
Catalytic domain of the Serine/Threonine Kinase, Mitogen-Activated Protein Kinase Kinase Kinase; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. MAPKKKs (MKKKs or MAP3Ks) are also called MAP/ERK kinase kinases (MEKKs) in some cases. They phosphorylate and activate MAPK kinases (MAPKKs or MKKs or MAP2Ks), which in turn phosphorylate and activate MAPKs during signaling cascades that are important in mediating cellular responses to extracellular signals. This subfamily is composed of the Apoptosis Signal-regulating Kinases ASK1 (or MAPKKK5) and ASK2 (or MAPKKK6), MEKK1, MEKK2, MEKK3, MEKK4, as well as plant and fungal MAPKKKs. Also included in this subfamily are the cell division control proteins Schizosaccharomyces pombe Cdc7 and Saccharomyces cerevisiae Cdc15. The MAPKKK subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270783 [Multi-domain] Cd Length: 258 Bit Score: 64.08 E-value: 1.68e-12
|
||||||||
STKc_Mos | cd13979 | Catalytic domain of the Serine/Threonine kinase, Oocyte maturation factor Mos; STKs catalyze ... |
34-142 | 2.35e-12 | ||||
Catalytic domain of the Serine/Threonine kinase, Oocyte maturation factor Mos; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. Mos (or c-Mos) is a germ-cell specific kinase that plays roles in both the release of primary arrest and the induction of secondary arrest in oocytes. It is expressed towards the end of meiosis I and is quickly degraded upon fertilization. It is a component of the cytostatic factor (CSF), which is responsible for metaphase II arrest. In addition, Mos activates a phoshorylation cascade that leads to the activation of the p34 subunit of MPF (mitosis-promoting factor or maturation promoting factor), a cyclin-dependent kinase that is responsible for the release of primary arrest in meiosis I. The Mos subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270881 [Multi-domain] Cd Length: 265 Bit Score: 63.56 E-value: 2.35e-12
|
||||||||
STKc_MAP3K-like | cd13999 | Catalytic domain of Mitogen-Activated Protein Kinase (MAPK) Kinase Kinase-like Serine ... |
17-142 | 2.55e-12 | ||||
Catalytic domain of Mitogen-Activated Protein Kinase (MAPK) Kinase Kinase-like Serine/Threonine kinases; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. This subfamily is composed mainly of MAP3Ks and similar proteins, including TGF-beta Activated Kinase-1 (TAK1, also called MAP3K7), MAP3K12, MAP3K13, Mixed lineage kinase (MLK), MLK-Like mitogen-activated protein Triple Kinase (MLTK), and Raf (Rapidly Accelerated Fibrosarcoma) kinases. MAP3Ks (MKKKs or MAPKKKs) phosphorylate and activate MAPK kinases (MAPKKs or MKKs or MAP2Ks), which in turn phosphorylate and activate MAPKs during signaling cascades that are important in mediating cellular responses to extracellular signals. Also included in this subfamily is the pseudokinase Kinase Suppressor of Ras (KSR), which is a scaffold protein that functions downstream of Ras and upstream of Raf in the Extracellular signal-Regulated Kinase (ERK) pathway. Pssm-ID: 270901 [Multi-domain] Cd Length: 245 Bit Score: 63.33 E-value: 2.55e-12
|
||||||||
STKc_SRPK | cd14136 | Catalytic domain of the Serine/Threonine Kinase, Serine-aRginine Protein Kinase; STKs catalyze ... |
46-145 | 3.11e-12 | ||||
Catalytic domain of the Serine/Threonine Kinase, Serine-aRginine Protein Kinase; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. SRPKs phosphorylate and regulate splicing factors from the SR protein family by specifically phosphorylating multiple serine residues residing in SR/RS dipeptide motifs (also known as RS domains). Phosphorylation of the RS domains enhances interaction with transportin SR and facilitates entry of the SR proteins into the nucleus. SRPKs contain a nonconserved insert domain, within the well-conserved catalytic kinase domain, that regulates their subcellular localization. They play important roles in mediating pre-mRNA processing and mRNA maturation, as well as other cellular functions such as chromatin reorganization, cell cycle and p53 regulation, and metabolic signaling. Vertebrates contain three distinct SRPKs, called SRPK1-3. The SRPK homolog in budding yeast, Sky1p, recognizes and phosphorylates its substrate Npl3p, which lacks a classic RS domain but contains a single RS dipeptide at the C-terminus of its RGG domain. Npl3p is a shuttling heterogeneous nuclear ribonucleoprotein (hnRNP) that exports a distinct class of mRNA from the nucleus to the cytoplasm. The SRPK subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 271038 [Multi-domain] Cd Length: 320 Bit Score: 63.75 E-value: 3.11e-12
|
||||||||
PKc_Wee1_like | cd13997 | Catalytic domain of the Wee1-like Protein Kinases; PKs catalyze the transfer of the ... |
34-142 | 8.10e-11 | ||||
Catalytic domain of the Wee1-like Protein Kinases; PKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine or tyrosine residues on protein substrates. This subfamily is composed of the dual-specificity kinase Myt1, the protein tyrosine kinase Wee1, and similar proteins. These proteins are cell cycle checkpoint kinases that are involved in the regulation of cyclin-dependent kinase CDK1, the master engine for mitosis. CDK1 is kept inactivated through phosphorylation of N-terminal thr (T14 by Myt1) and tyr (Y15 by Myt1 and Wee1) residues. Mitosis progression is ensured through activation of CDK1 by dephoshorylation and inactivation of Myt1/Wee1. The Wee1-like subfamily is part of a larger superfamily that includes the catalytic domains of other protein serine/threonine PKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270899 [Multi-domain] Cd Length: 252 Bit Score: 59.32 E-value: 8.10e-11
|
||||||||
STKc_NIK | cd13991 | Catalytic domain of the Serine/Threonine kinase, NF-kappaB Inducing Kinase (NIK); STKs ... |
56-140 | 1.29e-10 | ||||
Catalytic domain of the Serine/Threonine kinase, NF-kappaB Inducing Kinase (NIK); STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. NIK, also called mitogen activated protein kinase kinase kinase 14 (MAP3K14), phosphorylates and activates Inhibitor of NF-KappaB Kinase (IKK) alpha, which is a regulator of NF-kB proteins, a family of transcription factors which are critical in many cellular functions including inflammatory responses, immune development, cell survival, and cell proliferation, among others. NIK is essential in the IKKalpha-mediated non-canonical NF-kB signaling pathway, in which IKKalpha processes the IkB-like C-terminus of NF-kB2/p100 to produce p52, allowing the p52/RelB dimer to migrate to the nucleus where it regulates gene transcription. NIK also plays an important role in Toll-like receptor 7/9 signaling cascades. The NIK subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270893 [Multi-domain] Cd Length: 268 Bit Score: 59.06 E-value: 1.29e-10
|
||||||||
PKc_DYRK_like | cd14133 | Catalytic domain of Dual-specificity tYrosine-phosphorylated and -Regulated Kinase-like ... |
43-142 | 1.78e-10 | ||||
Catalytic domain of Dual-specificity tYrosine-phosphorylated and -Regulated Kinase-like protein kinases; Dual-specificity PKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine (S/T) as well as tyrosine residues on protein substrates. This subfamily is composed of the dual-specificity DYRKs and YAK1, as well as the S/T kinases (STKs), HIPKs. DYRKs and YAK1 autophosphorylate themselves on tyrosine residues and phosphorylate their substrates exclusively on S/T residues. Proteins in this subfamily play important roles in cell proliferation, differentiation, survival, growth, and development. The DYRK-like subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 271035 [Multi-domain] Cd Length: 262 Bit Score: 58.43 E-value: 1.78e-10
|
||||||||
STKc_Twitchin_like | cd14114 | The catalytic domain of the Giant Serine/Threonine Kinases, Twitchin and Projectin; STKs ... |
47-145 | 1.24e-09 | ||||
The catalytic domain of the Giant Serine/Threonine Kinases, Twitchin and Projectin; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. This subfamily is composed of Caenorhabditis elegans and Aplysia californica Twitchin, Drosophila melanogaster Projectin, and similar proteins. These are very large muscle proteins containing multiple immunoglobulin (Ig)-like and fibronectin type III (FN3) domains and a single kinase domain near the C-terminus. Twitchin and Projectin are both associated with thick filaments. Twitchin is localized in the outer parts of A-bands and is involved in regulating muscle contraction. It interacts with the myofibrillar proteins myosin and actin in a phosphorylation-dependent manner, and may be involved in regulating the myosin cross-bridge cycle. The kinase activity of Twitchen is activated by Ca2+ and the Ca2+ binding protein S100A1. Projectin is associated with the end of thick filaments and is a component of flight muscle connecting filaments. The kinase domain of Projectin may play roles in autophosphorylation and transphosphorylation, which impact the formation of myosin filaments. The Twitchin-like subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 271016 [Multi-domain] Cd Length: 259 Bit Score: 56.05 E-value: 1.24e-09
|
||||||||
STKc_IKK | cd13989 | Catalytic domain of the Serine/Threonine kinase, Inhibitor of Nuclear Factor-KappaB Kinase ... |
17-145 | 2.11e-09 | ||||
Catalytic domain of the Serine/Threonine kinase, Inhibitor of Nuclear Factor-KappaB Kinase (IKK); STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. The IKK complex functions as a master regulator of Nuclear Factor-KappaB (NF-kB) proteins, a family of transcription factors which are critical in many cellular functions including inflammatory responses, immune development, cell survival, and cell proliferation, among others. It is composed of two kinases, IKKalpha and IKKbeta, and the regulatory subunit IKKgamma or NEMO (NF-kB Essential MOdulator). IKKs facilitate the release of NF-kB dimers from an inactive state, allowing them to migrate to the nucleus where they regulate gene transcription. There are two IKK pathways that regulate NF-kB signaling, called the classical (involving IKKbeta and NEMO) and non-canonical (involving IKKalpha) pathways. The classical pathway regulates the majority of genes activated by NF-kB. The IKK subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase (PI3K). Pssm-ID: 270891 [Multi-domain] Cd Length: 289 Bit Score: 55.53 E-value: 2.11e-09
|
||||||||
STKc_CMGC | cd05118 | Catalytic domain of CMGC family Serine/Threonine Kinases; STKs catalyze the transfer of the ... |
12-142 | 2.33e-09 | ||||
Catalytic domain of CMGC family Serine/Threonine Kinases; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. The CMGC family consists of Cyclin-Dependent protein Kinases (CDKs), Mitogen-activated protein kinases (MAPKs) such as Extracellular signal-regulated kinase (ERKs), c-Jun N-terminal kinases (JNKs), and p38, and other kinases. CDKs belong to a large subfamily of STKs that are regulated by their cognate cyclins. Together, they are involved in the control of cell-cycle progression, transcription, and neuronal function. MAPKs serve as important mediators of cellular responses to extracellular signals. They control critical cellular functions including differentiation, proliferation, migration, and apoptosis. They are also implicated in the pathogenesis of many diseases including multiple types of cancer, stroke, diabetes, and chronic inflammation. Other members of the CMGC family include casein kinase 2 (CK2), Dual-specificity tYrosine-phosphorylated and -Regulated Kinase (DYRK), Glycogen Synthase Kinase 3 (GSK3), among many others. The CMGC family is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270688 [Multi-domain] Cd Length: 249 Bit Score: 55.32 E-value: 2.33e-09
|
||||||||
STKc_obscurin_rpt2 | cd14110 | Catalytic kinase domain, second repeat, of the Giant Serine/Threonine Kinase Obscurin; STKs ... |
43-195 | 4.14e-09 | ||||
Catalytic kinase domain, second repeat, of the Giant Serine/Threonine Kinase Obscurin; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. Obscurin, approximately 800 kDa in size, is one of three giant proteins expressed in vetebrate striated muscle, together with titin and nebulin. It is a multidomain protein composed of tandem adhesion and signaling domains, including 49 immunoglobulin (Ig) and 2 fibronectin type III (FN3) domains at the N-terminus followed by a more complex region containing more Ig domains, a conserved SH3 domain near a RhoGEF and PH domains, non-modular regions, as well as IQ and phosphorylation motifs. The obscurin gene also encode two kinase domains, which are not expressed as part of the 800 kDa protein, but as a smaller, alternatively spliced product present mainly in the heart muscle, also called obscurin-MLCK. Obscurin is localized at the peripheries of Z-disks and M-lines, where it is able to communicate with the surrounding myoplasm. It interacts with diverse proteins including sAnk1, myosin, titin, and MyBP-C. It may act as a scaffold for the assembly of elements of the contractile apparatus. The obscurin subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 271012 [Multi-domain] Cd Length: 257 Bit Score: 54.54 E-value: 4.14e-09
|
||||||||
STKc_obscurin_rpt1 | cd14107 | Catalytic kinase domain, first repeat, of the Giant Serine/Threonine Kinase Obscurin; STKs ... |
31-145 | 4.79e-09 | ||||
Catalytic kinase domain, first repeat, of the Giant Serine/Threonine Kinase Obscurin; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. Obscurin, approximately 800 kDa in size, is one of three giant proteins expressed in vetebrate striated muscle, together with titin and nebulin. It is a multidomain protein composed of tandem adhesion and signaling domains, including 49 immunoglobulin (Ig) and 2 fibronectin type III (FN3) domains at the N-terminus followed by a more complex region containing more Ig domains, a conserved SH3 domain near a RhoGEF and PH domains, non-modular regions, as well as IQ and phosphorylation motifs. The obscurin gene also encode two kinase domains, which are not expressed as part of the 800 kDa protein, but as a smaller, alternatively spliced product present mainly in the heart muscle, also called obscurin-MLCK. Obscurin is localized at the peripheries of Z-disks and M-lines, where it is able to communicate with the surrounding myoplasm. It interacts with diverse proteins including sAnk1, myosin, titin, and MyBP-C. It may act as a scaffold for the assembly of elements of the contractile apparatus. The obscurin subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 271009 [Multi-domain] Cd Length: 257 Bit Score: 54.51 E-value: 4.79e-09
|
||||||||
STKc_PAK | cd06614 | Catalytic domain of the Serine/Threonine Kinase, p21-activated kinase; STKs catalyze the ... |
17-145 | 7.36e-09 | ||||
Catalytic domain of the Serine/Threonine Kinase, p21-activated kinase; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. PAKs are Rho family GTPase-regulated kinases that serve as important mediators in the function of Cdc42 (cell division cycle 42) and Rac. PAKs are implicated in the regulation of many cellular processes including growth factor receptor-mediated proliferation, cell polarity, cell motility, cell death and survival, and actin cytoskeleton organization. PAK deregulation is associated with tumor development. PAKs from higher eukaryotes are classified into two groups (I and II), according to their biochemical and structural features. Group I PAKs contain a PBD (p21-binding domain) overlapping with an AID (autoinhibitory domain), a C-terminal catalytic domain, SH3 binding sites and a non-classical SH3 binding site for PIX (PAK-interacting exchange factor). Group II PAKs contain a PBD and a catalytic domain, but lack other motifs found in group I PAKs. Since group II PAKs do not contain an obvious AID, they may be regulated differently from group I PAKs. Group I PAKs interact with the SH3 containing proteins Nck, Grb2 and PIX; no such binding has been demonstrated for group II PAKs. The PAK subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270789 [Multi-domain] Cd Length: 255 Bit Score: 53.75 E-value: 7.36e-09
|
||||||||
STKc_PSKH1 | cd14087 | Catalytic domain of the Protein Serine/Threonine kinase H1; STKs catalyze the transfer of the ... |
54-145 | 9.98e-09 | ||||
Catalytic domain of the Protein Serine/Threonine kinase H1; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. PSKH1 is an autophosphorylating STK that is expressed ubiquitously and exhibits multiple intracellular localizations including the centrosome, Golgi apparatus, and splice factor compartments. It contains a catalytic kinase domain and an N-terminal SH4-like motif that is acylated to facilitate membrane attachment. PSKH1 plays a rile in the maintenance of the Golgi apparatus, an important organelle within the secretory pathway. It may also function as a novel splice factor and a regulator of prostate cancer cell growth. The PSKH1 subfamily is part of a larger superfamily that includes the catalytic domains of other protein kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270989 [Multi-domain] Cd Length: 259 Bit Score: 53.31 E-value: 9.98e-09
|
||||||||
PTKc | cd00192 | Catalytic domain of Protein Tyrosine Kinases; PTKs catalyze the transfer of the ... |
6-142 | 1.07e-08 | ||||
Catalytic domain of Protein Tyrosine Kinases; PTKs catalyze the transfer of the gamma-phosphoryl group from ATP to tyrosine (tyr) residues in protein substrates. They can be classified into receptor and non-receptor tyr kinases. PTKs play important roles in many cellular processes including, lymphocyte activation, epithelium growth and maintenance, metabolism control, organogenesis regulation, survival, proliferation, differentiation, migration, adhesion, motility, and morphogenesis. Receptor tyr kinases (RTKs) are integral membrane proteins which contain an extracellular ligand-binding region, a transmembrane segment, and an intracellular tyr kinase domain. RTKs are usually activated through ligand binding, which causes dimerization and autophosphorylation of the intracellular tyr kinase catalytic domain, leading to intracellular signaling. Some RTKs are orphan receptors with no known ligands. Non-receptor (or cytoplasmic) tyr kinases are distributed in different intracellular compartments and are usually multi-domain proteins containing a catalytic tyr kinase domain as well as various regulatory domains such as SH3 and SH2. PTKs are usually autoinhibited and require a mechanism for activation. In many PTKs, the phosphorylation of tyr residues in the activation loop is essential for optimal activity. Aberrant expression of PTKs is associated with many development abnormalities and cancers.The PTK family is part of a larger superfamily that includes the catalytic domains of serine/threonine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270623 [Multi-domain] Cd Length: 262 Bit Score: 53.31 E-value: 1.07e-08
|
||||||||
STKc_HIPK3 | cd14229 | Catalytic domain of the Serine/Threonine Kinase, Homeodomain-Interacting Protein Kinase 3; ... |
55-142 | 1.23e-08 | ||||
Catalytic domain of the Serine/Threonine Kinase, Homeodomain-Interacting Protein Kinase 3; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. HIPK3 is a Fas-interacting protein that induces FADD (Fas-associated death domain) phosphorylation and mediates FasL-induced JNK activation. Overexpression of HIPK3 does not affect cell death, however its expression in prostate cancer cells contributes to increased resistance to Fas receptor-mediated apoptosis. HIPK3 also plays a role in regulating steroidogenic gene expression. In response to cAMP, HIPK3 activates the phosphorylation of JNK and c-Jun, leading to increased activity of the transcription factor SF-1 (Steroidogenic factor 1), a key regulator for steroid biosynthesis in the gonad and adrenal gland. HIPKs, originally identified by their ability to bind homeobox factors, are nuclear proteins containing catalytic kinase and homeobox-interacting domains as well as a PEST region overlapping with the speckle-retention signal (SRS). The HIPK3 subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase (PI3K). Pssm-ID: 271131 [Multi-domain] Cd Length: 330 Bit Score: 53.49 E-value: 1.23e-08
|
||||||||
STKc_IRE1 | cd13982 | Catalytic domain of the Serine/Threonine kinase, Inositol-requiring protein 1; STKs catalyze ... |
34-142 | 1.26e-08 | ||||
Catalytic domain of the Serine/Threonine kinase, Inositol-requiring protein 1; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. IRE1, also called Endoplasmic reticulum (ER)-to-nucleus signaling protein (or ERN), is an ER-localized type I transmembrane protein with kinase and endoribonuclease domains in the cytoplasmic side. It acts as an ER stress sensor and is the oldest and most conserved component of the unfolded protein response (UPR) in eukaryotes. The UPR is activated when protein misfolding is detected in the ER in order to decrease the synthesis of new proteins and increase the capacity of the ER to cope with the stress. During ER stress, IRE1 dimerizes and forms oligomers, allowing the kinase domain to undergo trans-autophosphorylation. This leads to a conformational change that stimulates its endoribonuclease activity and results in the cleavage of its mRNA substrate, HAC1 in yeast and XBP1 in metazoans, promoting a splicing event that enables translation into a transcription factor which activates the UPR. Mammals contain two IRE1 proteins, IRE1alpha (or ERN1) and IRE1beta (or ERN2). The Ire1 subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270884 [Multi-domain] Cd Length: 269 Bit Score: 53.04 E-value: 1.26e-08
|
||||||||
STKc_SPEG_rpt1 | cd14108 | Catalytic kinase domain, first repeat, of Giant Serine/Threonine Kinase Striated muscle ... |
35-145 | 1.27e-08 | ||||
Catalytic kinase domain, first repeat, of Giant Serine/Threonine Kinase Striated muscle preferentially expressed protein kinase; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. The Striated muscle preferentially expressed gene (SPEG) generates 4 different isoforms through alternative promoter use and splicing in a tissue-specific manner: SPEGalpha and SPEGbeta are expressed in cardiac and skeletal striated muscle; Aortic Preferentially Expressed Protein-1 (APEG-1) is expressed in vascular smooth muscle; and Brain preferentially expressed gene (BPEG) is found in the brain and aorta. SPEG proteins have mutliple immunoglobulin (Ig), 2 fibronectin type III (FN3), and two kinase domains. They are necessary for cardiac development and survival. The SPEG subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 271010 [Multi-domain] Cd Length: 255 Bit Score: 52.98 E-value: 1.27e-08
|
||||||||
PKc_DYRK | cd14210 | Catalytic domain of the protein kinase, Dual-specificity tYrosine-phosphorylated and ... |
43-142 | 1.33e-08 | ||||
Catalytic domain of the protein kinase, Dual-specificity tYrosine-phosphorylated and -Regulated Kinase; Protein Kinases (PKs), Dual-specificity tYrosine-phosphorylated and -Regulated Kinase (DYRK) subfamily, catalytic (c) domain. Dual-specificity PKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine (S/T) as well as tyrosine residues on protein substrates. The DYRK subfamily is part of a larger superfamily that includes the catalytic domains of other protein S/T PKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase (PI3K). DYRKs autophosphorylate themselves on tyrosine residues and phosphorylate their substrates exclusively on S/T residues. They play important roles in cell proliferation, differentiation, survival, and development. Vertebrates contain multiple DYRKs (DYRK1-4) and mammals contain two types of DYRK1 proteins, DYRK1A and DYRK1B. DYRK1A is involved in neuronal differentiation and is implicated in the pathogenesis of DS (Down syndrome). DYRK1B plays a critical role in muscle differentiation by regulating transcription, cell motility, survival, and cell cycle progression. It is overexpressed in many solid tumors where it acts as a tumor survival factor. DYRK2 promotes apoptosis in response to DNA damage by phosphorylating the tumor suppressor p53, while DYRK3 promotes cell survival by phosphorylating SIRT1 and promoting p53 deacetylation. DYRK4 is a testis-specific kinase that may function during spermiogenesis. Pssm-ID: 271112 [Multi-domain] Cd Length: 311 Bit Score: 53.32 E-value: 1.33e-08
|
||||||||
STKc_myosinIII_N_like | cd06608 | N-terminal Catalytic domain of Class III myosin-like Serine/Threonine Kinases; STKs catalyze ... |
18-142 | 1.78e-08 | ||||
N-terminal Catalytic domain of Class III myosin-like Serine/Threonine Kinases; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. Class III myosins are motor proteins with an N-terminal kinase catalytic domain and a C-terminal actin-binding motor domain. Class III myosins are present in the photoreceptors of invertebrates and vertebrates and in the auditory hair cells of mammals. The kinase domain of myosin III can phosphorylate several cytoskeletal proteins, conventional myosin regulatory light chains, and can autophosphorylate the C-terminal motor domain. Myosin III may play an important role in maintaining the structural integrity of photoreceptor cell microvilli. It may also function as a cargo carrier during light-dependent translocation, in photoreceptor cells, of proteins such as transducin and arrestin. The Drosophila class III myosin, called NinaC (Neither inactivation nor afterpotential protein C), is critical in normal adaptation and termination of photoresponse. Vertebrates contain two isoforms of class III myosin, IIIA and IIIB. This subfamily also includes mammalian NIK-like embryo-specific kinase (NESK), Traf2- and Nck-interacting kinase (TNIK), and mitogen-activated protein kinase (MAPK) kinase kinase kinase 4/6. MAP4Ks are involved in some MAPK signaling pathways by activating a MAPK kinase kinase. MAPK signaling cascades are important in mediating cellular responses to extracellular signals. The class III myosin-like subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270785 [Multi-domain] Cd Length: 275 Bit Score: 52.69 E-value: 1.78e-08
|
||||||||
STKc_EIF2AK | cd13996 | Catalytic domain of the Serine/Threonine kinase, eukaryotic translation Initiation Factor ... |
34-142 | 1.96e-08 | ||||
Catalytic domain of the Serine/Threonine kinase, eukaryotic translation Initiation Factor 2-Alpha Kinase; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. EIF2AKs phosphorylate the alpha subunit of eIF-2, resulting in the downregulation of protein synthesis. eIF-2 phosphorylation is induced in response to cellular stresses including virus infection, heat shock, nutrient deficiency, and the accummulation of unfolded proteins, among others. There are four distinct kinases that phosphorylate eIF-2 and control protein synthesis under different stress conditions: General Control Non-derepressible-2 (GCN2) which is activated during amino acid or serum starvation; protein kinase regulated by RNA (PKR) which is activated by double stranded RNA; heme-regulated inhibitor kinase (HRI) which is activated under heme-deficient conditions; and PKR-like endoplasmic reticulum kinase (PERK) which is activated when misfolded proteins accumulate in the ER. The EIF2AK subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270898 [Multi-domain] Cd Length: 273 Bit Score: 52.68 E-value: 1.96e-08
|
||||||||
STKc_IKK_alpha | cd14039 | Catalytic domain of the Serine/Threonine kinase, Inhibitor of Nuclear Factor-KappaB Kinase ... |
35-145 | 2.28e-08 | ||||
Catalytic domain of the Serine/Threonine kinase, Inhibitor of Nuclear Factor-KappaB Kinase (IKK) alpha; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. IKKalpha is involved in the non-canonical or alternative pathway of regulating Nuclear Factor-KappaB (NF-kB) proteins, a family of transcription factors which are critical in many cellular functions including inflammatory responses, immune development, cell survival, and cell proliferation, among others. The non-canonical pathway functions in cells lacking NEMO (NF-kB Essential MOdulator) and IKKbeta. It is induced by a subset of TNFR family members including CD40, RANK, and B cell-activating factor receptor. IKKalpha processes the Inhibitor of NF-kB (IkB)-like C-terminus of NF-kB2/p100 to produce p52, allowing the p52/RelB dimer to migrate to the nucleus. This pathway is dependent on NIK (NF-kB Inducing Kinase) which phosphorylates and activates IKKalpha. The IKKalpha subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270941 [Multi-domain] Cd Length: 289 Bit Score: 52.61 E-value: 2.28e-08
|
||||||||
PKc_Dusty | cd13975 | Catalytic domain of the Dual-specificity Protein Kinase, Dusty; Dual-specificity PKs catalyze ... |
51-148 | 3.02e-08 | ||||
Catalytic domain of the Dual-specificity Protein Kinase, Dusty; Dual-specificity PKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine as well as tyrosine residues on protein substrates. Dusty protein kinase is also called Receptor-interacting protein kinase 5 (RIPK5 or RIP5) or RIP-homologous kinase. It is widely distributed in the central nervous system, and may be involved in inducing both caspase-dependent and caspase-independent cell death. The Dusty subfamily is part of a larger superfamily that includes the catalytic domains of other protein serine/threonine PKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270877 [Multi-domain] Cd Length: 262 Bit Score: 52.11 E-value: 3.02e-08
|
||||||||
STKc_SPEG_rpt2 | cd14111 | Catalytic kinase domain, second repeat, of Giant Serine/Threonine Kinase Striated muscle ... |
62-144 | 3.03e-08 | ||||
Catalytic kinase domain, second repeat, of Giant Serine/Threonine Kinase Striated muscle preferentially expressed protein kinase; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. The Striated muscle preferentially expressed gene (SPEG) generates 4 different isoforms through alternative promoter use and splicing in a tissue-specific manner: SPEGalpha and SPEGbeta are expressed in cardiac and skeletal striated muscle; Aortic Preferentially Expressed Protein-1 (APEG-1) is expressed in vascular smooth muscle; and Brain preferentially expressed gene (BPEG) is found in the brain and aorta. SPEG proteins have mutliple immunoglobulin (Ig), 2 fibronectin type III (FN3), and two kinase domains. They are necessary for cardiac development and survival. The SPEG subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 271013 [Multi-domain] Cd Length: 257 Bit Score: 52.13 E-value: 3.03e-08
|
||||||||
PKc_YAK1 | cd14212 | Catalytic domain of the Dual-specificity protein kinase, YAK1; Dual-specificity PKs catalyze ... |
43-142 | 3.86e-08 | ||||
Catalytic domain of the Dual-specificity protein kinase, YAK1; Dual-specificity PKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine (S/T) as well as tyrosine residues on protein substrates. This subfamily is composed of proteins with similarity to Saccharomyces cerevisiae YAK1 (or Yak1p), a dual-specificity kinase that autophosphorylates at tyrosine residues and phosphorylates substrates on S/T residues. YAK1 phosphorylates and activates the transcription factors Hsf1 and Msn2, which play important roles in cellular homeostasis during stress conditions including heat shock, oxidative stress, and nutrient deficiency. It also phosphorylates the protein POP2, a component of a complex that regulates transcription, under glucose-deprived conditions. It functions as a part of a glucose-sensing system that is involved in controlling growth in yeast. The YAK1 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 271114 [Multi-domain] Cd Length: 330 Bit Score: 51.87 E-value: 3.86e-08
|
||||||||
STKc_RIP | cd13978 | Catalytic domain of the Serine/Threonine kinase, Receptor Interacting Protein; STKs catalyze ... |
5-144 | 3.92e-08 | ||||
Catalytic domain of the Serine/Threonine kinase, Receptor Interacting Protein; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. RIP kinases serve as essential sensors of cellular stress. They are involved in regulating NF-kappaB and MAPK signaling, and are implicated in mediating cellular processes such as apoptosis, necroptosis, differentiation, and survival. RIP kinases contain a homologous N-terminal kinase domain and varying C-terminal domains. Higher vertebrates contain multiple RIP kinases, with mammals harboring at least five members. RIP1 and RIP2 harbor C-terminal domains from the Death domain (DD) superfamily while RIP4 contains ankyrin (ANK) repeats. RIP3 contain a RIP homotypic interaction motif (RHIM) that facilitates binding to RIP1. RIP1 and RIP3 are important in apoptosis and necroptosis, while RIP2 and RIP4 play roles in keratinocyte differentiation and inflammatory immune responses. The RIP subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270880 [Multi-domain] Cd Length: 263 Bit Score: 51.69 E-value: 3.92e-08
|
||||||||
STKc_Trio_C | cd14113 | C-terminal kinase domain of the Large Serine/Threonine Kinase and Rho Guanine Nucleotide ... |
56-144 | 4.64e-08 | ||||
C-terminal kinase domain of the Large Serine/Threonine Kinase and Rho Guanine Nucleotide Exchange Factor, Triple functional domain protein; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. Triple functional domain protein (Trio), also called PTPRF-interacting protein, is a large multidomain protein containing a series of spectrin-like repeats, two each of RhoGEF and SH3 domains, an immunoglobulin-like (Ig) domain and a C-terminal kinase. Trio plays important roles in neuronal cell migration and axon guidance. It was originally identified as an interacting partner of the of the receptor-like tyrosine phosphatase (RPTP) LAR (leukocyte-antigen-related protein), a family of receptors that function in the signaling to the actin cytoskeleton during development. Trio functions as a GEF for Rac1, RhoG, and RhoA, and is involved in the regulation of lamellipodia formation, mediating Rac1-dependent cell spreading and migration. The Trio subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 271015 [Multi-domain] Cd Length: 263 Bit Score: 51.51 E-value: 4.64e-08
|
||||||||
STKc_CDK8_like | cd07842 | Catalytic domain of Cyclin-Dependent protein Kinase 8-like Serine/Threonine Kinases; STKs ... |
54-103 | 1.03e-07 | ||||
Catalytic domain of Cyclin-Dependent protein Kinase 8-like Serine/Threonine Kinases; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. This subfamily is composed of CDK8, CDC2L6, and similar proteins. CDK8 functions as a negative or positive regulator of transcription, depending on the scenario. Together with its regulator, cyclin C, it reversibly associates with the multi-subunit core Mediator complex, a cofactor that is involved in regulating RNA polymerase II-dependent transcription. CDC2L6 also associates with Mediator in complexes lacking CDK8. In VP16-dependent transcriptional activation, CDK8 and CDC2L6 exerts opposing effects by positive and negative regulation, respectively, in similar conditions. CDKs belong to a large family of STKs that are regulated by their cognate cyclins. Together, they are involved in the control of cell-cycle progression, transcription, and neuronal function. The CDK8-like subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270834 [Multi-domain] Cd Length: 316 Bit Score: 50.75 E-value: 1.03e-07
|
||||||||
PTKc_Wee1_fungi | cd14052 | Catalytic domain of the Protein Tyrosine Kinases, Fungal Wee1 proteins; PTKs catalyze the ... |
47-148 | 1.34e-07 | ||||
Catalytic domain of the Protein Tyrosine Kinases, Fungal Wee1 proteins; PTKs catalyze the transfer of the gamma-phosphoryl group from ATP to tyrosine (tyr) residues in protein substrates. This subfamily is composed of fungal Wee1 proteins, also called Swe1 in budding yeast and Mik1 in fission yeast. Yeast Wee1 is required to control cell size. Wee1 is a cell cycle checkpoint kinase that helps keep the cyclin-dependent kinase CDK1 in an inactive state through phosphorylation of an N-terminal tyr (Y15) residue. During the late G2 phase, CDK1 is activated and mitotic entry is promoted by the removal of this inhibitory phosphorylation by the phosphatase Cdc25. Although Wee1 is functionally a tyr kinase, it is more closely related to serine/threonine kinases (STKs). It contains a catalytic kinase domain sandwiched in between N- and C-terminal regulatory domains. It is regulated by phosphorylation and degradation, and its expression levels are also controlled by circadian clock proteins. The fungal Wee1 subfamily is part of a larger superfamily that includes the catalytic domains of STKs, other PTKs, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270954 [Multi-domain] Cd Length: 278 Bit Score: 50.11 E-value: 1.34e-07
|
||||||||
STKc_Pat1_like | cd13993 | Catalytic domain of Fungal Pat1-like Serine/Threonine kinases; STKs catalyze the transfer of ... |
54-142 | 1.64e-07 | ||||
Catalytic domain of Fungal Pat1-like Serine/Threonine kinases; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. This subfamily is composed of Schizosaccharomyces pombe Pat1 (also called Ran1), Saccharomyces cerevisiae VHS1 and KSP1, and similar fungal STKs. Pat1 blocks Mei2, an RNA-binding protein which is indispensable in the initiation of meiosis. Pat1 is inactivated and Mei2 activated, which initiates meiosis, under nutrient-deprived conditions through a signaling cascade involving Ste11. Meiosis induced by Pat1 inactivation may show different characteristics than normal meiosis including aberrant positioning of centromeres. VHS1 was identified in a screen for suppressors of cell cycle arrest at the G1/S transition, while KSP1 may be involved in regulating PRP20, which is required for mRNA export and maintenance of nuclear structure. The Pat1-like subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270895 [Multi-domain] Cd Length: 267 Bit Score: 50.04 E-value: 1.64e-07
|
||||||||
STKc_SRPK1 | cd14216 | Catalytic domain of the Serine/Threonine Kinase, Serine-aRginine Protein Kinase 1; STKs ... |
54-145 | 1.83e-07 | ||||
Catalytic domain of the Serine/Threonine Kinase, Serine-aRginine Protein Kinase 1; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. SRPK1 binds with high affinity the alternative splicing factor, SRSF1 (serine/arginine-rich splicing factor 1), and regiospecifically phosphorylates 10-12 serines in its RS domain. It plays a role in the regulation of pre-mRNA splicing, chromatin structure, and germ cell development. SRPKs phosphorylate and regulate splicing factors from the SR protein family by specifically phosphorylating multiple serine residues residing in SR/RS dipeptide motifs (also known as RS domains). Phosphorylation of the RS domains enhances interaction with transportin SR and facilitates entry of the SR proteins into the nucleus. SRPKs contain a nonconserved insert domain, within the well-conserved catalytic kinase domain, that regulates their subcellular localization. The SRPK subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 271118 [Multi-domain] Cd Length: 349 Bit Score: 50.03 E-value: 1.83e-07
|
||||||||
STKc_Nek8 | cd08220 | Catalytic domain of the Protein Serine/Threonine Kinase, Never In Mitosis gene A (NIMA) ... |
34-142 | 1.96e-07 | ||||
Catalytic domain of the Protein Serine/Threonine Kinase, Never In Mitosis gene A (NIMA)-related kinase 8; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. Nek8 contains an N-terminal kinase catalytic domain and a C-terminal RCC1 (regulator of chromosome condensation) domain. A double point mutation in Nek8 causes cystic kidney disease in mice that genetically resembles human autosomal recessive polycystic kidney disease (ARPKD). Nek8 is also associated with a rare form of juvenile renal cystic disease, nephronophthisis type 9. It has been suggested that a defect in the ciliary localization of Nek8 contributes to the development of cysts manifested by these diseases. Nek8 is one in a family of 11 different Neks (Nek1-11) that are involved in cell cycle control. The Nek family is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270859 [Multi-domain] Cd Length: 256 Bit Score: 49.73 E-value: 1.96e-07
|
||||||||
STKc_HIPK2 | cd14227 | Catalytic domain of the Serine/Threonine Kinase, Homeodomain-Interacting Protein Kinase 2; ... |
55-142 | 2.04e-07 | ||||
Catalytic domain of the Serine/Threonine Kinase, Homeodomain-Interacting Protein Kinase 2; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. HIPK2, the most studied HIPK, is a coregulator of many transcription factors and cofactors including homeodomain proteins (Nkx and HOX families), Smad1-4, Pax6, c-Myb, AML1, the histone acetyltransferase p300, and the tumor repressor p53, among others. It regulates gene transcription during development and in DNA damage response (DDR), and mediates cell processes such as apoptosis, survival, differentiation, and proliferation. HIPK2 mediates apoptosis by phosphorylating and activating p53 during DDR, resulting in the activation of apoptotic genes. In the absence of p53, HIPK2 targets the anti-apoptotic corepressor C-terminal binding protein (CtBP), leading to CtBP's degradation and the promotion of apoptosis. HIPKs, originally identified by their ability to bind homeobox factors, are nuclear proteins containing catalytic kinase and homeobox-interacting domains as well as a PEST region overlapping with the speckle-retention signal (SRS). The HIPK2 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 271129 [Multi-domain] Cd Length: 355 Bit Score: 50.09 E-value: 2.04e-07
|
||||||||
STKc_LRRK2 | cd14068 | Catalytic domain of the Serine/Threonine Kinase, Leucine-Rich Repeat Kinase 2; STKs catalyze ... |
58-144 | 2.15e-07 | ||||
Catalytic domain of the Serine/Threonine Kinase, Leucine-Rich Repeat Kinase 2; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. LRRK2 is one of two vertebrate LRRKs which show complementary expression in the brain. Mutations in LRRK2, found in the kinase, ROC-COR, and WD40 domains, are linked to both familial and sporadic forms of Parkinson's disease. The most prevalent mutation, G2019S located in the activation loop of the kinase domain, increases kinase activity. The R1441C/G mutations in the GTPase domain have also been reported to influence kinase activity. LRRKs are also classified as ROCO proteins because they contain a ROC (Ras of complex proteins)/GTPase domain followed by a COR (C-terminal of ROC) domain of unknown function. In addition, LRRKs contain a catalytic kinase domain and protein-protein interaction motifs including a WD40 domain, LRRs and ankyrin (ANK) repeats. LRRKs possess both GTPase and kinase activities, with the ROC domain acting as a molecular switch for the kinase domain, cycling between a GTP-bound state which drives kinase activity and a GDP-bound state which decreases the activity. The LRRK2 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270970 [Multi-domain] Cd Length: 252 Bit Score: 49.57 E-value: 2.15e-07
|
||||||||
STKc_HIPK1 | cd14228 | Catalytic domain of the Serine/Threonine Kinase, Homeodomain-Interacting Protein Kinase 1; ... |
55-142 | 2.40e-07 | ||||
Catalytic domain of the Serine/Threonine Kinase, Homeodomain-Interacting Protein Kinase 1; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. HIPK1 has been implicated in regulating eye size, lens formation, and retinal morphogenesis during late embryogenesis. It also contributes to the regulation of haematopoiesis and leukaemogenesis by phosphorylating and repressing the transcription factor c-Myb, which is crucial in T- and B-cell development. In glucose-deprived conditions, HIPK1 phosphorylates Daxx, leading to its relocalization from the nucleus to the cytoplasm, where it binds and stabilizes ASK1 (apoptosis signal-regulating kinase 1), a mitogen-activated protein kinase (MAPK) kinase kinase that activates the JNK and p38 MAPK pathways. HIPKs, originally identified by their ability to bind homeobox factors, are nuclear proteins containing catalytic kinase and homeobox-interacting domains as well as a PEST region overlapping with the speckle-retention signal (SRS). The HIPK1 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 271130 [Multi-domain] Cd Length: 355 Bit Score: 49.70 E-value: 2.40e-07
|
||||||||
STKc_Raf | cd14062 | Catalytic domain of the Serine/Threonine Kinases, Raf (Rapidly Accelerated Fibrosarcoma) ... |
53-142 | 2.46e-07 | ||||
Catalytic domain of the Serine/Threonine Kinases, Raf (Rapidly Accelerated Fibrosarcoma) kinases; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. Raf kinases act as mitogen-activated protein kinase kinase kinases (MAP3Ks, MKKKs, MAPKKKs), which phosphorylate and activate MAPK kinases (MAPKKs or MKKs or MAP2Ks), which in turn phosphorylate and activate MAPKs during signaling cascades that are important in mediating cellular responses to extracellular signals. They function in the linear Ras-Raf-MEK-ERK pathway that regulates many cellular processes including cycle regulation, proliferation, differentiation, survival, and apoptosis. Aberrant expression or activation of components in this pathway are associated with tumor initiation, progression, and metastasis. Raf proteins contain a Ras binding domain, a zinc finger cysteine-rich domain, and a catalytic kinase domain. Vertebrates have three Raf isoforms (A-, B-, and C-Raf) with different expression profiles, modes of regulation, and abilities to function in the ERK cascade, depending on cellular context and stimuli. They have essential and non-overlapping roles during embryo- and organogenesis. Knockout of each isoform results in a lethal phenotype or abnormality in most mouse strains. The Raf subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270964 [Multi-domain] Cd Length: 253 Bit Score: 49.31 E-value: 2.46e-07
|
||||||||
STKc_MAP3K8 | cd13995 | Catalytic domain of the Serine/Threonine kinase, Mitogen-Activated Protein Kinase (MAPK) ... |
47-142 | 2.79e-07 | ||||
Catalytic domain of the Serine/Threonine kinase, Mitogen-Activated Protein Kinase (MAPK) Kinase Kinase 8; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. MAP3K8 is also called Tumor progression locus 2 (Tpl2) or Cancer Osaka thyroid (Cot), and was first identified as a proto-oncogene in T-cell lymphoma induced by MoMuL virus and in breast carcinoma induced by MMTV. Activated MAP3K8 induces various MAPK pathways including Extracellular Regulated Kinase (ERK) 1/2, c-Jun N-terminal kinase (JNK), and p38. It plays a pivotal role in innate immunity, linking Toll-like receptors to the production of TNF and the activation of ERK in macrophages. It is also required in interleukin-1beta production and is critical in host defense against Gram-positive bacteria. MAP3Ks (MKKKs or MAPKKKs) phosphorylate and activate MAPK kinases (MAPKKs or MKKs or MAP2Ks), which in turn phosphorylate and activate MAPKs during signaling cascades that are important in mediating cellular responses to extracellular signals. The MAP3K8 subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270897 [Multi-domain] Cd Length: 256 Bit Score: 49.24 E-value: 2.79e-07
|
||||||||
STKc_Titin | cd14104 | Catalytic domain of the Giant Serine/Threonine Kinase Titin; STKs catalyze the transfer of the ... |
51-144 | 3.00e-07 | ||||
Catalytic domain of the Giant Serine/Threonine Kinase Titin; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. Titin, also called connectin, is a muscle-specific elastic protein and is the largest known protein to date. It contains multiple immunoglobulin (Ig)-like and fibronectin type III (FN3) domains, and a single kinase domain near the C-terminus. It spans half of the sarcomere, the repeating contractile unit of striated muscle, and performs mechanical and catalytic functions. Titin contributes to the passive force generated when muscle is stretched during relaxation. Its kinase domain phosphorylates and regulates the muscle protein telethonin, which is required for sarcomere formation in differentiating myocytes. In addition, titin binds many sarcomere proteins and acts as a molecular scaffold for filament formation during myofibrillogenesis. The Titin subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 271006 [Multi-domain] Cd Length: 277 Bit Score: 49.47 E-value: 3.00e-07
|
||||||||
PKc_DYRK4 | cd14225 | Catalytic domain of the protein kinase, Dual-specificity tYrosine-phosphorylated and ... |
66-142 | 3.56e-07 | ||||
Catalytic domain of the protein kinase, Dual-specificity tYrosine-phosphorylated and -Regulated Kinase 4; Dual-specificity PKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine (S/T) as well as tyrosine residues on protein substrates. DYRK4 is a testis-specific kinase with restricted expression to postmeiotic spermatids. It may function during spermiogenesis, however, it is not required for male fertility. DYRK4 has also been detected in a human teratocarcinoma cell line induced to produce postmitotic neurons. It may have a role in neuronal differentiation. DYRKs autophosphorylate themselves on tyrosine residues and phosphorylate their substrates exclusively on S/T residues. They play important roles in cell proliferation, differentiation, survival, and development. The DYRK4 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 271127 [Multi-domain] Cd Length: 341 Bit Score: 49.32 E-value: 3.56e-07
|
||||||||
PKc_Pek1_like | cd06621 | Catalytic domain of fungal Pek1-like dual-specificity Mitogen-Activated Protein Kinase Kinases; ... |
55-142 | 3.60e-07 | ||||
Catalytic domain of fungal Pek1-like dual-specificity Mitogen-Activated Protein Kinase Kinases; PKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine (ST) or tyrosine residues on protein substrates. Members of this group include the MAPKKs Pek1/Skh1 from Schizosaccharomyces pombe and MKK2 from Saccharomyces cerevisiae, and related proteins. Both fission yeast Pek1 and baker's yeast MKK2 are components of the cell integrity MAPK pathway. In fission yeast, Pek1 phosphorylates and activates Pmk1/Spm1 and is regulated by the MAPKK kinase Mkh1. In baker's yeast, the pathway involves the MAPK Slt2, the MAPKKs MKK1 and MKK2, and the MAPKK kinase Bck1. The cell integrity MAPK cascade is activated by multiple stress conditions, and is essential in cell wall construction, morphogenesis, cytokinesis, and ion homeostasis. MAPK signaling pathways are important mediators of cellular responses to extracellular signals. The MAPKK subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270793 [Multi-domain] Cd Length: 287 Bit Score: 48.96 E-value: 3.60e-07
|
||||||||
STKc_DRAK | cd14106 | Catalytic domain of the Serine/Threonine Kinase, Death-associated protein kinase-Related ... |
35-145 | 4.24e-07 | ||||
Catalytic domain of the Serine/Threonine Kinase, Death-associated protein kinase-Related Apoptosis-inducing protein Kinase; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. DRAKs, also called STK17, were named based on their similarity (around 50% identity) to the kinase domain of DAPKs. They contain an N-terminal kinase domain and a C-terminal regulatory domain. Vertebrates contain two subfamily members, DRAK1 and DRAK2. Both DRAKs are localized to the nucleus, autophosphorylate themselves, and phosphorylate myosin light chain as a substrate. They may play a role in apoptotic signaling. The DRAK subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 271008 [Multi-domain] Cd Length: 268 Bit Score: 48.89 E-value: 4.24e-07
|
||||||||
STKc_PAK_I | cd06647 | Catalytic domain of the Serine/Threonine Kinase, Group I p21-activated kinase; STKs catalyze ... |
40-145 | 5.05e-07 | ||||
Catalytic domain of the Serine/Threonine Kinase, Group I p21-activated kinase; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. Group I PAKs, also called conventional PAKs, include PAK1, PAK2, and PAK3. Group I PAKs contain a PBD (p21-binding domain) overlapping with an AID (autoinhibitory domain), a C-terminal catalytic domain, SH3 binding sites and a non-classical SH3 binding site for PIX (PAK-interacting exchange factor). They interact with the SH3 domain containing proteins Nck, Grb2 and PIX. Binding of group I PAKs to activated GTPases leads to conformational changes that destabilize the AID, allowing autophosphorylation and full activation of the kinase domain. Known group I PAK substrates include MLCK, Bad, Raf, MEK1, LIMK, Merlin, Vimentin, Myc, Stat5a, and Aurora A, among others. PAKs are Rho family GTPase-regulated kinases that serve as important mediators in the function of Cdc42 (cell division cycle 42) and Rac. PAKs are implicated in the regulation of many cellular processes including growth factor receptor-mediated proliferation, cell polarity, cell motility, cell death and survival, and actin cytoskeleton organization. The PAK subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270814 [Multi-domain] Cd Length: 261 Bit Score: 48.38 E-value: 5.05e-07
|
||||||||
STKc_DAPK | cd14105 | Catalytic domain of the Serine/Threonine Kinase, Death-Associated Protein Kinase; STKs ... |
51-142 | 5.77e-07 | ||||
Catalytic domain of the Serine/Threonine Kinase, Death-Associated Protein Kinase; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. DAPKs mediate cell death and act as tumor suppressors. They are necessary to induce cell death and their overexpression leads to death-associated changes including membrane blebbing, cell rounding, and formation of autophagic vesicles. Vertebrates contain three subfamily members with different domain architecture, localization, and function. DAPK1 is the prototypical member of the subfamily and is also simply referred to as DAPK. DAPK2 is also called DAPK-related protein 1 (DRP-1), while DAPK3 has also been named DAP-like kinase (DLK) and zipper-interacting protein kinase (ZIPk). These proteins are ubiquitously expressed in adult tissues, are capable of cross talk with each other, and may act synergistically in regulating cell death. The DAPK subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 271007 [Multi-domain] Cd Length: 269 Bit Score: 48.25 E-value: 5.77e-07
|
||||||||
STKc_CAMK | cd05117 | The catalytic domain of CAMK family Serine/Threonine Kinases; STKs catalyze the transfer of ... |
17-142 | 6.29e-07 | ||||
The catalytic domain of CAMK family Serine/Threonine Kinases; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. CaMKs are multifunctional calcium and calmodulin (CaM) stimulated STKs involved in cell cycle regulation. There are several types of CaMKs including CaMKI, CaMKII, and CaMKIV. CaMKI proteins are monomeric and they play pivotal roles in the nervous system, including long-term potentiation, dendritic arborization, neurite outgrowth, and the formation of spines, synapses, and axons. CaMKII is a signaling molecule that translates upstream calcium and reactive oxygen species (ROS) signals into downstream responses that play important roles in synaptic function and cardiovascular physiology. CAMKIV is implicated in regulating several transcription factors like CREB, MEF2, and retinoid orphan receptors, as well as in T-cell development and signaling. The CAMK family also consists of other related kinases including the Phosphorylase kinase Gamma subunit (PhKG), the C-terminal kinase domains of Ribosomal S6 kinase (RSK) and Mitogen and stress-activated kinase (MSK), Doublecortin-like kinase (DCKL), and the MAPK-activated protein kinases MK2, MK3, and MK5, among others. The CAMK family is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270687 [Multi-domain] Cd Length: 258 Bit Score: 48.24 E-value: 6.29e-07
|
||||||||
STKc_CaMKI_gamma | cd14166 | Catalytic domain of the Serine/Threonine kinase, Calcium/calmodulin-dependent protein kinase ... |
54-142 | 7.06e-07 | ||||
Catalytic domain of the Serine/Threonine kinase, Calcium/calmodulin-dependent protein kinase Type I gamma; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. CaMKs are multifunctional calcium and calmodulin (CaM) stimulated STKs involved in cell cycle regulation. The CaMK family includes CaMKI, CaMKII, CaMKIV, and CaMK kinase (CaMKK). In vertebrates, there are four CaMKI proteins encoded by different genes (alpha, beta, gamma, and delta), each producing at least one variant. CaMKs contain an N-terminal catalytic domain and a C-terminal regulatory domain that harbors a CaM binding site. CaMKI proteins are monomeric and they play pivotal roles in the nervous system, including long-term potentiation, dendritic arborization, neurite outgrowth, and the formation of spines, synapses, and axons. In addition, they may be involved in osteoclast differentiation and bone resorption. The CaMKI-gamma subfamily is part of a larger superfamily that includes the catalytic domains of other protein kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 271068 [Multi-domain] Cd Length: 285 Bit Score: 48.06 E-value: 7.06e-07
|
||||||||
STKc_IRAK4 | cd14158 | Catalytic domain of the Serine/Threonine kinase, Interleukin-1 Receptor Associated Kinase 4; ... |
53-142 | 7.16e-07 | ||||
Catalytic domain of the Serine/Threonine kinase, Interleukin-1 Receptor Associated Kinase 4; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. IRAKs are involved in Toll-like receptor (TLR) and interleukin-1 (IL-1) signalling pathways, and are thus critical in regulating innate immune responses and inflammation. IRAKs contain an N-terminal Death domain (DD), a proST region (rich in serines, prolines, and threonines), a central kinase domain, and a C-terminal domain; IRAK-4 lacks the C-terminal domain. Vertebrates contain four IRAKs (IRAK-1, -2, -3 (or -M), and -4) that display distinct functions and patterns of expression and subcellular distribution, and can differentially mediate TLR signaling. IRAK4 plays a critical role in NFkB activation by its interaction with MyD88, which acts as a scaffold that enables IRAK4 to phosphorylate and activate IRAK1 and/or IRAK2. It also plays an important role in type I IFN production induced by TLR7/8/9. The IRAK4 subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 271060 [Multi-domain] Cd Length: 288 Bit Score: 48.26 E-value: 7.16e-07
|
||||||||
STKc_Cdc7_like | cd06627 | Catalytic domain of Cell division control protein 7-like Serine/Threonine Kinases; STKs ... |
56-142 | 7.79e-07 | ||||
Catalytic domain of Cell division control protein 7-like Serine/Threonine Kinases; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. Members of this subfamily include Schizosaccharomyces pombe Cdc7, Saccharomyces cerevisiae Cdc15, Arabidopsis thaliana mitogen-activated protein kinase kinase kinase (MAPKKK) epsilon, and related proteins. MAPKKKs phosphorylate and activate MAPK kinases, which in turn phosphorylate and activate MAPKs during signaling cascades that are important in mediating cellular responses to extracellular signals. Fission yeast Cdc7 is essential for cell division by playing a key role in the initiation of septum formation and cytokinesis. Budding yeast Cdc15 functions to coordinate mitotic exit with cytokinesis. Arabidopsis MAPKKK epsilon is required for pollen development in the plasma membrane. The Cdc7-like subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270797 [Multi-domain] Cd Length: 254 Bit Score: 47.99 E-value: 7.79e-07
|
||||||||
STKc_MAP3K12_13 | cd14059 | Catalytic domain of the Serine/Threonine Kinases, Mitogen-Activated Protein Kinase Kinase ... |
58-144 | 7.89e-07 | ||||
Catalytic domain of the Serine/Threonine Kinases, Mitogen-Activated Protein Kinase Kinase Kinases 12 and 13; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. MAP3K12 is also called MAPK upstream kinase (MUK), dual leucine zipper-bearing kinase (DLK) or leucine-zipper protein kinase (ZPK). It is involved in the c-Jun N-terminal kinase (JNK) pathway that directly regulates axonal regulation through the phosphorylation of microtubule-associated protein 1B (MAP1B). It also regulates the differentiation of many cell types including adipocytes and may play a role in adipogenesis. MAP3K13, also called leucine zipper-bearing kinase (LZK), directly phosphorylates and activates MKK7, which in turn activates the JNK pathway. It also activates NF-kB through IKK activation and this activity is enhanced by antioxidant protein-1 (AOP-1). MAP3Ks (MKKKs or MAPKKKs) phosphorylate and activate MAP2Ks (MAPKKs or MKKs), which in turn phosphorylate and activate MAPKs during signaling cascades that are important in mediating cellular responses to extracellular signals. The MAP3K12/13 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270961 [Multi-domain] Cd Length: 237 Bit Score: 47.87 E-value: 7.89e-07
|
||||||||
STKc_HIPK | cd14211 | Catalytic domain of the Serine/Threonine Kinase, Homeodomain-Interacting Protein Kinase; STKs ... |
55-142 | 8.22e-07 | ||||
Catalytic domain of the Serine/Threonine Kinase, Homeodomain-Interacting Protein Kinase; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. HIPKs, originally identified by their ability to bind homeobox factors, are nuclear proteins containing catalytic kinase and homeobox-interacting domains as well as a PEST region overlapping with the speckle-retention signal (SRS). They show speckled localization in the nucleus, apart from the nucleoles. They play roles in the regulation of many nuclear pathways including gene transcription, cell survival, proliferation, differentiation, development, and DNA damage response. Vertebrates contain three HIPKs (HIPK1-3) and mammals harbor an additional family member HIPK4, which does not contain a homeobox-interacting domain and is localized in the cytoplasm. HIPK2, the most studied HIPK, is a coregulator of many transcription factors and cofactors and it regulates gene transcription during development and in DNA damage response. The HIPK subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 271113 [Multi-domain] Cd Length: 329 Bit Score: 48.21 E-value: 8.22e-07
|
||||||||
PK_Tyr_Ser-Thr | pfam07714 | Protein tyrosine and serine/threonine kinase; Protein phosphorylation, which plays a key role ... |
7-142 | 8.26e-07 | ||||
Protein tyrosine and serine/threonine kinase; Protein phosphorylation, which plays a key role in most cellular activities, is a reversible process mediated by protein kinases and phosphoprotein phosphatases. Protein kinases catalyze the transfer of the gamma phosphate from nucleotide triphosphates (often ATP) to one or more amino acid residues in a protein substrate side chain, resulting in a conformational change affecting protein function. Phosphoprotein phosphatases catalyze the reverse process. Protein kinases fall into three broad classes, characterized with respect to substrate specificity; Serine/threonine-protein kinases, tyrosine-protein kinases, and dual specificity protein kinases (e.g. MEK - phosphorylates both Thr and Tyr on target proteins). This entry represents the catalytic domain found in a number of serine/threonine- and tyrosine-protein kinases. It does not include the catalytic domain of dual specificity kinases. Pssm-ID: 462242 [Multi-domain] Cd Length: 258 Bit Score: 47.88 E-value: 8.26e-07
|
||||||||
STKc_DAPK3 | cd14195 | Catalytic domain of the Serine/Threonine Kinase, Death-Associated Protein Kinase 3; STKs ... |
47-144 | 1.04e-06 | ||||
Catalytic domain of the Serine/Threonine Kinase, Death-Associated Protein Kinase 3; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. DAPKs mediate cell death and act as tumor suppressors. They are necessary to induce cell death and their overexpression leads to death-associated changes including membrane blebbing, cell rounding, and formation of autophagic vesicles. Vertebrates contain three subfamily members with different domain architecture, localization, and function. DAPK3, also called DAP-like kinase (DLK) and zipper-interacting protein kinase (ZIPk), contains an N-terminal kinase domain and a C-terminal region with nuclear localization signals (NLS) and a leucine zipper motif that mediates homodimerization and interaction with other leucine zipper proteins. It interacts with Par-4, a protein that contains a death domain and interacts with actin filaments. DAPK3 is present in both the cytoplasm and nucleus. Its co-expression with Par-4 results in the co-localization of the two proteins to actin filaments. In addition to cell death, DAPK3 is also implicated in mediating cell motility and the contraction of smooth muscles. The DAPK3 subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 271097 [Multi-domain] Cd Length: 271 Bit Score: 47.69 E-value: 1.04e-06
|
||||||||
STKc_HAL4_like | cd13994 | Catalytic domain of Fungal Halotolerance protein 4-like Serine/Threonine kinases; STKs ... |
62-142 | 1.07e-06 | ||||
Catalytic domain of Fungal Halotolerance protein 4-like Serine/Threonine kinases; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. This subfamily is composed of HAL4, Saccharomyces cerevisiae Ptk2/Stk2, and similar fungal proteins. Proteins in this subfamily are involved in regulating ion transporters. In budding and fission yeast, HAL4 promotes potassium ion uptake, which increases cellular resistance to other cations such as sodium, lithium, and calcium ions. HAL4 stabilizes the major high-affinity K+ transporter Trk1 at the plasma membrane under low K+ conditions, which prevents endocytosis and vacuolar degradation. Budding yeast Ptk2 phosphorylates and regulates the plasma membrane H+ ATPase, Pma1. The HAL4-like subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270896 [Multi-domain] Cd Length: 265 Bit Score: 47.69 E-value: 1.07e-06
|
||||||||
STKc_LRRK | cd14000 | Catalytic domain of the Serine/Threonine kinase, Leucine-Rich Repeat Kinase; STKs catalyze the ... |
58-144 | 1.10e-06 | ||||
Catalytic domain of the Serine/Threonine kinase, Leucine-Rich Repeat Kinase; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. LRRKs are also classified as ROCO proteins because they contain a ROC (Ras of complex proteins)/GTPase domain followed by a COR (C-terminal of ROC) domain of unknown function. In addition, LRRKs contain a catalytic kinase domain and protein-protein interaction motifs including a WD40 domain, LRRs and ankyrin (ANK) repeats. LRRKs possess both GTPase and kinase activities, with the ROC domain acting as a molecular switch for the kinase domain, cycling between a GTP-bound state which drives kinase activity and a GDP-bound state which decreases the activity. Vertebrates contain two members, LRRK1 and LRRK2, which show complementary expression in the brain. Mutations in LRRK2 are linked to both familial and sporadic forms of Parkinson's disease. The normal roles of LRRKs are not clearly defined. They may be involved in mitogen-activated protein kinase (MAPK) pathways, protein translation control, programmed cell death pathways, and cytoskeletal dynamics. The LRRK subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270902 [Multi-domain] Cd Length: 275 Bit Score: 47.61 E-value: 1.10e-06
|
||||||||
pk1 | PHA03390 | serine/threonine-protein kinase 1; Provisional |
54-113 | 1.27e-06 | ||||
serine/threonine-protein kinase 1; Provisional Pssm-ID: 223069 [Multi-domain] Cd Length: 267 Bit Score: 47.54 E-value: 1.27e-06
|
||||||||
STKc_Yank1 | cd05578 | Catalytic domain of the Serine/Threonine Kinase, Yank1; STKs catalyze the transfer of the ... |
58-145 | 1.30e-06 | ||||
Catalytic domain of the Serine/Threonine Kinase, Yank1; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. This subfamily contains uncharacterized STKs with similarity to the human protein designated as Yank1 or STK32A. The Yank1 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270730 [Multi-domain] Cd Length: 257 Bit Score: 47.25 E-value: 1.30e-06
|
||||||||
STKc_CDK4_6_like | cd07838 | Catalytic domain of Cyclin-Dependent protein Kinase 4 and 6-like Serine/Threonine Kinases; ... |
7-142 | 1.38e-06 | ||||
Catalytic domain of Cyclin-Dependent protein Kinase 4 and 6-like Serine/Threonine Kinases; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. CDK4 and CDK6 partner with D-type cyclins to regulate the early G1 phase of the cell cycle. They are the first kinases activated by mitogenic signals to release cells from the G0 arrested state. CDK4 and CDK6 are both expressed ubiquitously, associate with all three D cyclins (D1, D2 and D3), and phosphorylate the retinoblastoma (pRb) protein. They are also regulated by the INK4 family of inhibitors which associate with either the CDK alone or the CDK/cyclin complex. CDK4 and CDK6 show differences in subcellular localization, sensitivity to some inhibitors, timing in activation, tumor selectivity, and possibly substrate profiles. Although CDK4 and CDK6 seem to show some redundancy, they also have discrete, nonoverlapping functions. CDK6 plays an important role in cell differentiation. CDKs belong to a large family of STKs that are regulated by their cognate cyclins. Together, they are involved in the control of cell-cycle progression, transcription, and neuronal function. The CDK4/6-like subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270831 [Multi-domain] Cd Length: 287 Bit Score: 47.27 E-value: 1.38e-06
|
||||||||
STKc_IRAK | cd14066 | Catalytic domain of the Serine/Threonine kinases, Interleukin-1 Receptor Associated Kinases ... |
53-142 | 1.38e-06 | ||||
Catalytic domain of the Serine/Threonine kinases, Interleukin-1 Receptor Associated Kinases and related STKs; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. IRAKs are involved in Toll-like receptor (TLR) and interleukin-1 (IL-1) signalling pathways, and are thus critical in regulating innate immune responses and inflammation. Some IRAKs may also play roles in T- and B-cell signaling, and adaptive immunity. Vertebrates contain four IRAKs (IRAK-1, -2, -3 (or -M), and -4) that display distinct functions and patterns of expression and subcellular distribution, and can differentially mediate TLR signaling. IRAK-1, -2, and -4 are ubiquitously expressed and are active kinases, while IRAK-M is only induced in monocytes and macrophages and is an inactive kinase. Variations in IRAK genes are linked to diverse diseases including infection, sepsis, cancer, and autoimmune diseases. IRAKs contain an N-terminal Death domain (DD), a proST region (rich in serines, prolines, and threonines), a central kinase domain (a pseudokinase domain in the case of IRAK3), and a C-terminal domain; IRAK-4 lacks the C-terminal domain. This subfamily includes plant receptor-like kinases (RLKs) including Arabidopsis thaliana BAK1 and CLAVATA1 (CLV1). BAK1 functions in BR (brassinosteroid)-regulated plant development and in pathways involved in plant resistance to pathogen infection and herbivore attack. CLV1, directly binds small signaling peptides, CLAVATA3 (CLV3) and CLAVATA3/EMBRYO SURROUNDING REGI0N (CLE), to restrict stem cell proliferation: the CLV3-CLV1-WUS (WUSCHEL) module influences stem cell maintenance in the shoot apical meristem, and the CLE40 (CLAVATA3/EMBRYO SURROUNDING REGION40) -ACR4 (CRINKLY4) -CLV1- WOX5 (WUSCHEL-RELATED HOMEOBOX5) module at the root apical meristem. The IRAK subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270968 [Multi-domain] Cd Length: 272 Bit Score: 47.27 E-value: 1.38e-06
|
||||||||
STKc_ULK4 | cd14010 | Catalytic domain of the Serine/Threonine kinase, Unc-51-like kinase 4; STKs catalyze the ... |
58-142 | 1.42e-06 | ||||
Catalytic domain of the Serine/Threonine kinase, Unc-51-like kinase 4; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. ULK4 is a functionally uncharacterized kinase that shows similarity to ATG1/ULKs. The ATG1/ULK complex is conserved from yeast to humans and it plays a critical role in the initiation of autophagy, the intracellular system that leads to the lysosomal degradation of cellular components and their recycling into basic metabolic units. The ULK4 subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270912 [Multi-domain] Cd Length: 269 Bit Score: 47.29 E-value: 1.42e-06
|
||||||||
STKc_TSSK6-like | cd14164 | Catalytic domain of testis-specific serine/threonine kinase 6 and similar proteins; STKs ... |
29-142 | 1.49e-06 | ||||
Catalytic domain of testis-specific serine/threonine kinase 6 and similar proteins; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. TSSK proteins are almost exclusively expressed postmeiotically in the testis and play important roles in spermatogenesis and/or spermiogenesis. There are five mammalian TSSK proteins which show differences in their localization and timing of expression. TSSK6, also called SSTK, is expressed at the head of elongated sperm. It can phosphorylate histones and associate with heat shock protens HSP90 and HSC70. Male mice deficient in TSSK6 are infertile, showing spermatogenic impairment including reduced sperm counts, impaired DNA condensation, abnormal morphology and decreased motility rates. The TSSK6-like subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 271066 [Multi-domain] Cd Length: 256 Bit Score: 47.16 E-value: 1.49e-06
|
||||||||
STYKc | smart00221 | Protein kinase; unclassified specificity; Phosphotransferases. The specificity of this class ... |
6-142 | 1.55e-06 | ||||
Protein kinase; unclassified specificity; Phosphotransferases. The specificity of this class of kinases can not be predicted. Possible dual-specificity Ser/Thr/Tyr kinase. Pssm-ID: 214568 [Multi-domain] Cd Length: 258 Bit Score: 47.16 E-value: 1.55e-06
|
||||||||
STKc_PAK2 | cd06655 | Catalytic domain of the Serine/Threonine Kinase, p21-activated kinase 2; STKs catalyze the ... |
17-145 | 1.72e-06 | ||||
Catalytic domain of the Serine/Threonine Kinase, p21-activated kinase 2; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. PAK2 plays a role in pro-apoptotic signaling. It is cleaved and activated by caspases leading to morphological changes during apoptosis. PAK2 is also activated in response to a variety of stresses including DNA damage, hyperosmolarity, serum starvation, and contact inhibition, and may play a role in coordinating the stress response. PAK2 also contributes to cancer cell invasion through a mechanism distinct from that of PAK1. It belongs to the group I PAKs, which contain a PBD (p21-binding domain) overlapping with an AID (autoinhibitory domain), a C-terminal catalytic domain, SH3 binding sites and a non-classical SH3 binding site for PIX (PAK-interacting exchange factor). PAKs are Rho family GTPase-regulated kinases that serve as important mediators in the function of Cdc42 (cell division cycle 42) and Rac. The PAK subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 132986 [Multi-domain] Cd Length: 296 Bit Score: 47.03 E-value: 1.72e-06
|
||||||||
STKc_LKB1_CaMKK | cd14008 | Catalytic domain of the Serine/Threonine kinases, Liver Kinase B1, Calmodulin Dependent ... |
17-101 | 1.92e-06 | ||||
Catalytic domain of the Serine/Threonine kinases, Liver Kinase B1, Calmodulin Dependent Protein Kinase Kinase, and similar proteins; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. Both LKB1 and CaMKKs can phosphorylate and activate AMP-activated protein kinase (AMPK). LKB1, also called STK11, serves as a master upstream kinase that activates AMPK and most AMPK-like kinases. LKB1 and AMPK are part of an energy-sensing pathway that links cell energy to metabolism and cell growth. They play critical roles in the establishment and maintenance of cell polarity, cell proliferation, cytoskeletal organization, as well as T-cell metabolism, including T-cell development, homeostasis, and effector function. CaMKKs are upstream kinases of the CaM kinase cascade that phosphorylate and activate CaMKI and CamKIV. They may also phosphorylate other substrates including PKB and AMPK. Vertebrates contain two CaMKKs, CaMKK1 (or alpha) and CaMKK2 (or beta). CaMKK1 is involved in the regulation of glucose uptake in skeletal muscles. CaMKK2 is involved in regulating energy balance, glucose metabolism, adiposity, hematopoiesis, inflammation, and cancer. The LKB1/CaMKK subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270910 [Multi-domain] Cd Length: 267 Bit Score: 46.78 E-value: 1.92e-06
|
||||||||
STKc_OSR1_SPAK | cd06610 | Catalytic domain of the Serine/Threonine Kinases, Oxidative stress response kinase and ... |
55-145 | 2.11e-06 | ||||
Catalytic domain of the Serine/Threonine Kinases, Oxidative stress response kinase and Ste20-related proline alanine-rich kinase; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. SPAK is also referred to as STK39 or PASK (proline-alanine-rich STE20-related kinase). OSR1 and SPAK regulate the activity of cation-chloride cotransporters through direct interaction and phosphorylation. They are also implicated in cytoskeletal rearrangement, cell differentiation, transformation and proliferation. OSR1 and SPAK contain a conserved C-terminal (CCT) domain, which recognizes a unique motif ([RK]FX[VI]) present in their activating kinases (WNK1/WNK4) and their substrates. The OSR1 and SPAK subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270787 [Multi-domain] Cd Length: 267 Bit Score: 46.58 E-value: 2.11e-06
|
||||||||
STKc_MLCK | cd14103 | Catalytic domain of the Serine/Threonine Kinase, Myosin Light Chain Kinase; STKs catalyze the ... |
62-142 | 2.12e-06 | ||||
Catalytic domain of the Serine/Threonine Kinase, Myosin Light Chain Kinase; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. MLCK phosphorylates myosin regulatory light chain and controls the contraction of all muscle types. In vertebrates, different MLCKs function in smooth (MLCK1), skeletal (MLCK2), and cardiac (MLCK3) muscles. A fourth protein, MLCK4, has also been identified through comprehensive genome analysis although it has not been biochemically characterized. The MLCK1 gene expresses three transcripts in a cell-specific manner: a short MLCK1 which contains three immunoglobulin (Ig)-like and one fibronectin type III (FN3) domains, PEVK and actin-binding regions, and a kinase domain near the C-terminus; a long MLCK1 containing six additional Ig-like domains at the N-terminus compared to the short MLCK1; and the C-terminal Ig module. MLCK2, MLCK3, and MLCK4 share a simpler domain architecture of a single kinase domain near the C-terminus and the absence of Ig-like or FN3 domains. The MLCK subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 271005 [Multi-domain] Cd Length: 250 Bit Score: 46.45 E-value: 2.12e-06
|
||||||||
PTKc_Srm_Brk | cd05148 | Catalytic domain of the Protein Tyrosine Kinases, Src-related kinase lacking C-terminal ... |
5-144 | 2.39e-06 | ||||
Catalytic domain of the Protein Tyrosine Kinases, Src-related kinase lacking C-terminal regulatory tyrosine and N-terminal myristylation sites (Srm) and Breast tumor kinase (Brk); PTKs catalyze the transfer of the gamma-phosphoryl group from ATP to tyrosine (tyr) residues in protein substrates. Srm and Brk (also called protein tyrosine kinase 6) are members of the Src subfamily of proteins, which are cytoplasmic (or non-receptor) PTKs. Brk has been found to be overexpressed in a majority of breast tumors. Src kinases in general contain an N-terminal SH4 domain with a myristoylation site, followed by SH3 and SH2 domains, a tyr kinase domain, and a regulatory C-terminal region containing a conserved tyr; they are activated by autophosphorylation at the tyr kinase domain, but are negatively regulated by phosphorylation at the C-terminal tyr by Csk (C-terminal Src Kinase). Srm and Brk however, lack the N-terminal myristylation sites. Src proteins are involved in signaling pathways that regulate cytokine and growth factor responses, cytoskeleton dynamics, cell proliferation, survival, and differentiation. The Srm/Brk subfamily is part of a larger superfamily that includes the catalytic domains of other kinases such as serine/threonine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 133248 [Multi-domain] Cd Length: 261 Bit Score: 46.66 E-value: 2.39e-06
|
||||||||
STKc_MLCK1 | cd14191 | Catalytic domain of the Serine/Threonine Kinase, Myosin Light Chain Kinase 1; STKs catalyze ... |
47-144 | 2.63e-06 | ||||
Catalytic domain of the Serine/Threonine Kinase, Myosin Light Chain Kinase 1; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. MLCK1 (or MYLK1) phosphorylates myosin regulatory light chain and controls the contraction of smooth muscles. The MLCK1 gene expresses three transcripts in a cell-specific manner: a short MLCK1 which contains three immunoglobulin (Ig)-like and one fibronectin type III (FN3) domains, PEVK and actin-binding regions, and a kinase domain near the C-terminus followed by a regulatory segment containing an autoinhibitory Ca2+/calmodulin binding site; a long MLCK1 containing six additional Ig-like domains at the N-terminus compared to the short MLCK1; and the C-terminal Ig module which results in the expression of telokin in phasic smooth muscles, leading to Ca2+ desensitization by cyclic nucleotides of smooth muscle force. MLCK1 is also responsible for myosin regulatory light chain phosphorylation in nonmuscle cells and may play a role in regulating myosin II ATPase activity. The MLCK1 subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 271093 [Multi-domain] Cd Length: 259 Bit Score: 46.54 E-value: 2.63e-06
|
||||||||
STKc_PDK1 | cd05581 | Catalytic domain of the Serine/Threonine Kinase, Phosphoinositide-dependent kinase 1; STKs ... |
58-142 | 2.63e-06 | ||||
Catalytic domain of the Serine/Threonine Kinase, Phosphoinositide-dependent kinase 1; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. PDK1 carries an N-terminal catalytic domain and a C-terminal pleckstrin homology (PH) domain that binds phosphoinositides. It phosphorylates the activation loop of AGC kinases that are regulated by PI3K such as PKB, SGK, and PKC, among others, and is crucial for their activation. Thus, it contributes in regulating many processes including metabolism, growth, proliferation, and survival. PDK1 also has the ability to autophosphorylate and is constitutively active in mammalian cells. It is essential for normal embryo development and is important in regulating cell volume. The PDK1 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270733 [Multi-domain] Cd Length: 278 Bit Score: 46.44 E-value: 2.63e-06
|
||||||||
TyrKc | smart00219 | Tyrosine kinase, catalytic domain; Phosphotransferases. Tyrosine-specific kinase subfamily. |
6-142 | 2.74e-06 | ||||
Tyrosine kinase, catalytic domain; Phosphotransferases. Tyrosine-specific kinase subfamily. Pssm-ID: 197581 [Multi-domain] Cd Length: 257 Bit Score: 46.37 E-value: 2.74e-06
|
||||||||
PTKc_Ror2 | cd05091 | Catalytic domain of the Protein Tyrosine Kinase, Receptor tyrosine kinase-like Orphan Receptor ... |
21-142 | 3.10e-06 | ||||
Catalytic domain of the Protein Tyrosine Kinase, Receptor tyrosine kinase-like Orphan Receptor 2; PTKs catalyze the transfer of the gamma-phosphoryl group from ATP to tyrosine (tyr) residues in protein substrates. Ror2 plays important roles in skeletal and heart formation. Ror2-deficient mice show widespread bone abnormalities, ventricular defects in the heart, and respiratory dysfunction. Mutations in human Ror2 result in two different bone development genetic disorders, recessive Robinow syndrome and brachydactyly type B. Ror2 is also implicated in neural development. Ror proteins are orphan receptor PTKs (RTKs) containing an extracellular region with immunoglobulin-like, cysteine-rich, and kringle domains, a transmembrane segment, and an intracellular catalytic domain. Ror RTKs are unrelated to the nuclear receptor subfamily called retinoid-related orphan receptors (RORs). RTKs are usually activated through ligand binding, which causes dimerization and autophosphorylation of the intracellular tyr kinase catalytic domain. The Ror2 subfamily is part of a larger superfamily that includes the catalytic domains of other kinases such as protein serine/threonine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270673 [Multi-domain] Cd Length: 284 Bit Score: 46.55 E-value: 3.10e-06
|
||||||||
PHA03211 | PHA03211 | serine/threonine kinase US3; Provisional |
55-142 | 3.11e-06 | ||||
serine/threonine kinase US3; Provisional Pssm-ID: 223009 [Multi-domain] Cd Length: 461 Bit Score: 46.81 E-value: 3.11e-06
|
||||||||
STK_BAK1_like | cd14664 | Catalytic domain of the Serine/Threonine Kinase, BRI1 associated kinase 1 and related STKs; ... |
54-142 | 3.14e-06 | ||||
Catalytic domain of the Serine/Threonine Kinase, BRI1 associated kinase 1 and related STKs; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. This subfamily includes three leucine-rich repeat receptor-like kinases (LRR-RLKs): Arabidopsis thaliana BAK1 and CLAVATA1 (CLV1), and Physcomitrella patens CLL1B clavata1-like receptor S/T protein kinase. BAK1 functions in various signaling pathways. It plays a role in BR (brassinosteroid)-regulated plant development as a co-receptor of BRASSINOSTEROID (BR) INSENSITIVE 1 (BRI1), the receptor for BRs, and is required for full activation of BR signaling. It also modulates pathways involved in plant resistance to pathogen infection (pattern-triggered immunity, PTI) and herbivore attack (wound- or herbivore feeding-induced accumulation of jasmonic acid (JA) and JA-isoleucine. CLV1, directly binds small signaling peptides, CLAVATA3 (CLV3) and CLAVATA3/EMBRYO SURROUNDING REGI0N (CLE), to restrict stem cell proliferation: the CLV3-CLV1-WUS (WUSCHEL) module influences stem cell maintenance in the shoot apical meristem, and the CLE40 (CLAVATA3/EMBRYO SURROUNDING REGION40) -ACR4 (CRINKLY4) -CLV1- WOX5 (WUSCHEL-RELATED HOMEOBOX5) module at the root apical meristem. The STK_BAK1-like subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 271134 [Multi-domain] Cd Length: 270 Bit Score: 46.33 E-value: 3.14e-06
|
||||||||
PK_KSR | cd14063 | Pseudokinase domain of Kinase Suppressor of Ras; The pseudokinase domain shows similarity to ... |
58-142 | 3.23e-06 | ||||
Pseudokinase domain of Kinase Suppressor of Ras; The pseudokinase domain shows similarity to protein kinases but lacks crucial residues for catalytic activity. KSR is a scaffold protein that functions downstream of Ras and upstream of Raf in the Extracellular signal-Regulated Kinase (ERK) pathway that regulates many cellular processes including cycle regulation, proliferation, differentiation, survival, and apoptosis. KSR proteins regulate the assembly and activation of the Raf/MEK/ERK module upon Ras activation at the membrane by direct association of its components. They are widely regarded as pseudokinases, but there is some debate in this designation as a few groups have reported detecting kinase catalytic activity for KSRs, specifically KSR1. Vertebrates contain two KSR proteins, KSR1 and KSR2. The KSR subfamily is part of a larger superfamily that includes the catalytic domains of other protein kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270965 [Multi-domain] Cd Length: 271 Bit Score: 46.19 E-value: 3.23e-06
|
||||||||
STKc_MLCK3 | cd14192 | Catalytic domain of the Serine/Threonine Kinase, Myosin Light Chain Kinase 3; STKs catalyze ... |
58-142 | 3.55e-06 | ||||
Catalytic domain of the Serine/Threonine Kinase, Myosin Light Chain Kinase 3; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. MLCK3 (or MYLK3) phosphorylates myosin regulatory light chain 2 and controls the contraction of cardiac muscles. It is expressed specifically in both the atrium and ventricle of the heart and its expression is regulated by the cardiac protein Nkx2-5. MLCK3 plays an important role in cardiogenesis by regulating the assembly of cardiac sarcomeres, the repeating contractile unit of striated muscle. MLCK3 contains a single kinase domain near the C-terminus and a unique N-terminal half, and unlike MLCK1/2, it does not appear to be regulated by Ca2+/calmodulin. The MLCK3 subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 271094 [Multi-domain] Cd Length: 261 Bit Score: 46.11 E-value: 3.55e-06
|
||||||||
STKc_DAPK1 | cd14194 | Catalytic domain of the Serine/Threonine Kinase, Death-Associated Protein Kinase 1; STKs ... |
47-144 | 3.75e-06 | ||||
Catalytic domain of the Serine/Threonine Kinase, Death-Associated Protein Kinase 1; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. DAPKs mediate cell death and act as tumor suppressors. They are necessary to induce cell death and their overexpression leads to death-associated changes including membrane blebbing, cell rounding, and formation of autophagic vesicles. Vertebrates contain three subfamily members with different domain architecture, localization, and function. DAPK1 is the prototypical member of the subfamily and is also simply referred to as DAPK. It is Ca2+/calmodulin (CaM)-regulated and actin-associated protein that contains an N-terminal kinase domain followed by an autoinhibitory CaM binding region and a large C-terminal extension with multiple functional domains including ankyrin (ANK) repeats, a cytoskeletal binding domain, a Death domain, and a serine-rich tail. Loss of DAPK1 expression, usually because of DNA methylation, is implicated in many tumor types. DAPK1 is highly abundant in the brain and has also been associated with neurodegeneration. The DAPK1 subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 271096 [Multi-domain] Cd Length: 269 Bit Score: 46.17 E-value: 3.75e-06
|
||||||||
STKc_MEKK1 | cd06630 | Catalytic domain of the Protein Serine/Threonine Kinase, Mitogen-Activated Protein (MAP) ... |
12-142 | 4.14e-06 | ||||
Catalytic domain of the Protein Serine/Threonine Kinase, Mitogen-Activated Protein (MAP)/Extracellular signal-Regulated Kinase (ERK) Kinase Kinase 1; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. MEKK1 is a MAPK kinase kinase (MAPKKK or MKKK) that phosphorylates and activates activates the ERK1/2 and c-Jun N-terminal kinase (JNK) pathways by activating their respective MAPKKs, MEK1/2 and MKK4/MKK7, respectively. MEKK1 is important in regulating cell survival and apoptosis. MEKK1 also plays a role in cell migration, tissue maintenance and homeostasis, and wound healing. The MEKK1 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270800 [Multi-domain] Cd Length: 268 Bit Score: 45.88 E-value: 4.14e-06
|
||||||||
STKc_CNK2-like | cd08530 | Catalytic domain of the Serine/Threonine Kinases, Chlamydomonas reinhardtii CNK2 and similar ... |
41-144 | 4.60e-06 | ||||
Catalytic domain of the Serine/Threonine Kinases, Chlamydomonas reinhardtii CNK2 and similar proteins; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. Chlamydomonas reinhardtii CNK2 has both cilliary and cell cycle functions. It influences flagellar length through promoting flagellar disassembly, and it regulates cell size, through influencing the size threshold at which cells commit to mitosis. This subfamily belongs to the (NIMA)-related kinase (Nek) family, which includes seven different Chlamydomonas Neks (CNKs 1-6 and Fa2). This subfamily includes CNK1, and -2. The Nek family is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270869 [Multi-domain] Cd Length: 256 Bit Score: 45.85 E-value: 4.60e-06
|
||||||||
STKc_B-Raf | cd14151 | Catalytic domain of the Serine/Threonine Kinase, B-Raf (Rapidly Accelerated Fibrosarcoma) ... |
53-142 | 4.86e-06 | ||||
Catalytic domain of the Serine/Threonine Kinase, B-Raf (Rapidly Accelerated Fibrosarcoma) kinase; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. B-Raf activates ERK with the strongest magnitude, compared with other Raf kinases. Mice embryos deficient in B-Raf die around midgestation due to vascular hemorrhage caused by apoptotic endothelial cells. Mutations in B-Raf have been implicated in initiating tumorigenesis and tumor progression, and are found in malignant cutaneous melanoma, papillary thyroid cancer, as well as in ovarian and colorectal carcinomas. Most oncogenic B-Raf mutations are located at the activation loop of the kinase and surrounding regions; the V600E mutation accounts for around 90% of oncogenic mutations. The V600E mutant constitutively activates MEK, resulting in sustained activation of ERK. B-Raf is a mitogen-activated protein kinase kinase kinase (MAP3K, MKKK, MAPKKK), which phosphorylates and activates MAPK kinases (MAPKKs or MKKs or MAP2Ks), which in turn phosphorylate and activate MAPKs during signaling cascades that are important in mediating cellular responses to extracellular signals. They function in the linear Ras-Raf-MEK-ERK pathway that regulates many cellular processes including cycle regulation, proliferation, differentiation, survival, and apoptosis. The B-Raf subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 271053 [Multi-domain] Cd Length: 274 Bit Score: 45.82 E-value: 4.86e-06
|
||||||||
STKc_NLK | cd07853 | Catalytic domain of the Serine/Threonine Kinase, Nemo-Like Kinase; STKs catalyze the transfer ... |
51-142 | 4.99e-06 | ||||
Catalytic domain of the Serine/Threonine Kinase, Nemo-Like Kinase; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. NLK is an atypical mitogen-activated protein kinase (MAPK) that is not regulated by a MAPK kinase. It functions downstream of the MAPK kinase kinase Tak1, which also plays a role in activating the JNK and p38 MAPKs. The Tak1/NLK pathways are regulated by Wnts, a family of secreted proteins that is critical in the control of asymmetric division and cell polarity. NLK can phosphorylate transcription factors from the TCF/LEF family, inhibiting their ability to activate the transcription of target genes. In prostate cancer cells, NLK is involved in regulating androgen receptor-mediated transcription and its expression is altered during cancer progression. MAPKs are important mediators of cellular responses to extracellular signals. The NLK subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 173748 [Multi-domain] Cd Length: 372 Bit Score: 45.89 E-value: 4.99e-06
|
||||||||
STKc_Nek | cd08215 | Catalytic domain of the Serine/Threonine Kinase, Never In Mitosis gene A (NIMA)-related kinase; ... |
62-142 | 5.19e-06 | ||||
Catalytic domain of the Serine/Threonine Kinase, Never In Mitosis gene A (NIMA)-related kinase; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. The Nek family is composed of 11 different mammalian members (Nek1-11) with similarity to the catalytic domain of Aspergillus nidulans NIMA kinase, the founding member of the Nek family, which was identified in a screen for cell cycle mutants that were prevented from entering mitosis. Neks contain a conserved N-terminal catalytic domain and a more divergent C-terminal regulatory region of various sizes and structures. They are involved in the regulation of downstream processes following the activation of Cdc2, and many of their functions are cell cycle-related. They play critical roles in microtubule dynamics during ciliogenesis and mitosis. The Nek family is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270855 [Multi-domain] Cd Length: 258 Bit Score: 45.53 E-value: 5.19e-06
|
||||||||
STKc_MLTK | cd14060 | Catalytic domain of the Serine/Threonine Kinase, Mixed lineage kinase-Like mitogen-activated ... |
58-142 | 5.24e-06 | ||||
Catalytic domain of the Serine/Threonine Kinase, Mixed lineage kinase-Like mitogen-activated protein Triple Kinase; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. MLTK, also called zipper sterile-alpha-motif kinase (ZAK), contains a catalytic kinase domain and a leucine zipper. There are two alternatively-spliced variants, MLTK-alpha and MLTK-beta. MLTK-alpha contains a sterile-alpha-motif (SAM) at the C-terminus. MLTK regulates the c-Jun N-terminal kinase, extracellular signal-regulated kinase, p38 MAPK, and NF-kB pathways. ZAK is the MAP3K involved in the signaling cascade that leads to the ribotoxic stress response initiated by cellular damage due to Shiga toxins and ricin. It may also play a role in cell transformation and cancer development. MAP3Ks (MKKKs or MAPKKKs) phosphorylate and activate MAPK kinases (MAPKKs or MKKs or MAP2Ks), which in turn phosphorylate and activate MAPKs during signaling cascades that are important in mediating cellular responses to extracellular signals.The MLTK subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270962 [Multi-domain] Cd Length: 242 Bit Score: 45.33 E-value: 5.24e-06
|
||||||||
STKc_EIF2AK1_HRI | cd14049 | Catalytic domain of the Serine/Threonine kinase, eukaryotic translation Initiation Factor ... |
55-145 | 5.45e-06 | ||||
Catalytic domain of the Serine/Threonine kinase, eukaryotic translation Initiation Factor 2-Alpha Kinase 2 or Heme-Regulated Inhibitor kinase; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. HRI (or EIF2AK1) contains an N-terminal regulatory heme-binding domain and a C-terminal catalytic kinase domain. It is suppressed under normal conditions by binding of the heme iron, and is activated during heme deficiency. It functions as a critical regulator that ensures balanced synthesis of globins and heme, in order to form stable hemoglobin during erythroid differentiation and maturation. HRI also protects cells and enhances survival under iron-deficient conditions. EIF2AKs phosphorylate the alpha subunit of eIF-2, resulting in the downregulation of protein synthesis. The HRI subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270951 [Multi-domain] Cd Length: 284 Bit Score: 45.58 E-value: 5.45e-06
|
||||||||
STKc_Kalirin_C | cd14115 | C-terminal kinase domain of the Large Serine/Threonine Kinase and Rho Guanine Nucleotide ... |
33-145 | 5.58e-06 | ||||
C-terminal kinase domain of the Large Serine/Threonine Kinase and Rho Guanine Nucleotide Exchange Factor, Kalirin; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. Kalirin, also called Duo or Duet, is a large multidomain protein containing a series of spectrin-like repeats, two each of RhoGEF and SH3 domains, an immunoglobulin-like (Ig) domain and a C-terminal kinase. As a GEF, it activates Rac1, RhoA, and RhoG. It is highly expressed in neurons and is required for spine formation. The kalirin gene produces at least 10 isoforms from alternative promoter use and splicing. Of the major isoforms (Kalirin-7, -9, and -12), only kalirin-12 contains the C-terminal kinase domain. Kalirin-12 is highly expressed during embryonic development and it plays an important role in axon outgrowth. The Kalirin subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 271017 [Multi-domain] Cd Length: 248 Bit Score: 45.34 E-value: 5.58e-06
|
||||||||
STKc_Nek3 | cd08219 | Catalytic domain of the Protein Serine/Threonine Kinase, Never In Mitosis gene A (NIMA) ... |
6-171 | 5.68e-06 | ||||
Catalytic domain of the Protein Serine/Threonine Kinase, Never In Mitosis gene A (NIMA)-related kinase 3; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. Nek3 is primarily localized in the cytoplasm and shows no cell cycle-dependent changes in its activity. It is present in the axons of neurons and affects morphogenesis and polarity through its regulation of microtubule acetylation. Nek3 modulates the signaling of the prolactin receptor through its activation of Vav2 and contributes to prolactin-mediated motility of breast cancer cells. It is one in a family of 11 different Neks (Nek1-11) that are involved in cell cycle control. The Nek family is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 173759 [Multi-domain] Cd Length: 255 Bit Score: 45.35 E-value: 5.68e-06
|
||||||||
STKc_C-Raf | cd14149 | Catalytic domain of the Serine/Threonine Kinase, C-Raf (Rapidly Accelerated Fibrosarcoma) ... |
50-142 | 6.69e-06 | ||||
Catalytic domain of the Serine/Threonine Kinase, C-Raf (Rapidly Accelerated Fibrosarcoma) kinase; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. C-Raf, also known as Raf-1 or c-Raf-1, is ubiquitously expressed and was the first Raf identified. It was characterized as the acquired oncogene from an acutely transforming murine sarcoma virus (3611-MSV) and the transforming agent from the avian retrovirus MH2. C-Raf-deficient mice embryos die around midgestation with increased apoptosis of embryonic tissues, especially in the fetal liver. One of the main functions of C-Raf is restricting caspase activation to promote survival in response to specific stimuli such as Fas stimulation, macrophage apoptosis, and erythroid differentiation. C-Raf is a mitogen-activated protein kinase kinase kinase (MAP3K, MKKK, MAPKKK), which phosphorylates and activates MAPK kinases (MAPKKs or MKKs or MAP2Ks), which in turn phosphorylate and activate MAPKs during signaling cascades that are important in mediating cellular responses to extracellular signals. It functions in the linear Ras-Raf-MEK-ERK pathway that regulates many cellular processes including cycle regulation, proliferation, differentiation, survival, and apoptosis. The C-Raf subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 271051 [Multi-domain] Cd Length: 283 Bit Score: 45.41 E-value: 6.69e-06
|
||||||||
STKc_SRPK2 | cd14217 | Catalytic domain of the Serine/Threonine Kinase, Serine-aRginine Protein Kinase 2; STKs ... |
54-145 | 7.11e-06 | ||||
Catalytic domain of the Serine/Threonine Kinase, Serine-aRginine Protein Kinase 2; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. SRPK2 mediates neuronal cell cycle and cell death through regulation of nuclear cyclin D1. It has also been found to promote leukemia cell proliferation by regulating cyclin A1. SRPK2 also plays a role in regulating pre-mRNA splicing and is required for spliceosomal B complex formation. SRPKs phosphorylate and regulate splicing factors from the SR protein family by specifically phosphorylating multiple serine residues residing in SR/RS dipeptide motifs (also known as RS domains). Phosphorylation of the RS domains enhances interaction with transportin SR and facilitates entry of the SR proteins into the nucleus. SRPKs contain a nonconserved insert domain, within the well-conserved catalytic kinase domain, that regulates their subcellular localization. The SRPK subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 271119 [Multi-domain] Cd Length: 366 Bit Score: 45.41 E-value: 7.11e-06
|
||||||||
STKc_SBK1 | cd13987 | Catalytic domain of the Serine/Threonine kinase, SH3 Binding Kinase 1; STKs catalyze the ... |
55-144 | 7.11e-06 | ||||
Catalytic domain of the Serine/Threonine kinase, SH3 Binding Kinase 1; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. SBK1, also called BSK146, is predominantly expressed in the brain. Its expression is increased in the developing brain during the late embryonic stage, coinciding with dramatic neuronal proliferation, migration, and maturation. SBK1 may play an important role in regulating brain development. The SBK1 subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270889 [Multi-domain] Cd Length: 259 Bit Score: 45.01 E-value: 7.11e-06
|
||||||||
pknD | PRK13184 | serine/threonine-protein kinase PknD; |
52-144 | 7.14e-06 | ||||
serine/threonine-protein kinase PknD; Pssm-ID: 183880 [Multi-domain] Cd Length: 932 Bit Score: 45.92 E-value: 7.14e-06
|
||||||||
PTKc_Syk_like | cd05060 | Catalytic domain of Spleen Tyrosine Kinase-like Protein Tyrosine Kinases; PTKs catalyze the ... |
39-142 | 7.55e-06 | ||||
Catalytic domain of Spleen Tyrosine Kinase-like Protein Tyrosine Kinases; PTKs catalyze the transfer of the gamma-phosphoryl group from ATP to tyrosine (tyr) residues in protein substrates. The Syk-like subfamily is composed of Syk, ZAP-70, Shark, and similar proteins. They are cytoplasmic (or nonreceptor) PTKs containing two Src homology 2 (SH2) domains N-terminal to the catalytic tyr kinase domain. They are involved in the signaling downstream of activated receptors (including B-cell, T-cell, and Fc receptors) that contain ITAMs (immunoreceptor tyr activation motifs), leading to processes such as cell proliferation, differentiation, survival, adhesion, migration, and phagocytosis. Syk is important in B-cell receptor signaling, while Zap-70 is primarily expressed in T-cells and NK cells, and is a crucial component in T-cell receptor signaling. Syk also plays a central role in Fc receptor-mediated phagocytosis in the adaptive immune system. Shark is exclusively expressed in ectodermally derived epithelia, and is localized preferentially to the apical surface of the epithelial cells, it may play a role in a signaling pathway for epithelial cell polarity. The Syk-like subfamily is part of a larger superfamily that includes the catalytic domains of other kinases such as protein serine/threonine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270650 [Multi-domain] Cd Length: 257 Bit Score: 45.03 E-value: 7.55e-06
|
||||||||
STKc_CaMKI_delta | cd14168 | Catalytic domain of the Serine/Threonine kinase, Calcium/calmodulin-dependent protein kinase ... |
55-145 | 7.79e-06 | ||||
Catalytic domain of the Serine/Threonine kinase, Calcium/calmodulin-dependent protein kinase Type I delta; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. CaMKs are multifunctional calcium and calmodulin (CaM) stimulated STKs involved in cell cycle regulation. The CaMK family includes CaMKI, CaMKII, CaMKIV, and CaMK kinase (CaMKK). In vertebrates, there are four CaMKI proteins encoded by different genes (alpha, beta, gamma, and delta), each producing at least one variant. CaMKs contain an N-terminal catalytic domain and a C-terminal regulatory domain that harbors a CaM binding site. CaMKI proteins are monomeric and they play pivotal roles in the nervous system, including long-term potentiation, dendritic arborization, neurite outgrowth, and the formation of spines, synapses, and axons. In addition, they may be involved in osteoclast differentiation and bone resorption. The CaMKI-delta subfamily is part of a larger superfamily that includes the catalytic domains of other protein kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 271070 [Multi-domain] Cd Length: 301 Bit Score: 45.42 E-value: 7.79e-06
|
||||||||
STKc_MST3_like | cd06609 | Catalytic domain of Mammalian Ste20-like protein kinase 3-like Serine/Threonine Kinases; STKs ... |
46-142 | 8.43e-06 | ||||
Catalytic domain of Mammalian Ste20-like protein kinase 3-like Serine/Threonine Kinases; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. This subfamily is composed of MST3, MST4, STK25, Schizosaccharomyces pombe Nak1 and Sid1, Saccharomyces cerevisiae sporulation-specific protein 1 (SPS1), and related proteins. Nak1 is required by fission yeast for polarizing the tips of actin cytoskeleton and is involved in cell growth, cell separation, cell morphology and cell-cycle progression. Sid1 is a component in the septation initiation network (SIN) signaling pathway, and plays a role in cytokinesis. SPS1 plays a role in regulating proteins required for spore wall formation. MST4 plays a role in mitogen-activated protein kinase (MAPK) signaling during cytoskeletal rearrangement, morphogenesis, and apoptosis. MST3 phosphorylates the STK NDR and may play a role in cell cycle progression and cell morphology. STK25 may play a role in the regulation of cell migration and polarization. The MST3-like subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270786 [Multi-domain] Cd Length: 274 Bit Score: 44.93 E-value: 8.43e-06
|
||||||||
PTKc_ALK_LTK | cd05036 | Catalytic domain of the Protein Tyrosine Kinases, Anaplastic Lymphoma Kinase and Leukocyte ... |
39-144 | 8.54e-06 | ||||
Catalytic domain of the Protein Tyrosine Kinases, Anaplastic Lymphoma Kinase and Leukocyte Tyrosine Kinase; PTKs catalyze the transfer of the gamma-phosphoryl group from ATP to tyr residues in protein substrates. ALK and LTK are orphan receptor PTKs (RTKs) whose ligands are not yet well-defined. ALK appears to play an important role in mammalian neural development as well as visceral muscle differentiation in Drosophila. ALK is aberrantly expressed as fusion proteins, due to chromosomal translocations, in about 60% of anaplastic large cell lymphomas (ALCLs). ALK fusion proteins are also found in rare cases of diffuse large B cell lymphomas (DLBCLs). LTK is mainly expressed in B lymphocytes and neuronal tissues. It is important in cell proliferation and survival. Transgenic mice expressing TLK display retarded growth and high mortality rate. In addition, a polymorphism in mouse and human LTK is implicated in the pathogenesis of systemic lupus erythematosus. RTKs contain an extracellular ligand-binding domain, a transmembrane region, and an intracellular tyr kinase domain. They are usually activated through ligand binding, which causes dimerization and autophosphorylation of the intracellular tyr kinase catalytic domain. The ALK/LTK subfamily is part of a larger superfamily that includes the catalytic domains of other kinases such as serine/threonine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270632 [Multi-domain] Cd Length: 277 Bit Score: 45.07 E-value: 8.54e-06
|
||||||||
STKc_RIP2 | cd14026 | Catalytic domain of the Serine/Threonine kinase, Receptor Interacting Protein 2; STKs catalyze ... |
55-141 | 1.16e-05 | ||||
Catalytic domain of the Serine/Threonine kinase, Receptor Interacting Protein 2; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. RIP2, also called RICK or CARDIAK, harbors a C-terminal Caspase Activation and Recruitment domain (CARD) belonging to the Death domain (DD) superfamily. It functions as an effector kinase downstream of the pattern recognition receptors from the Nod-like (NLR) family, Nod1 and Nod2, which recognizes bacterial peptidoglycans released upon infection. RIP2 may also be involved in regulating wound healing and keratinocyte proliferation. RIP kinases serve as essential sensors of cellular stress. The RIP2 subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270928 [Multi-domain] Cd Length: 284 Bit Score: 44.52 E-value: 1.16e-05
|
||||||||
STKc_MST4 | cd06640 | Catalytic domain of the Serine/Threonine Kinase, Mammalian Ste20-like protein kinase 4; STKs ... |
49-160 | 1.26e-05 | ||||
Catalytic domain of the Serine/Threonine Kinase, Mammalian Ste20-like protein kinase 4; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. MST4 is sometimes referred to as MASK (MST3 and SOK1-related kinase). It plays a role in mitogen-activated protein kinase (MAPK) signaling during cytoskeletal rearrangement, morphogenesis, and apoptosis. It influences cell growth and transformation by modulating the extracellular signal-regulated kinase (ERK) pathway. MST4 may also play a role in tumor formation and progression. It localizes in the Golgi apparatus by interacting with the Golgi matrix protein GM130 and may play a role in cell migration. The MST4 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 132971 [Multi-domain] Cd Length: 277 Bit Score: 44.66 E-value: 1.26e-05
|
||||||||
STKc_TBK1 | cd13988 | Catalytic domain of the Serine/Threonine kinase, TANK Binding Kinase 1; STKs catalyze the ... |
5-103 | 1.32e-05 | ||||
Catalytic domain of the Serine/Threonine kinase, TANK Binding Kinase 1; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. TBK1 is also called T2K and NF-kB-activating kinase. It is widely expressed in most cell types and acts as an IkappaB kinase (IKK)-activating kinase responsible for NF-kB activation in response to growth factors. It plays a role in modulating inflammatory responses through the NF-kB pathway. TKB1 is also a major player in innate immune responses since it functions as a virus-activated kinase necessary for establishing an antiviral state. It phosphorylates IRF-3 and IRF-7, which are important transcription factors for inducing type I interferon during viral infection. In addition, TBK1 may also play roles in cell transformation and oncogenesis. The TBK1 subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270890 [Multi-domain] Cd Length: 316 Bit Score: 44.40 E-value: 1.32e-05
|
||||||||
STKc_A-Raf | cd14150 | Catalytic domain of the Serine/Threonine Kinase, A-Raf (Rapidly Accelerated Fibrosarcoma) ... |
50-142 | 1.43e-05 | ||||
Catalytic domain of the Serine/Threonine Kinase, A-Raf (Rapidly Accelerated Fibrosarcoma) kinase; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. A-Raf cooperates with C-Raf in regulating ERK transient phosphorylation that is associated with cyclin D expression and cell cycle progression. Mice deficient in A-Raf are born alive but show neurological and intestinal defects. A-Raf demonstrates low kinase activity to MEK, compared with B- and C-Raf, and may also have alternative functions other than in the ERK signaling cascade. It regulates the M2 type pyruvate kinase, a key glycolytic enzyme. It also plays a role in endocytic membrane trafficking. A-Raf is a mitogen-activated protein kinase kinase kinase (MAP3K, MKKK, MAPKKK), which phosphorylates and activates MAPK kinases (MAPKKs or MKKs or MAP2Ks), which in turn phosphorylate and activate MAPKs during signaling cascades that are important in mediating cellular responses to extracellular signals. It functions in the linear Ras-Raf-MEK-ERK pathway that regulates many cellular processes including cycle regulation, proliferation, differentiation, survival, and apoptosis. The A-Raf subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 271052 [Multi-domain] Cd Length: 265 Bit Score: 44.24 E-value: 1.43e-05
|
||||||||
STKc_ASK | cd06624 | Catalytic domain of the Serine/Threonine Kinase, Apoptosis signal-regulating kinase; STKs ... |
62-142 | 1.44e-05 | ||||
Catalytic domain of the Serine/Threonine Kinase, Apoptosis signal-regulating kinase; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. Members of this subfamily are mitogen-activated protein kinase (MAPK) kinase kinases (MAPKKKs or MKKKs) and include ASK1, ASK2, and MAPKKK15. ASK1 (also called MAPKKK5) functions in the c-Jun N-terminal kinase (JNK) and p38 MAPK signaling pathways by directly activating their respective MAPKKs, MKK4/MKK7 and MKK3/MKK6. It plays important roles in cytokine and stress responses, as well as in reactive oxygen species-mediated cellular responses. ASK1 is implicated in various diseases mediated by oxidative stress including inschemic heart disease, hypertension, vessel injury, brain ischemia, Fanconi anemia, asthma, and pulmonary edema, among others. ASK2 (also called MAPKKK6) functions only in a heteromeric complex with ASK1, and can activate ASK1 by direct phosphorylation. The function of MAPKKK15 is still unknown. The ASK subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270794 [Multi-domain] Cd Length: 268 Bit Score: 44.32 E-value: 1.44e-05
|
||||||||
STKc_STK33 | cd14097 | Catalytic domain of Serine/Threonine Kinase 33; STKs catalyze the transfer of the ... |
17-145 | 1.44e-05 | ||||
Catalytic domain of Serine/Threonine Kinase 33; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. STK33 is highly expressed in the testis and is present in low levels in most tissues. It may be involved in spermatogenesis and organ ontogenesis. It interacts with and phosphorylates vimentin and may be involved in regulating intermediate filament cytoskeletal dynamics. Its role in promoting the cell viability of KRAS-dependent cancer cells is under debate; some studies have found STK33 to promote cancer cell viability, while other studies have found it to be non-essential. KRAS is the most commonly mutated human oncogene, thus, studies on the role of STK33 in KRAS mutant cancer cells are important. The STK33 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270999 [Multi-domain] Cd Length: 266 Bit Score: 44.46 E-value: 1.44e-05
|
||||||||
PKc_Myt1 | cd14050 | Catalytic domain of the Dual-specificity protein kinase, Myt1; Dual-specificity PKs catalyze ... |
49-142 | 1.68e-05 | ||||
Catalytic domain of the Dual-specificity protein kinase, Myt1; Dual-specificity PKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine as well as tyrosine residues on protein substrates. Myt1 is a cytoplasmic cell cycle checkpoint kinase that can keep the cyclin-dependent kinase CDK1 in an inactive state through phosphorylation of N-terminal thr (T14) and tyr (Y15) residues, leading to the delay of meiosis I entry. Meiotic progression is ensured by a two-step inhibition and downregulation of Myt1 by CDK1/XRINGO and p90Rsk during oocyte maturation. In addition, Myt1 targets cyclin B1/B2 and is essential for Golgi and ER assembly during telophase. In Drosophila, Myt1 may be a downstream target of Notch during eye development. The Myt1 subfamily is part of a larger superfamily that includes the catalytic domains of other protein serine/threonine PKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270952 [Multi-domain] Cd Length: 249 Bit Score: 43.84 E-value: 1.68e-05
|
||||||||
STKc_PAK1 | cd06654 | Catalytic domain of the Serine/Threonine Kinase, p21-activated kinase 1; STKs catalyze the ... |
40-145 | 1.70e-05 | ||||
Catalytic domain of the Serine/Threonine Kinase, p21-activated kinase 1; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. PAK1 is important in the regulation of many cellular processes including cytoskeletal dynamics, cell motility, growth, and proliferation. Although PAK1 has been regarded mainly as a cytosolic protein, recent reports indicate that PAK1 also exists in significant amounts in the nucleus, where it is involved in transcription modulation and in cell cycle regulatory events. PAK1 is also involved in transformation and tumorigenesis. Its overexpression, hyperactivation and increased nuclear accumulation is correlated to breast cancer invasiveness and progression. Nuclear accumulation is also linked to tamoxifen resistance in breast cancer cells. PAK1 belongs to the group I PAKs, which contain a PBD (p21-binding domain) overlapping with an AID (autoinhibitory domain), a C-terminal catalytic domain, SH3 binding sites and a non-classical SH3 binding site for PIX (PAK-interacting exchange factor). PAKs are Rho family GTPase-regulated kinases that serve as important mediators in the function of Cdc42 (cell division cycle 42) and Rac. The PAK subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270820 [Multi-domain] Cd Length: 296 Bit Score: 44.33 E-value: 1.70e-05
|
||||||||
STKc_nPKC_delta | cd05620 | Catalytic domain of the Serine/Threonine Kinase, Novel Protein Kinase C delta; STKs catalyze ... |
58-144 | 1.74e-05 | ||||
Catalytic domain of the Serine/Threonine Kinase, Novel Protein Kinase C delta; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. PKC-delta plays a role in cell cycle regulation and programmed cell death in many cell types. It slows down cell proliferation, inducing cell cycle arrest and enhancing cell differentiation. PKC-delta is also involved in the regulation of transcription as well as immune and inflammatory responses. It plays a central role in the genotoxic stress response that leads to DNA damaged-induced apoptosis. PKCs are classified into three groups (classical, atypical, and novel) depending on their mode of activation and the structural characteristics of their regulatory domain. nPKCs are calcium-independent, but require DAG (1,2-diacylglycerol) and phosphatidylserine (PS) for activity. The nPKC-delta subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 173710 [Multi-domain] Cd Length: 316 Bit Score: 44.16 E-value: 1.74e-05
|
||||||||
STKc_AMPK-like | cd14003 | Catalytic domain of AMP-activated protein kinase-like Serine/Threonine Kinases; STKs catalyze ... |
50-142 | 1.80e-05 | ||||
Catalytic domain of AMP-activated protein kinase-like Serine/Threonine Kinases; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. The AMPK-like subfamily is composed of AMPK, MARK, BRSK, NUAK, MELK, SNRK, TSSK, and SIK, among others. LKB1 serves as a master upstream kinase that activates AMPK and most AMPK-like kinases. AMPK, also called SNF1 (sucrose non-fermenting1) in yeasts and SnRK1 (SNF1-related kinase1) in plants, is a heterotrimeric enzyme composed of a catalytic alpha subunit and two regulatory subunits, beta and gamma. It is a stress-activated kinase that serves as master regulator of glucose and lipid metabolism by monitoring carbon and energy supplies, via sensing the cell's AMP:ATP ratio. MARKs phosphorylate tau and related microtubule-associated proteins (MAPs), and regulates microtubule-based intracellular transport. They are involved in embryogenesis, epithelial cell polarization, cell signaling, and neuronal differentiation. BRSKs play important roles in establishing neuronal polarity. TSSK proteins are almost exclusively expressed postmeiotically in the testis and play important roles in spermatogenesis and/or spermiogenesis. The AMPK-like subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270905 [Multi-domain] Cd Length: 252 Bit Score: 44.05 E-value: 1.80e-05
|
||||||||
STKc_NAK1_like | cd06917 | Catalytic domain of Fungal Nak1-like Serine/Threonine Kinases; STKs catalyze the transfer of ... |
55-142 | 1.98e-05 | ||||
Catalytic domain of Fungal Nak1-like Serine/Threonine Kinases; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. This subfamily is composed of Schizosaccharomyces pombe Nak1, Saccharomyces cerevisiae Kic1p (kinase that interacts with Cdc31p) and related proteins. Nak1 (also called N-rich kinase 1), is required by fission yeast for polarizing the tips of actin cytoskeleton and is involved in cell growth, cell separation, cell morphology and cell-cycle progression. Kic1p is required by budding yeast for cell integrity and morphogenesis. Kic1p interacts with Cdc31p, the yeast homologue of centrin, and phosphorylates substrates in a Cdc31p-dependent manner. The Nak1 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270822 [Multi-domain] Cd Length: 277 Bit Score: 44.00 E-value: 1.98e-05
|
||||||||
STKc_CaMKI_alpha | cd14167 | Catalytic domain of the Serine/Threonine kinase, Calcium/calmodulin-dependent protein kinase ... |
55-145 | 2.01e-05 | ||||
Catalytic domain of the Serine/Threonine kinase, Calcium/calmodulin-dependent protein kinase Type I alpha; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. CaMKs are multifunctional calcium and calmodulin (CaM) stimulated STKs involved in cell cycle regulation. The CaMK family includes CaMKI, CaMKII, CaMKIV, and CaMK kinase (CaMKK). In vertebrates, there are four CaMKI proteins encoded by different genes (alpha, beta, gamma, and delta), each producing at least one variant. CaMKs contain an N-terminal catalytic domain and a C-terminal regulatory domain that harbors a CaM binding site. CaMKI proteins are monomeric and they play pivotal roles in the nervous system, including long-term potentiation, dendritic arborization, neurite outgrowth, and the formation of spines, synapses, and axons. In addition, they may be involved in osteoclast differentiation and bone resorption. The CaMKI-alpha subfamily is part of a larger superfamily that includes the catalytic domains of other protein kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 271069 [Multi-domain] Cd Length: 263 Bit Score: 43.86 E-value: 2.01e-05
|
||||||||
STKc_MAP4K4_6_N | cd06636 | N-terminal Catalytic domain of the Serine/Threonine Kinases, Mitogen-Activated Protein Kinase ... |
55-145 | 2.01e-05 | ||||
N-terminal Catalytic domain of the Serine/Threonine Kinases, Mitogen-Activated Protein Kinase Kinase Kinase Kinase 4 and 6; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. Members of this subfamily contain an N-terminal catalytic domain and a C-terminal citron homology (CNH) regulatory domain. MAP4K4 is also called Nck Interacting kinase (NIK). It facilitates the activation of the MAPKs, extracellular signal-regulated kinase (ERK) 1, ERK2, and c-Jun N-terminal kinase (JNK), by phosphorylating and activating MEKK1. MAP4K4 plays a role in tumor necrosis factor (TNF) alpha-induced insulin resistance. MAP4K4 silencing in skeletal muscle cells from type II diabetic patients restores insulin-mediated glucose uptake. MAP4K4, through JNK, also plays a broad role in cell motility, which impacts inflammation, homeostasis, as well as the invasion and spread of cancer. MAP4K4 is found to be highly expressed in most tumor cell lines relative to normal tissue. MAP4K6 (also called MINK for Misshapen/NIKs-related kinase) is activated after Ras induction and mediates activation of p38 MAPK. MAP4K6 plays a role in cell cycle arrest, cytoskeleton organization, cell adhesion, and cell motility. The MAP4K4/6 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270806 [Multi-domain] Cd Length: 282 Bit Score: 43.84 E-value: 2.01e-05
|
||||||||
STKc_LRRK1 | cd14067 | Catalytic domain of the Serine/Threonine Kinase, Leucine-Rich Repeat Kinase 1; STKs catalyze ... |
55-142 | 2.44e-05 | ||||
Catalytic domain of the Serine/Threonine Kinase, Leucine-Rich Repeat Kinase 1; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. LRRK1 is one of two vertebrate LRRKs which show complementary expression in the brain. It can form heterodimers with LRRK2, and may influence the age of onset of LRRK2-associated Parkinson's disease. LRRKs are also classified as ROCO proteins because they contain a ROC (Ras of complex proteins)/GTPase domain followed by a COR (C-terminal of ROC) domain of unknown function. In addition, LRRKs contain a catalytic kinase domain and protein-protein interaction motifs including a WD40 domain, LRRs and ankyrin (ANK) repeats. LRRKs possess both GTPase and kinase activities, with the ROC domain acting as a molecular switch for the kinase domain, cycling between a GTP-bound state which drives kinase activity and a GDP-bound state which decreases the activity. The LRRK1 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270969 [Multi-domain] Cd Length: 276 Bit Score: 43.80 E-value: 2.44e-05
|
||||||||
STKc_PAK3 | cd06656 | Catalytic domain of the Protein Serine/Threonine Kinase, p21-activated kinase 3; Serine ... |
40-145 | 2.48e-05 | ||||
Catalytic domain of the Protein Serine/Threonine Kinase, p21-activated kinase 3; Serine/threonine kinases (STKs), p21-activated kinase (PAK) 3, catalytic (c) domain. STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. The PAK subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. PAKs are Rho family GTPase-regulated kinases that serve as important mediators in the function of Cdc42 (cell division cycle 42) and Rac. PAKs from higher eukaryotes are classified into two groups (I and II), according to their biochemical and structural features. PAK3 belongs to group I. Group I PAKs contain a PBD (p21-binding domain) overlapping with an AID (autoinhibitory domain), a C-terminal catalytic domain, SH3 binding sites and a non-classical SH3 binding site for PIX (PAK-interacting exchange factor). PAK3 is highly expressed in the brain. It is implicated in neuronal plasticity, synapse formation, dendritic spine morphogenesis, cell cycle progression, neuronal migration, and apoptosis. Inactivating mutations in the PAK3 gene cause X-linked non-syndromic mental retardation, the severity of which depends on the site of the mutation. Pssm-ID: 132987 [Multi-domain] Cd Length: 297 Bit Score: 43.56 E-value: 2.48e-05
|
||||||||
PK_GC-C | cd14044 | Pseudokinase domain of the membrane Guanylate Cyclase receptor, GC-C; The pseudokinase domain ... |
17-145 | 2.59e-05 | ||||
Pseudokinase domain of the membrane Guanylate Cyclase receptor, GC-C; The pseudokinase domain shows similarity to protein kinases but lacks crucial residues for catalytic activity and/or ATP binding. GC-C binds and is activated by the intestinal hormones, guanylin (GN) and uroguanylin (UGN), which are secreted after salty meals to inhibit sodium absorption and induce the secretion of chloride, bicarbonate, and water. GN and UGN are also present in the kidney, where they induce increased salt and water secretion. This prevents the development of hypernatremia and hypervolemia after ingestion of high amounts of salt. Membrane (or particulate) GCs consist of an extracellular ligand-binding domain, a single transmembrane region, and an intracellular tail that contains a PK-like domain, an amphiphatic region and a catalytic GC domain that catalyzes the conversion of GTP into cGMP and pyrophosphate. Membrane GCs act as receptors that transduce an extracellular signal to the intracellular production of cGMP, which has been implicated in many processes including cell proliferation, phototransduction, and muscle contractility, through its downstream effectors such as PKG. The PK-like domain of GCs functions as a negative regulator of the catalytic GC domain and may also act as a docking site for interacting proteins such as GC-activating proteins. The GC-C subfamily is part of a larger superfamily that includes the catalytic domains of protein serine/threonine kinases, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270946 [Multi-domain] Cd Length: 271 Bit Score: 43.72 E-value: 2.59e-05
|
||||||||
PTKc_Chk | cd05083 | Catalytic domain of the Protein Tyrosine Kinase, Csk homologous kinase; PTKs catalyze the ... |
58-144 | 2.80e-05 | ||||
Catalytic domain of the Protein Tyrosine Kinase, Csk homologous kinase; PTKs catalyze the transfer of the gamma-phosphoryl group from ATP to tyrosine (tyr) residues in protein substrates. Chk is also referred to as megakaryocyte-associated tyrosine kinase (Matk). Chk inhibits Src kinases using a noncatalytic mechanism by simply binding to them. As a negative regulator of Src kinases, Chk may play important roles in cell proliferation, survival, and differentiation, and consequently, in cancer development and progression. Chk is expressed in brain and hematopoietic cells. Like Csk, it is a cytoplasmic (or nonreceptor) tyr kinase containing the Src homology domains, SH3 and SH2, N-terminal to the catalytic tyr kinase domain. To inhibit Src kinases that are anchored to the plasma membrane, Chk is translocated to the membrane via binding to specific transmembrane proteins, G-proteins, or adaptor proteins near the membrane. Studies in mice reveal that Chk is not functionally redundant with Csk and that it plays an important role as a regulator of immune responses. Chk also plays a role in neural differentiation in a manner independent of Src by enhancing Mapk activation via Ras-mediated signaling. The Chk subfamily is part of a larger superfamily that includes the catalytic domains of other kinases such as protein serine/threonine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270666 [Multi-domain] Cd Length: 254 Bit Score: 43.32 E-value: 2.80e-05
|
||||||||
STKc_GSK3 | cd14137 | The catalytic domain of the Serine/Threonine Kinase, Glycogen Synthase Kinase 3; STKs catalyze ... |
17-103 | 2.82e-05 | ||||
The catalytic domain of the Serine/Threonine Kinase, Glycogen Synthase Kinase 3; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. GSK3 is a mutifunctional kinase involved in many cellular processes including cell division, proliferation, differentiation, adhesion, and apoptosis. In plants, GSK3 plays a role in the response to osmotic stress. In Caenorhabditis elegans, it plays a role in regulating normal oocyte-to-embryo transition and response to oxidative stress. In Chlamydomonas reinhardtii, GSK3 regulates flagellar length and assembly. In mammals, there are two isoforms, GSK3alpha and GSK3beta, which show both distinct and redundant functions. The two isoforms differ mainly in their N-termini. They are both involved in axon formation and in Wnt signaling.They play distinct roles in cardiogenesis, with GSKalpha being essential in cardiomyocyte survival, and GSKbeta regulating heart positioning and left-right symmetry. GSK3beta was first identified as a regulator of glycogen synthesis, but has since been determined to play other roles. It regulates the degradation of beta-catenin and IkB. Beta-catenin is the main effector of Wnt, which is involved in normal haematopoiesis and stem cell function. IkB is a central inhibitor of NF-kB, which is critical in maintaining leukemic cell growth. GSK3beta is enriched in the brain and is involved in regulating neuronal signaling pathways. It is implicated in the pathogenesis of many diseases including Type II diabetes, obesity, mood disorders, Alzheimer's disease, osteoporosis, and some types of cancer, among others. The GSK3 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 271039 [Multi-domain] Cd Length: 293 Bit Score: 43.65 E-value: 2.82e-05
|
||||||||
STKc_Rim15_like | cd05611 | Catalytic domain of fungal Rim15-like Protein Serine/Threonine Kinases; STKs catalyze the ... |
54-142 | 2.89e-05 | ||||
Catalytic domain of fungal Rim15-like Protein Serine/Threonine Kinases; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. Members of this group include Saccharomyces cerevisiae Rim15, Schizosaccharomyces pombe cek1, and similar fungal proteins. They contain a central catalytic domain, which contains an insert relative to MAST kinases. In addition, Rim15 contains a C-terminal signal receiver (REC) domain while cek1 contains an N-terminal PAS domain. Rim15 (or Rim15p) functions as a regulator of meiosis. It acts as a downstream effector of PKA and regulates entry into stationary phase (G0). Thus, it plays a crucial role in regulating yeast proliferation, differentiation, and aging. Cek1 may facilitate progression of mitotic anaphase. The Rim15-like subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270762 [Multi-domain] Cd Length: 263 Bit Score: 43.24 E-value: 2.89e-05
|
||||||||
STKc_MST1_2 | cd06612 | Catalytic domain of the Serine/Threonine Kinases, Mammalian STe20-like protein kinase 1 and 2; ... |
55-142 | 3.02e-05 | ||||
Catalytic domain of the Serine/Threonine Kinases, Mammalian STe20-like protein kinase 1 and 2; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. This subfamily is composed of MST1, MST2, and related proteins including Drosophila Hippo and Dictyostelium discoideum Krs1 (kinase responsive to stress 1). MST1/2 and Hippo are involved in a conserved pathway that governs cell contact inhibition, organ size control, and tumor development. MST1 activates the mitogen-activated protein kinases (MAPKs) p38 and c-Jun N-terminal kinase (JNK) through MKK7 and MEKK1 by acting as a MAPK kinase kinase kinase. Activation of JNK by MST1 leads to caspase activation and apoptosis. MST1 has also been implicated in cell proliferation and differentiation. Krs1 may regulate cell growth arrest and apoptosis in response to cellular stress. The MST1/2 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 132943 [Multi-domain] Cd Length: 256 Bit Score: 43.41 E-value: 3.02e-05
|
||||||||
STKc_PLK4 | cd14186 | Catalytic domain of the Serine/Threonine Kinase, Polo-like kinase 4; STKs catalyze the ... |
51-142 | 3.04e-05 | ||||
Catalytic domain of the Serine/Threonine Kinase, Polo-like kinase 4; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. PLKs play important roles in cell cycle progression and in DNA damage responses. They regulate mitotic entry, mitotic exit, and cytokinesis. In general PLKs contain an N-terminal catalytic kinase domain and a C-terminal regulatory polo box domain (PBD), which is comprised by two bipartite polo-box motifs (or polo boxes) and is involved in protein interactions. There are five mammalian PLKs (PLK1-5) from distinct genes. PLK4, also called SAK or STK18, is structurally different from other PLKs in that it contains only one polo box that can form two adjacent polo boxes and a functional PDB by homodimerization. It is required for late mitotic progression, cell survival, and embryonic development. It localizes to centrosomes and is required for centriole duplication and chromosomal stability. Overexpression of PLK4 may be associated with colon tumors. The PLK4 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 271088 [Multi-domain] Cd Length: 256 Bit Score: 43.31 E-value: 3.04e-05
|
||||||||
STKc_CRIK | cd05601 | Catalytic domain of the Serine/Threonine Kinase, Citron Rho-interacting kinase; STKs catalyze ... |
56-145 | 3.32e-05 | ||||
Catalytic domain of the Serine/Threonine Kinase, Citron Rho-interacting kinase; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. CRIK (also called citron kinase) is an effector of the small GTPase Rho. It plays an important function during cytokinesis and affects its contractile process. CRIK-deficient mice show severe ataxia and epilepsy as a result of abnormal cytokinesis and massive apoptosis in neuronal precursors. A Down syndrome critical region protein TTC3 interacts with CRIK and inhibits CRIK-dependent neuronal differentiation and neurite extension. CRIK contains a catalytic domain, a central coiled-coil domain, and a C-terminal region containing a Rho-binding domain (RBD), a zinc finger, and a pleckstrin homology (PH) domain, in addition to other motifs. The CRIK subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270752 [Multi-domain] Cd Length: 328 Bit Score: 43.45 E-value: 3.32e-05
|
||||||||
STKc_CDK9_like | cd07840 | Catalytic domain of Cyclin-Dependent protein Kinase 9-like Serine/Threonine Kinases; STKs ... |
55-103 | 3.46e-05 | ||||
Catalytic domain of Cyclin-Dependent protein Kinase 9-like Serine/Threonine Kinases; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. This subfamily is composed of CDK9 and CDK12 from higher eukaryotes, yeast BUR1, C-type plant CDKs (CdkC), and similar proteins. CDK9, BUR1, and CdkC are functionally equivalent. They act as a kinase for the C-terminal domain of RNA polymerase II and participate in regulating mutliple steps of gene expression including transcription elongation and RNA processing. CDK9 and CdkC associate with T-type cyclins while BUR1 associates with the cyclin BUR2. CDK12 is a unique CDK that contains an arginine/serine-rich (RS) domain, which is predominantly found in splicing factors. CDK12 interacts with cyclins L1 and L2, and participates in regulating transcription and alternative splicing. CDKs belong to a large family of STKs that are regulated by their cognate cyclins. Together, they are involved in the control of cell-cycle progression, transcription, and neuronal function. The CDK9-like subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270832 [Multi-domain] Cd Length: 291 Bit Score: 43.32 E-value: 3.46e-05
|
||||||||
STKc_GAK_like | cd13985 | Catalytic domain of cyclin G-Associated Kinase-like proteins; STKs catalyze the transfer of ... |
55-145 | 3.48e-05 | ||||
Catalytic domain of cyclin G-Associated Kinase-like proteins; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. This subfamily includes cyclin G-Associated Kinase (GAK), Drosophila melanogaster Numb-Associated Kinase (NAK)-like proteins, and similar protein kinases. GAK plays regulatory roles in clathrin-mediated membrane trafficking, the maintenance of centrosome integrity and chromosome congression, neural patterning, survival of neurons, and immune responses. NAK plays a role in asymmetric cell division through its association with Numb. It also regulates the localization of Dlg, a protein essential for septate junction formation. The GAK-like subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270887 [Multi-domain] Cd Length: 272 Bit Score: 43.09 E-value: 3.48e-05
|
||||||||
STKc_MLCK4 | cd14193 | Catalytic domain of the Serine/Threonine Kinase, Myosin Light Chain Kinase 4; STKs catalyze ... |
53-145 | 3.63e-05 | ||||
Catalytic domain of the Serine/Threonine Kinase, Myosin Light Chain Kinase 4; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. MLCK phosphorylates myosin regulatory light chain and controls the contraction of all muscle types. In vertebrates, different MLCKs function in smooth (MLCK1), skeletal (MLCK2), and cardiac (MLCK3) muscles. A fourth protein, MLCK4, has also been identified through comprehensive genome analysis although it has not been biochemically characterized. MLCK4 (or MYLK4 or SgK085) contains a single kinase domain near the C-terminus. The MLCK4 subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 271095 [Multi-domain] Cd Length: 261 Bit Score: 42.98 E-value: 3.63e-05
|
||||||||
STKc_CDKL | cd07833 | Catalytic domain of Cyclin-Dependent protein Kinase Like Serine/Threonine Kinases; STKs ... |
17-150 | 3.66e-05 | ||||
Catalytic domain of Cyclin-Dependent protein Kinase Like Serine/Threonine Kinases; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. This subfamily is composed of CDKL1-5 and similar proteins. Some CDKLs, like CDKL1 and CDKL3, may be implicated in transformation and others, like CDKL3 and CDKL5, are associated with mental retardation when impaired. CDKL2 plays a role in learning and memory. CDKs belong to a large family of STKs that are regulated by their cognate cyclins. Together, they are involved in the control of cell-cycle progression, transcription, and neuronal function. The CDKL subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270827 [Multi-domain] Cd Length: 288 Bit Score: 43.07 E-value: 3.66e-05
|
||||||||
PTKc_Wee1 | cd14051 | Catalytic domain of the Protein Tyrosine Kinase, Wee1; PTKs catalyze the transfer of the ... |
34-89 | 3.85e-05 | ||||
Catalytic domain of the Protein Tyrosine Kinase, Wee1; PTKs catalyze the transfer of the gamma-phosphoryl group from ATP to tyrosine (tyr) residues in protein substrates. Wee1 is a nuclear cell cycle checkpoint kinase that helps keep the cyclin-dependent kinase CDK1 in an inactive state through phosphorylation of an N-terminal tyr (Y15) residue. During the late G2 phase, CDK1 is activated and mitotic entry is promoted by the removal of this inhibitory phosphorylation by the phosphatase Cdc25. Although Wee1 is functionally a tyr kinase, it is more closely related to serine/threonine kinases (STKs). It contains a catalytic kinase domain sandwiched in between N- and C-terminal regulatory domains. It is regulated by phosphorylation and degradation, and its expression levels are also controlled by circadian clock proteins. There are two distinct Wee1 proteins in vertebrates showing different expression patterns, called Wee1a and Wee1b. They are functionally dstinct and are implicated in different steps of egg maturation and embryo development. The Wee1 subfamily is part of a larger superfamily that includes the catalytic domains of STKs, other PTKs, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270953 [Multi-domain] Cd Length: 275 Bit Score: 43.16 E-value: 3.85e-05
|
||||||||
STKc_DAPK2 | cd14196 | Catalytic domain of the Serine/Threonine Kinase, Death-Associated Protein Kinase 2; STKs ... |
47-142 | 3.89e-05 | ||||
Catalytic domain of the Serine/Threonine Kinase, Death-Associated Protein Kinase 2; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. DAPKs mediate cell death and act as tumor suppressors. They are necessary to induce cell death and their overexpression leads to death-associated changes including membrane blebbing, cell rounding, and formation of autophagic vesicles. Vertebrates contain three subfamily members with different domain architecture, localization, and function. DAPK2, also called DAPK-related protein 1 (DRP-1), is a Ca2+/calmodulin (CaM)-regulated protein containing an N-terminal kinase domain, a CaM autoinhibitory site and a dimerization module. It lacks the cytoskeletal binding regions of DAPK1 and the exogenous protein has been shown to be soluble and cytoplasmic. FLAG-tagged DAPK2, however, accumulated within membrane-enclosed autophagic vesicles. It is unclear where endogenous DAPK2 is localized. DAPK2 participates in TNF-alpha and FAS-receptor induced cell death and enhances neutrophilic maturation in myeloid leukemic cells. It contributes to the induction of anoikis and its down-regulation is implicated in the beta-catenin induced resistance of malignant epithelial cells to anoikis. The DAPK2 subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 271098 [Multi-domain] Cd Length: 269 Bit Score: 43.02 E-value: 3.89e-05
|
||||||||
STKc_DCKL3 | cd14185 | Catalytic domain of the Serine/Threonine Kinase, Doublecortin-like kinase 3 (also called ... |
65-142 | 3.89e-05 | ||||
Catalytic domain of the Serine/Threonine Kinase, Doublecortin-like kinase 3 (also called Doublecortin-like and CAM kinase-like 3); STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. DCKL3 (or DCAMKL3) belongs to the doublecortin (DCX) family of proteins which are involved in neuronal migration, neurogenesis, and eye receptor development, among others. Family members typically contain tandem doublecortin (DCX) domains at the N-terminus; DCX domains can bind microtubules and serve as protein-interaction platforms. DCKL3 contains a single DCX domain (instead of a tandem) and a C-terminal kinase domain with similarity to CAMKs. It has been shown to interact with tubulin and JIP1/2. The DCKL3 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 271087 [Multi-domain] Cd Length: 258 Bit Score: 43.01 E-value: 3.89e-05
|
||||||||
STKc_Unc-89_rpt2 | cd14112 | Catalytic kinase domain, second repeat, of the Giant Serine/Threonine Kinase Uncoordinated ... |
55-145 | 4.05e-05 | ||||
Catalytic kinase domain, second repeat, of the Giant Serine/Threonine Kinase Uncoordinated protein 89; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. The nematode Unc-89 gene, through alternative promoter use and splicing, encodes at least six major isoforms (Unc-89A to Unc-89F) of giant muscle proteins that are homologs for the vetebrate obscurin. In flies, five isoforms of Unc-89 have been detected: four in the muscles of adult flies (two in the indirect flight muscle and two in other muscles) and another isoform in the larva. Unc-89 in nematodes is required for normal muscle cell architecture. In flies, it is necessary for the development of a symmetrical sarcomere in the flight muscles. Unc-89 proteins contain several adhesion and signaling domains including multiple copies of the immunoglobulin (Ig) domain, as well as fibronectin type III (FN3), SH3, RhoGEF, and PH domains. The nematode Unc-89 isoforms D, C, D, and F contain two kinase domain with B and F having two complete kinase domains while the first repeat of C and D are partial domains. Homology modeling suggests that the first kinase repeat of Unc-89 may be catalytically inactive, a pseudokinase, while the second kinase repeat may be active. The Unc-89 subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 271014 [Multi-domain] Cd Length: 259 Bit Score: 42.90 E-value: 4.05e-05
|
||||||||
STKc_PAK_II | cd06648 | Catalytic domain of the Serine/Threonine Kinase, Group II p21-activated kinase; STKs catalyze ... |
65-142 | 4.10e-05 | ||||
Catalytic domain of the Serine/Threonine Kinase, Group II p21-activated kinase; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. Group II PAKs, also called non-conventional PAKs, include PAK4, PAK5, and PAK6. Group II PAKs contain PBD (p21-binding domain) and catalytic domains, but lack other motifs found in group I PAKs, such as an AID (autoinhibitory domain) and SH3 binding sites. Since group II PAKs do not contain an obvious AID, they may be regulated differently from group I PAKs. While group I PAKs interact with the SH3 containing proteins Nck, Grb2 and PIX, no such binding has been demonstrated for group II PAKs. Some known substrates of group II PAKs are also substrates of group I PAKs such as Raf, BAD, LIMK and GEFH1. Unique group II substrates include MARK/Par-1 and PDZ-RhoGEF. Group II PAKs play important roles in filopodia formation, neuron extension, cytoskeletal organization, and cell survival. PAKs are Rho family GTPase-regulated kinases that serve as important mediators in the function of Cdc42 (cell division cycle 42) and Rac. The PAK subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270815 [Multi-domain] Cd Length: 261 Bit Score: 42.81 E-value: 4.10e-05
|
||||||||
PTZ00283 | PTZ00283 | serine/threonine protein kinase; Provisional |
58-144 | 4.11e-05 | ||||
serine/threonine protein kinase; Provisional Pssm-ID: 240344 [Multi-domain] Cd Length: 496 Bit Score: 43.32 E-value: 4.11e-05
|
||||||||
STKc_LKB1 | cd14119 | Catalytic domain of the Serine/Threonine kinase, Liver Kinase B1; STKs catalyze the transfer ... |
62-103 | 4.53e-05 | ||||
Catalytic domain of the Serine/Threonine kinase, Liver Kinase B1; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. LKB1, also called STK11, was first identified as a tumor suppressor responsible for Peutz-Jeghers syndrome, a disorder that leads to an increased risk of spontaneous epithelial cancer. It serves as a master upstream kinase that activates AMP-activated protein kinase (AMPK) and most AMPK-like kinases. LKB1 and AMPK are part of an energy-sensing pathway that links cell energy to metabolism and cell growth. They play critical roles in the establishment and maintenance of cell polarity, cell proliferation, cytoskeletal organization, as well as T-cell metabolism, including T-cell development, homeostasis, and effector function. To be activated, LKB1 requires the adaptor proteins STe20-Related ADaptor (STRAD) and mouse protein 25 (MO25). The LKB1 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 271021 [Multi-domain] Cd Length: 255 Bit Score: 42.63 E-value: 4.53e-05
|
||||||||
STKc_RSK_C | cd14091 | C-terminal catalytic domain of the Serine/Threonine Kinases, Ribosomal S6 kinases; STKs ... |
5-103 | 4.58e-05 | ||||
C-terminal catalytic domain of the Serine/Threonine Kinases, Ribosomal S6 kinases; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. RSKs contain an N-terminal kinase domain (NTD) from the AGC family and a C-terminal kinase domain (CTD) from the CAMK family. They are activated by signaling inputs from extracellular regulated kinase (ERK) and phosphoinositide dependent kinase 1 (PDK1). ERK phosphorylates and activates the CTD of RSK, serving as a docking site for PDK1, which phosphorylates and activates the NTD, which in turn phosphorylates all known RSK substrates. RSKs act as downstream effectors of mitogen-activated protein kinase (MAPK) and play key roles in mitogen-activated cell growth, differentiation, and survival. Mammals possess four RSK isoforms (RSK1-4) from distinct genes. RSK proteins are also referred to as MAP kinase-activated protein kinases (MAPKAPKs), 90 kDa ribosomal protein S6 kinases (p90-RSKs), or p90S6Ks. The RSK subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270993 [Multi-domain] Cd Length: 291 Bit Score: 43.01 E-value: 4.58e-05
|
||||||||
STKc_TAK1 | cd14058 | Catalytic domain of the Serine/Threonine Kinase, Transforming Growth Factor beta Activated ... |
41-142 | 4.62e-05 | ||||
Catalytic domain of the Serine/Threonine Kinase, Transforming Growth Factor beta Activated Kinase-1; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. TAK1 is also known as mitogen-activated protein kinase kinase kinase 7 (MAPKKK7 or MAP3K7), TAK, or MEKK7. As a MAPKKK, it is an important mediator of cellular responses to extracellular signals. It regulates both the c-Jun N-terminal kinase and p38 MAPK cascades by activating the MAPK kinases, MKK4 and MKK3/6. In addition, TAK1 plays diverse roles in immunity and development, in different biological contexts, through many signaling pathways including TGFbeta/BMP, Wnt/Fz, and NF-kB. It is also implicated in the activation of the tumor suppressor kinase, LKB1. The TAK1 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270960 [Multi-domain] Cd Length: 253 Bit Score: 42.81 E-value: 4.62e-05
|
||||||||
PKc_CLK | cd14134 | Catalytic domain of the Dual-specificity protein kinases, CDC-like kinases; Dual-specificity ... |
47-142 | 5.07e-05 | ||||
Catalytic domain of the Dual-specificity protein kinases, CDC-like kinases; Dual-specificity PKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine (S/T) as well as tyrosine residues on protein substrates. CLKs are involved in the phosphorylation and regulation of serine/arginine-rich (SR) proteins, which play a crucial role in pre-mRNA splicing by directing splice site selection. SR proteins are phosphorylated first by SR protein kinases (SRPKs) at the N-terminus, which leads to its assembly into nuclear speckles where splicing factors are stored. CLKs phosphorylate the C-terminal part of SR proteins, causing the nuclear speckles to dissolve and splicing factors to be recruited at sites of active transcription. Based on a conserved "EHLAMMERILG" signature motif which may be crucial for substrate specificity, CLKs are also referred to as LAMMER kinases. CLKs autophosphorylate at tyrosine residues and phosphorylate their substrates exclusively on S/T residues. In Drosophila, the CLK homolog DOA (Darkener of apricot) is essential for embryogenesis and its mutation leads to defects in sexual differentiation, eye formation, and neuronal development. In fission yeast, the CLK homolog Lkh1 is a negative regulator of filamentous growth and asexual flocculation, and is also involved in oxidative stress response. Vertebrates contain mutliple CLK proteins and mammals have four (CLK1-4). The CLK subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 271036 [Multi-domain] Cd Length: 332 Bit Score: 42.94 E-value: 5.07e-05
|
||||||||
STKc_CDC2L6 | cd07867 | Catalytic domain of Serine/Threonine Kinase, Cell Division Cycle 2-like 6; STKs catalyze the ... |
54-103 | 5.09e-05 | ||||
Catalytic domain of Serine/Threonine Kinase, Cell Division Cycle 2-like 6; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. CDC2L6 is also called CDK8-like and was previously referred to as CDK11. However, this is a confusing nomenclature as CDC2L6 is distinct from CDC2L1, which is represented by the two protein products from its gene, called CDK11(p110) and CDK11(p58), as well as the caspase-processed CDK11(p46). CDK11(p110), CDK11(p58), and CDK11(p46)do not belong to this subfamily. CDC2L6 is an associated protein of Mediator, a multiprotein complex that provides a platform to connect transcriptional and chromatin regulators and cofactors, in order to activate and mediate RNA polymerase II transcription. CDC2L6 is localized mainly in the nucleus amd exerts an opposing effect to CDK8 in VP16-dependent transcriptional activation by being a negative regulator. CDKs belong to a large family of STKs that are regulated by their cognate cyclins. Together, they are involved in the control of cell-cycle progression, transcription, and neuronal function. The CDC2L6 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270850 [Multi-domain] Cd Length: 318 Bit Score: 42.75 E-value: 5.09e-05
|
||||||||
STKc_TSSK-like | cd14080 | Catalytic domain of testis-specific serine/threonine kinases and similar proteins; STKs ... |
57-142 | 5.56e-05 | ||||
Catalytic domain of testis-specific serine/threonine kinases and similar proteins; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. TSSK proteins are almost exclusively expressed postmeiotically in the testis and play important roles in spermatogenesis and/or spermiogenesis. There are five mammalian TSSK proteins which show differences in their localization and timing of expression. TSSK1 and TSSK2 are expressed specifically in meiotic and postmeiotic spermatogenic cells, respectively. TSSK3 has been reported to be expressed in the interstitial Leydig cells of adult testis. TSSK4, also called TSSK5, is expressed in testis from haploid round spermatids to mature spermatozoa. TSSK6, also called SSTK, is expressed at the head of elongated sperm. TSSK1/TSSK2 double knock-out and TSSK6 null mice are sterile without manifesting other defects, making these kinases viable targets for male contraception. The TSSK-like subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270982 [Multi-domain] Cd Length: 262 Bit Score: 42.56 E-value: 5.56e-05
|
||||||||
STKc_YSK4 | cd06631 | Catalytic domain of the Serine/Threonine Kinase, Yeast Sps1/Ste20-related Kinase 4; STKs ... |
62-142 | 5.59e-05 | ||||
Catalytic domain of the Serine/Threonine Kinase, Yeast Sps1/Ste20-related Kinase 4; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. YSK4 is a putative MAPKKK, whose mammalian gene has been isolated. MAPKKKs phosphorylate and activate MAPK kinases, which in turn phosphorylate and activate MAPKs during signaling cascades that are important in mediating cellular responses to extracellular signals. The YSK4 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270801 [Multi-domain] Cd Length: 266 Bit Score: 42.42 E-value: 5.59e-05
|
||||||||
STKc_SLK_like | cd06611 | Catalytic domain of Ste20-Like Kinase-like Serine/Threonine Kinases; STKs catalyze the ... |
35-142 | 5.59e-05 | ||||
Catalytic domain of Ste20-Like Kinase-like Serine/Threonine Kinases; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. Members of the subfamily include SLK, STK10 (also called LOK for Lymphocyte-Oriented Kinase), SmSLK (Schistosoma mansoni SLK), and related proteins. SLK promotes apoptosis through apoptosis signal-regulating kinase 1 (ASK1) and the mitogen-activated protein kinase (MAPK) p38. It also plays a role in mediating actin reorganization. STK10 is responsible in regulating the CD28 responsive element in T cells, as well as leukocyte function associated antigen (LFA-1)-mediated lymphocyte adhesion. SmSLK is capable of activating the MAPK Jun N-terminal kinase (JNK) pathway in human embryonic kidney cells as well as in Xenopus oocytes. It may participate in regulating MAPK cascades during host-parasite interactions. The SLK-like subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 132942 [Multi-domain] Cd Length: 280 Bit Score: 42.42 E-value: 5.59e-05
|
||||||||
STKc_CDK_like | cd07829 | Catalytic domain of Cyclin-Dependent protein Kinase-like Serine/Threonine Kinases; STKs ... |
17-83 | 5.73e-05 | ||||
Catalytic domain of Cyclin-Dependent protein Kinase-like Serine/Threonine Kinases; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. CDKs belong to a large family of STKs that are regulated by their cognate cyclins. Together, they are involved in the control of cell-cycle progression, transcription, and neuronal function. CDKs are partly regulated by their subcellular localization, which defines substrate phosphorylation and the resulting specific function. CDK1, CDK2, CDK4, and CDK6 have well-defined functions in the cell cycle, such as the regulation of the early G1 phase by CDK4 or CDK6, the G1/S phase transition by CDK2, or the entry of mitosis by CDK1. They also exhibit overlapping cyclin specificity and functions in certain conditions. Knockout mice with a single CDK deleted remain viable with specific phenotypes, showing that some CDKs can compensate for each other. For example, CDK4 can compensate for the loss of CDK6, however, double knockout mice with both CDK4 and CDK6 deleted die in utero. CDK8 and CDK9 are mainly involved in transcription while CDK5 is implicated in neuronal function. CDK7 plays essential roles in both the cell cycle as a CDK-Activating Kinase (CAK) and in transcription as a component of the general transcription factor TFIIH. The CDK-like subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270823 [Multi-domain] Cd Length: 282 Bit Score: 42.47 E-value: 5.73e-05
|
||||||||
STKc_DRAK2 | cd14198 | The catalytic domain of the Serine/Threonine Kinase, Death-associated protein kinase-Related ... |
18-145 | 5.91e-05 | ||||
The catalytic domain of the Serine/Threonine Kinase, Death-associated protein kinase-Related Apoptosis-inducing protein Kinase 2; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. DRAKs were named based on their similarity (around 50% identity) to the kinase domain of DAPKs. They contain an N-terminal kinase domain and a C-terminal regulatory domain. Vertebrates contain two subfamily members, DRAK1 and DRAK2 (also called STK17B). Both DRAKs are localized to the nucleus, autophosphorylate themselves, and phosphorylate myosin light chain as a substrate. DRAK2 has been implicated in inducing or enhancing apoptosis in beta cells, fibroblasts, and lymphoid cells, where it is highly expressed. It is involved in regulating many immune processes including the germinal center (GC) reaction, responses to thymus-dependent antigens, activated T cell survival, memory T cell responses. It may be involved in the development of autoimmunity. The DRAK2 subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 271100 [Multi-domain] Cd Length: 270 Bit Score: 42.60 E-value: 5.91e-05
|
||||||||
PknB_PASTA_kin | NF033483 | Stk1 family PASTA domain-containing Ser/Thr kinase; |
11-142 | 6.35e-05 | ||||
Stk1 family PASTA domain-containing Ser/Thr kinase; Pssm-ID: 468045 [Multi-domain] Cd Length: 563 Bit Score: 42.86 E-value: 6.35e-05
|
||||||||
STKc_PAK6 | cd06659 | Catalytic domain of the Serine/Threonine Kinase, p21-activated kinase 6; STKs catalyze the ... |
51-152 | 6.43e-05 | ||||
Catalytic domain of the Serine/Threonine Kinase, p21-activated kinase 6; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. PAK6 may play a role in stress responses through its activation by the mitogen-activated protein kinase (MAPK) p38 and MAPK kinase 6 (MKK6) pathway. PAK6 is highly expressed in the brain. It is not required for viability, but together with PAK5, it is required for normal levels of locomotion and activity, and for learning and memory. Increased expression of PAK6 is found in primary and metastatic prostate cancer. PAK6 may play a role in the regulation of motility. PAK6 belongs to the group II PAKs, which contain a PBD (p21-binding domain) and a C-terminal catalytic domain, but do not harbor an AID (autoinhibitory domain) or SH3 binding sites. PAKs are Rho family GTPase-regulated kinases that serve as important mediators in the function of Cdc42 (cell division cycle 42) and Rac. The PAK subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270821 [Multi-domain] Cd Length: 297 Bit Score: 42.67 E-value: 6.43e-05
|
||||||||
STKc_CDK8 | cd07868 | Catalytic domain of the Serine/Threonine Kinase, Cyclin-Dependent protein Kinase 8; STKs ... |
54-103 | 6.44e-05 | ||||
Catalytic domain of the Serine/Threonine Kinase, Cyclin-Dependent protein Kinase 8; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. CDK8 can act as a negative or positive regulator of transcription, depending on the scenario. Together with its regulator, cyclin C, it reversibly associates with the multi-subunit core Mediator complex, a cofactor that is involved in regulating RNA polymerase II (RNAP II)-dependent transcription. CDK8 phosphorylates cyclin H, a subunit of the general transcription factor TFIIH, which results in the inhibition of TFIIH-dependent phosphorylation of the C-terminal domain of RNAP II, facilitating the inhibition of transcription. It has also been shown to promote transcription by a mechanism that is likely to involve RNAP II phosphorylation. CDK8 also functions as a stimulus-specific positive coregulator of p53 transcriptional responses. CDKs belong to a large family of STKs that are regulated by their cognate cyclins. Together, they are involved in the control of cell-cycle progression, transcription, and neuronal function. The CDK8 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270851 [Multi-domain] Cd Length: 333 Bit Score: 42.74 E-value: 6.44e-05
|
||||||||
PTKc_Wee1a | cd14138 | Catalytic domain of the Protein Tyrosine Kinase, Wee1a; PTKs catalyze the transfer of the ... |
43-126 | 7.21e-05 | ||||
Catalytic domain of the Protein Tyrosine Kinase, Wee1a; PTKs catalyze the transfer of the gamma-phosphoryl group from ATP to tyrosine (tyr) residues in protein substrates. This subfamily is composed of human Wee1a, Xenopus laevis Wee1b (XeWee1b) and similar vertebrate proteins. Members of this subfamily show a wide expression pattern. XeWee1b functions after the first zygotic cell divisions. It is expressed in all tissues and is also present after the gastrulation stage of embryos. Wee1 is a cell cycle checkpoint kinase that helps keep the cyclin-dependent kinase CDK1 in an inactive state through phosphorylation of an N-terminal tyr (Y15) residue. During the late G2 phase, CDK1 is activated and mitotic entry is promoted by the removal of this inhibitory phosphorylation by the phosphatase Cdc25. Although Wee1 is functionally a tyr kinase, it is more closely related to serine/threonine kinases (STKs). It contains a catalytic kinase domain sandwiched in between N- and C-terminal regulatory domains. It is regulated by phosphorylation and degradation, and its expression levels are also controlled by circadian clock proteins. The Wee1a subfamily is part of a larger superfamily that includes the catalytic domains of STKs, other PTKs, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 271040 [Multi-domain] Cd Length: 276 Bit Score: 42.32 E-value: 7.21e-05
|
||||||||
PTKc_Ror | cd05048 | Catalytic Domain of the Protein Tyrosine Kinases, Receptor tyrosine kinase-like Orphan ... |
17-142 | 7.77e-05 | ||||
Catalytic Domain of the Protein Tyrosine Kinases, Receptor tyrosine kinase-like Orphan Receptors; PTKs catalyze the transfer of the gamma-phosphoryl group from ATP to tyrosine (tyr) residues in protein substrates. The Ror subfamily consists of Ror1, Ror2, and similar proteins. Ror proteins are orphan receptor PTKs (RTKs) containing an extracellular region with immunoglobulin-like, cysteine-rich, and kringle domains, a transmembrane segment, and an intracellular catalytic domain. Ror RTKs are unrelated to the nuclear receptor subfamily called retinoid-related orphan receptors (RORs). RTKs are usually activated through ligand binding, which causes dimerization and autophosphorylation of the intracellular tyr kinase catalytic domain. Ror kinases are expressed in many tissues during development. They play important roles in bone and heart formation. Mutations in human Ror2 result in two different bone development genetic disorders, recessive Robinow syndrome and brachydactyly type B. Drosophila Ror is expressed only in the developing nervous system during neurite outgrowth and neuronal differentiation, suggesting a role for Drosophila Ror in neural development. More recently, mouse Ror1 and Ror2 have also been found to play an important role in regulating neurite growth in central neurons. Ror1 and Ror2 are believed to have some overlapping and redundant functions. The Ror subfamily is part of a larger superfamily that includes the catalytic domains of other kinases such as protein serine/threonine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270642 [Multi-domain] Cd Length: 283 Bit Score: 42.36 E-value: 7.77e-05
|
||||||||
STKc_cPKC | cd05587 | Catalytic domain of the Serine/Threonine Kinase, Classical (or Conventional) Protein Kinase C; ... |
58-144 | 8.97e-05 | ||||
Catalytic domain of the Serine/Threonine Kinase, Classical (or Conventional) Protein Kinase C; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. cPKCs are potent kinases for histones, myelin basic protein, and protamine. They depend on calcium, DAG (1,2-diacylglycerol), and in most cases, phosphatidylserine (PS) for activation. cPKCs contain a calcium-binding C2 region in their regulatory domain. There are four cPKC isoforms, named alpha, betaI, betaII, and gamma. PKC-gamma is mainly expressed in neuronal tissues. It plays a role in protection from ischemia. PKCs are classified into three groups (classical, atypical, and novel) depending on their mode of activation and the structural characteristics of their regulatory domain. The cPKC subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270739 [Multi-domain] Cd Length: 320 Bit Score: 41.99 E-value: 8.97e-05
|
||||||||
STKc_MEKK4 | cd06626 | Catalytic domain of the Protein Serine/Threonine Kinase, Mitogen-Activated Protein (MAP) ... |
62-142 | 9.15e-05 | ||||
Catalytic domain of the Protein Serine/Threonine Kinase, Mitogen-Activated Protein (MAP)/Extracellular signal-Regulated Kinase (ERK) Kinase Kinase 4; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. MEKK4 is a MAPK kinase kinase that phosphorylates and activates the c-Jun N-terminal kinase (JNK) and p38 MAPK signaling pathways by directly activating their respective MAPKKs, MKK4/MKK7 and MKK3/MKK6. JNK and p38 are collectively known as stress-activated MAPKs, as they are activated in response to a variety of environmental stresses and pro-inflammatory cytokines. MEKK4 also plays roles in the re-polarization of the actin cytoskeleton in response to osmotic stress, in the proper closure of the neural tube, in cardiovascular development, and in immune responses. The MEKK4 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270796 [Multi-domain] Cd Length: 265 Bit Score: 41.90 E-value: 9.15e-05
|
||||||||
STKc_nPKC_theta_like | cd05592 | Catalytic domain of the Serine/Threonine Kinases, Novel Protein Kinase C theta, delta, and ... |
58-144 | 1.05e-04 | ||||
Catalytic domain of the Serine/Threonine Kinases, Novel Protein Kinase C theta, delta, and similar proteins; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. PKC-theta is selectively expressed in T-cells and plays an important and non-redundant role in several aspects of T-cell biology. PKC-delta plays a role in cell cycle regulation and programmed cell death in many cell types. PKCs are classified into three groups (classical, atypical, and novel) depending on their mode of activation and the structural characteristics of their regulatory domain. nPKCs are calcium-independent, but require DAG (1,2-diacylglycerol) and phosphatidylserine (PS) for activity. There are four nPKC isoforms, delta, epsilon, eta, and theta. The nPKC-theta-like subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270744 [Multi-domain] Cd Length: 320 Bit Score: 41.99 E-value: 1.05e-04
|
||||||||
STKc_MSK_C | cd14092 | C-terminal catalytic domain of the Serine/Threonine Kinase, Mitogen and stress-activated ... |
54-153 | 1.30e-04 | ||||
C-terminal catalytic domain of the Serine/Threonine Kinase, Mitogen and stress-activated kinase; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. MSKs contain an N-terminal kinase domain (NTD) from the AGC family and a C-terminal kinase domain (CTD) from the CAMK family. MSKs are activated by two major signaling cascades, the Ras-MAPK and p38 stress kinase pathways, in response to various stimuli such as growth factors, hormones, neurotransmitters, cellular stress, and pro-inflammatory cytokines. This triggers phosphorylation in the activation loop (A-loop) of the CTD of MSK. The active CTD phosphorylates the hydrophobic motif (HM) in the C-terminal extension of NTD, which facilitates the phosphorylation of the A-loop and activates the NTD, which in turn phosphorylates downstream targets. MSKs are predominantly nuclear proteins. They are widely expressed in many tissues including heart, brain, lung, liver, kidney, and pancreas. There are two isoforms of MSK, called MSK1 and MSK2. The MSK subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270994 [Multi-domain] Cd Length: 311 Bit Score: 41.52 E-value: 1.30e-04
|
||||||||
STKc_BUR1 | cd07866 | Catalytic domain of the Serine/Threonine Kinase, Fungal Cyclin-Dependent protein Kinase (CDK), ... |
62-83 | 1.33e-04 | ||||
Catalytic domain of the Serine/Threonine Kinase, Fungal Cyclin-Dependent protein Kinase (CDK), Bypass UAS Requirement 1, and similar proteins; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. BUR1, also called SGV1, is a yeast CDK that is functionally equivalent to mammalian CDK9. It associates with the cyclin BUR2. BUR genes were orginally identified in a genetic screen as factors involved in general transcription. The BUR1/BUR2 complex phosphorylates the C-terminal domain of RNA polymerase II. In addition, this complex regulates histone modification by phosporylating Rad6 and mediating the association of the Paf1 complex with chromatin. CDKs belong to a large family of STKs that are regulated by their cognate cyclins. Together, they are involved in the control of cell-cycle progression, transcription, and neuronal function. The BUR1 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270849 [Multi-domain] Cd Length: 311 Bit Score: 41.53 E-value: 1.33e-04
|
||||||||
STKc_Aurora | cd14007 | Catalytic domain of the Serine/Threonine kinase, Aurora kinase; STKs catalyze the transfer of ... |
58-145 | 1.41e-04 | ||||
Catalytic domain of the Serine/Threonine kinase, Aurora kinase; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. Aurora kinases are key regulators of mitosis and are essential for the accurate and equal division of genomic material from parent to daughter cells. Yeast contains only one Aurora kinase while most higher eukaryotes have two. Vertebrates contain at least 2 Aurora kinases (A and B); mammals contains a third Aurora kinase gene (C). Aurora-A regulates cell cycle events from the late S-phase through the M-phase including centrosome maturation, mitotic entry, centrosome separation, spindle assembly, chromosome alignment, cytokinesis, and mitotic exit. Aurora-A activation depends on its autophosphorylation and binding to the microtubule-associated protein TPX2. Aurora-B is most active at the transition during metaphase to the end of mitosis. It is critical for accurate chromosomal segregation, cytokinesis, protein localization to the centrosome and kinetochore, correct microtubule-kinetochore attachments, and regulation of the mitotic checkpoint. Aurora-C is mainly expressed in meiotically dividing cells; it was originally discovered in mice as a testis-specific STK called Aie1. Both Aurora-B and -C are chromosomal passenger proteins that can form complexes with INCENP and survivin, and they may have redundant cellular functions. The Aurora subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270909 [Multi-domain] Cd Length: 253 Bit Score: 41.31 E-value: 1.41e-04
|
||||||||
PKc_MAPKK_plant_like | cd06623 | Catalytic domain of Plant dual-specificity Mitogen-Activated Protein Kinase Kinases and ... |
55-142 | 1.42e-04 | ||||
Catalytic domain of Plant dual-specificity Mitogen-Activated Protein Kinase Kinases and similar proteins; PKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine (ST) or tyrosine residues on protein substrates. Members of this group include MAPKKs from plants, kinetoplastids, alveolates, and mycetozoa. The MAPKK, LmxPK4, from Leishmania mexicana, is important in differentiation and virulence. Dictyostelium discoideum MEK1 is required for proper chemotaxis; MEK1 null mutants display severe defects in cell polarization and directional movement. Plants contain multiple MAPKKs like other eukaryotes. The Arabidopsis genome encodes for 10 MAPKKs while poplar and rice contain 13 MAPKKs each. The functions of these proteins have not been fully elucidated. There is evidence to suggest that MAPK cascades are involved in plant stress responses. In Arabidopsis, MKK3 plays a role in pathogen signaling; MKK2 is involved in cold and salt stress signaling; MKK4/MKK5 participates in innate immunity; and MKK7 regulates basal and systemic acquired resistance. The MAPKK subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 132954 [Multi-domain] Cd Length: 264 Bit Score: 41.42 E-value: 1.42e-04
|
||||||||
STKc_STK25 | cd06642 | Catalytic domain of Serine/Threonine Kinase 25 (also called Yeast Sps1/Ste20-related kinase 1); ... |
55-156 | 1.73e-04 | ||||
Catalytic domain of Serine/Threonine Kinase 25 (also called Yeast Sps1/Ste20-related kinase 1); STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. STK25 is also called Ste20/oxidant stress response kinase 1 (SOK1) or yeast Sps1/Ste20-related kinase 1 (YSK1). It is localized in the Golgi apparatus through its interaction with the Golgi matrix protein GM130. It may be involved in the regulation of cell migration and polarization. STK25 binds and phosphorylates CCM3 (cerebral cavernous malformation 3), also called PCD10 (programmed cell death 10), and may play a role in apoptosis. Human STK25 is a candidate gene responsible for pseudopseudohypoparathyroidism (PPHP), a disease that shares features with the Albright hereditary osteodystrophy (AHO) phenotype. The STK25 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270810 [Multi-domain] Cd Length: 277 Bit Score: 41.20 E-value: 1.73e-04
|
||||||||
STKc_MAP4K3_like | cd06613 | Catalytic domain of Mitogen-activated protein kinase kinase kinase kinase (MAP4K) 3-like ... |
55-142 | 1.93e-04 | ||||
Catalytic domain of Mitogen-activated protein kinase kinase kinase kinase (MAP4K) 3-like Serine/Threonine Kinases; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. This subfamily includes MAP4K3, MAP4K1, MAP4K2, MAP4K5, and related proteins. Vertebrate members contain an N-terminal catalytic domain and a C-terminal citron homology (CNH) regulatory domain. MAP4K1, also called haematopoietic progenitor kinase 1 (HPK1), is a hematopoietic-specific STK involved in many cellular signaling cascades including MAPK, antigen receptor, apoptosis, growth factor, and cytokine signaling. It participates in the regulation of T cell receptor signaling and T cell-mediated immune responses. MAP4K2 was referred to as germinal center (GC) kinase because of its preferred location in GC B cells. MAP4K3 plays a role in the nutrient-responsive pathway of mTOR (mammalian target of rapamycin) signaling. It is required in the activation of S6 kinase by amino acids and for the phosphorylation of the mTOR-regulated inhibitor of eukaryotic initiation factor 4E. MAP4K5, also called germinal center kinase-related enzyme (GCKR), has been shown to activate the MAPK c-Jun N-terminal kinase (JNK). The MAP4K3-like subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270788 [Multi-domain] Cd Length: 259 Bit Score: 40.75 E-value: 1.93e-04
|
||||||||
STKc_MEKK1_plant | cd06632 | Catalytic domain of the Serine/Threonine Kinase, Plant Mitogen-Activated Protein (MAP) ... |
61-142 | 2.06e-04 | ||||
Catalytic domain of the Serine/Threonine Kinase, Plant Mitogen-Activated Protein (MAP)/Extracellular signal-Regulated Kinase (ERK) Kinase Kinase 1; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. This subfamily is composed of plant MAPK kinase kinases (MAPKKKs) including Arabidopsis thaliana MEKK1 and MAPKKK3. Arabidopsis thaliana MEKK1 activates MPK4, a MAPK that regulates systemic acquired resistance. MEKK1 also participates in the regulation of temperature-sensitive and tissue-specific cell death. MAPKKKs phosphorylate and activate MAPK kinases, which in turn phosphorylate and activate MAPKs during signaling cascades that are important in mediating cellular responses to extracellular signals. The plant MEKK1 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270802 [Multi-domain] Cd Length: 259 Bit Score: 40.85 E-value: 2.06e-04
|
||||||||
STKc_RSK1_C | cd14175 | C-terminal catalytic domain of the Serine/Threonine Kinase, Ribosomal S6 kinase 1 (also called ... |
17-144 | 2.11e-04 | ||||
C-terminal catalytic domain of the Serine/Threonine Kinase, Ribosomal S6 kinase 1 (also called Ribosomal protein S6 kinase alpha-1 or 90kDa ribosomal protein S6 kinase 1); STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. RSK1 is also called S6K-alpha-1, RPS6KA1, p90RSK1 or MAPK-activated protein kinase 1a (MAPKAPK-1a). It is a component of the insulin transduction pathway, regulating the function of IRS1. It also interacts with PKA and promotes its inactivation. RSK1 is one of four RSK isoforms (RSK1-4) from distinct genes present in vertebrates. RSKs contain an N-terminal kinase domain (NTD) from the AGC family and a C-terminal kinase domain (CTD) from the CAMK family. They are activated by signaling inputs from extracellular regulated kinase (ERK) and phosphoinositide dependent kinase 1 (PDK1). ERK phosphorylates and activates the CTD of RSK, serving as a docking site for PDK1, which phosphorylates and activates the NTD, which in turn phosphorylates all known RSK substrates. RSKs act as downstream effectors of mitogen-activated protein kinase (MAPK) and play key roles in mitogen-activated cell growth, differentiation, and survival. The RSK1 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 271077 [Multi-domain] Cd Length: 291 Bit Score: 40.78 E-value: 2.11e-04
|
||||||||
STKc_MLK2 | cd14148 | Catalytic domain of the Serine/Threonine Kinase, Mixed Lineage Kinase 2; STKs catalyze the ... |
53-144 | 2.16e-04 | ||||
Catalytic domain of the Serine/Threonine Kinase, Mixed Lineage Kinase 2; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. MLK2 is a mitogen-activated protein kinase kinase kinase (MAP3K, MKKK, MAPKKK) and is also called MAP3K10. MAP3Ks phosphorylate and activate MAPK kinases (MAPKKs or MKKs or MAP2Ks), which in turn phosphorylate and activate MAPKs during signaling cascades that are important in mediating cellular responses to extracellular signals. MLK2 is abundant in brain, skeletal muscle, and testis. It functions upstream of the MAPK, c-Jun N-terminal kinase. It binds hippocalcin, a calcium-sensor protein that protects neurons against calcium-induced cell death. Both MLK2 and hippocalcin may be associated with the pathogenesis of Parkinson's disease. MLK2 also binds to normal huntingtin (Htt), which is important in neuronal transcription, development, and survival. MLK2 does not bind to the polyglutamine-expanded Htt, which is implicated in the pathogeneis of Huntington's disease, leading to neuronal toxicity. Mammals have four MLKs, mostly conserved in vertebrates, which contain an SH3 domain, a catalytic kinase domain, a leucine zipper, a proline-rich region, and a CRIB domain that mediates binding to GTP-bound Cdc42 and Rac. MLKs play roles in immunity and inflammation, as well as in cell death, proliferation, and cell cycle regulation. The MLK2 subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase (PI3K). Pssm-ID: 271050 [Multi-domain] Cd Length: 258 Bit Score: 40.74 E-value: 2.16e-04
|
||||||||
STKc_DCKL2 | cd14184 | Catalytic domain of the Serine/Threonine Kinase, Doublecortin-like kinase 2 (also called ... |
17-144 | 2.20e-04 | ||||
Catalytic domain of the Serine/Threonine Kinase, Doublecortin-like kinase 2 (also called Doublecortin-like and CAM kinase-like 2); STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. DCKL2 (or DCAMKL2) belongs to the doublecortin (DCX) family of proteins which are involved in neuronal migration, neurogenesis, and eye receptor development, among others. Family members typically contain tandem doublecortin (DCX) domains at the N-terminus; DCX domains can bind microtubules and serve as protein-interaction platforms. In addition, DCKL2 contains a serine, threonine, and proline rich domain (SP) and a C-terminal kinase domain with similarity to CAMKs. DCKL2 has been shown to interact with tubulin, JIP1/2, JNK, neurabin 2, and actin. It is associated with the terminal segments of axons and dendrites, and may function as a phosphorylation-dependent switch to control microtubule dynamics in neuronal growth cones. The DCKL2 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 271086 [Multi-domain] Cd Length: 259 Bit Score: 40.79 E-value: 2.20e-04
|
||||||||
STKc_nPKC_theta | cd05619 | Catalytic domain of the Serine/Threonine Kinase, Novel Protein Kinase C theta; STKs catalyze ... |
58-144 | 2.23e-04 | ||||
Catalytic domain of the Serine/Threonine Kinase, Novel Protein Kinase C theta; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. PKC-theta is selectively expressed in T-cells and plays an important and non-redundant role in several aspects of T-cell biology. Although T-cells also express other PKC isoforms, PKC-theta is unique in that upon antigen stimulation, it is translocated to the plasma membrane at the immunological synapse, where it mediates signals essential for T-cell activation. It is essential for TCR-induced proliferation, cytokine production, T-cell survival, and the differentiation and effector function of T-helper (Th) cells, particularly Th2 and Th17. PKC-theta is being developed as a therapeutic target for Th2-mediated allergic inflammation and Th17-mediated autoimmune diseases. PKCs are classified into three groups (classical, atypical, and novel) depending on their mode of activation and the structural characteristics of their regulatory domain. nPKCs are calcium-independent, but require DAG (1,2-diacylglycerol) and phosphatidylserine (PS) for activity. The nPKC subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270770 [Multi-domain] Cd Length: 331 Bit Score: 41.06 E-value: 2.23e-04
|
||||||||
STKc_TAO3 | cd06633 | Catalytic domain of the Serine/Threonine Kinase, Thousand-and-One Amino acids 3; STKs catalyze ... |
12-142 | 2.24e-04 | ||||
Catalytic domain of the Serine/Threonine Kinase, Thousand-and-One Amino acids 3; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. TAO3 is also known as JIK (c-Jun N-terminal kinase inhibitory kinase) or KFC (kinase from chicken). It specifically activates JNK, presumably by phosphorylating and activating MKK4/MKK7. In Saccharomyces cerevisiae, TAO3 is a component of the RAM (regulation of Ace2p activity and cellular morphogenesis) signaling pathway. TAO3 is upregulated in retinal ganglion cells after axotomy, and may play a role in apoptosis. TAO proteins possess mitogen-activated protein kinase (MAPK) kinase kinase activity. MAPK signaling cascades are important in mediating cellular responses to extracellular signals. The TAO3 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270803 [Multi-domain] Cd Length: 313 Bit Score: 40.79 E-value: 2.24e-04
|
||||||||
STKc_DCKL1 | cd14183 | Catalytic domain of the Serine/Threonine Kinase, Doublecortin-like kinase 1 (also called ... |
55-144 | 2.47e-04 | ||||
Catalytic domain of the Serine/Threonine Kinase, Doublecortin-like kinase 1 (also called Doublecortin-like and CAM kinase-like 1); STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. DCKL1 (or DCAMKL1) belongs to the doublecortin (DCX) family of proteins which are involved in neuronal migration, neurogenesis, and eye receptor development, among others. Family members typically contain tandem doublecortin (DCX) domains at the N-terminus; DCX domains can bind microtubules and serve as protein-interaction platforms. In addition, DCKL1 contains a serine, threonine, and proline rich domain (SP) and a C-terminal kinase domain with similarity to CAMKs. DCKL1 interacts with tubulin, glucocorticoid receptor, dynein, JIP1/2, caspases (3 and 8), and calpain, among others. It plays roles in neurogenesis, neuronal migration, retrograde transport, and neuronal apoptosis. The DCKL1 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 271085 [Multi-domain] Cd Length: 268 Bit Score: 40.75 E-value: 2.47e-04
|
||||||||
PLN00034 | PLN00034 | mitogen-activated protein kinase kinase; Provisional |
54-101 | 2.48e-04 | ||||
mitogen-activated protein kinase kinase; Provisional Pssm-ID: 215036 [Multi-domain] Cd Length: 353 Bit Score: 40.96 E-value: 2.48e-04
|
||||||||
PTKc_Frk_like | cd05068 | Catalytic domain of Fyn-related kinase-like Protein Tyrosine Kinases; PTKs catalyze the ... |
53-144 | 2.56e-04 | ||||
Catalytic domain of Fyn-related kinase-like Protein Tyrosine Kinases; PTKs catalyze the transfer of the gamma-phosphoryl group from ATP to tyrosine (tyr) residues in protein substrates. Frk and Srk are members of the Src subfamily of proteins, which are cytoplasmic (or non-receptor) PTKs. Frk, also known as Rak, is specifically expressed in liver, lung, kidney, intestine, mammary glands, and the islets of Langerhans. Rodent homologs were previously referred to as GTK (gastrointestinal tyr kinase), BSK (beta-cell Src-like kinase), or IYK (intestinal tyr kinase). Studies in mice reveal that Frk is not essential for viability. It plays a role in the signaling that leads to cytokine-induced beta-cell death in Type I diabetes. It also regulates beta-cell number during embryogenesis and early in life. Src kinases contain an N-terminal SH4 domain with a myristoylation site, followed by SH3 and SH2 domains, a tyr kinase domain, and a regulatory C-terminal region containing a conserved tyr. They are activated by autophosphorylation at the tyr kinase domain, but are negatively regulated by phosphorylation at the C-terminal tyr by Csk (C-terminal Src Kinase). The Frk-like subfamily is part of a larger superfamily that includes the catalytic domains of other kinases such as serine/threonine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270653 [Multi-domain] Cd Length: 267 Bit Score: 40.47 E-value: 2.56e-04
|
||||||||
STKc_CDKL2_3 | cd07846 | Catalytic domain of the Serine/Threonine Kinases, Cyclin-Dependent protein Kinase Like 2 and 3; ... |
17-144 | 2.79e-04 | ||||
Catalytic domain of the Serine/Threonine Kinases, Cyclin-Dependent protein Kinase Like 2 and 3; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. CDKL2, also called p56 KKIAMRE, is expressed in testis, kidney, lung, and brain. It functions mainly in mature neurons and plays an important role in learning and memory. Inactivation of CDKL3, also called NKIAMRE (NKIATRE in rat), by translocation is associated with mild mental retardation. It has been reported that CDKL3 is lost in leukemic cells having a chromosome arm 5q deletion, and may contribute to the transformed phenotype. CDKs belong to a large family of STKs that are regulated by their cognate cyclins. Together, they are involved in the control of cell-cycle progression, transcription, and neuronal function. The CDKL2/3 subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270836 [Multi-domain] Cd Length: 286 Bit Score: 40.48 E-value: 2.79e-04
|
||||||||
STKc_CDKL5 | cd07848 | Catalytic domain of the Serine/Threonine Kinase, Cyclin-Dependent protein Kinase Like 5; STKs ... |
56-150 | 2.88e-04 | ||||
Catalytic domain of the Serine/Threonine Kinase, Cyclin-Dependent protein Kinase Like 5; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. Mutations in the gene encoding CDKL5, previously called STK9, are associated with early onset epilepsy and severe mental retardation [X-linked infantile spasm syndrome (ISSX) or West syndrome]. In addition, CDKL5 mutations also sometimes cause a phenotype similar to Rett syndrome (RTT), a progressive neurodevelopmental disorder. These pathogenic mutations are located in the N-terminal portion of the protein within the kinase domain. CDKs belong to a large family of STKs that are regulated by their cognate cyclins. Together, they are involved in the control of cell-cycle progression, transcription, and neuronal function. The CDKL5 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270838 [Multi-domain] Cd Length: 287 Bit Score: 40.36 E-value: 2.88e-04
|
||||||||
STKc_TSSK4-like | cd14162 | Catalytic domain of testis-specific serine/threonine kinase 4 and similar proteins; STKs ... |
57-142 | 2.91e-04 | ||||
Catalytic domain of testis-specific serine/threonine kinase 4 and similar proteins; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. TSSK proteins are almost exclusively expressed postmeiotically in the testis and play important roles in spermatogenesis and/or spermiogenesis. There are five mammalian TSSK proteins which show differences in their localization and timing of expression. TSSK4, also called TSSK5, is expressed in testis from haploid round spermatids to mature spermatozoa. It phosphorylates Cre-Responsive Element Binding protein (CREB), facilitating the binding of CREB to the specific cis cAMP responsive element (CRE), which is important in activating genes related to germ cell differentiation. Mutations in the human TSSK4 gene is associated with infertile Chinese men with impaired spermatogenesis. The TSSK4-like subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 271064 [Multi-domain] Cd Length: 259 Bit Score: 40.36 E-value: 2.91e-04
|
||||||||
STKc_Nek5 | cd08225 | Catalytic domain of the Serine/Threonine Kinase, Never In Mitosis gene A (NIMA)-related kinase ... |
6-142 | 2.94e-04 | ||||
Catalytic domain of the Serine/Threonine Kinase, Never In Mitosis gene A (NIMA)-related kinase 5; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. Neks are involved in the regulation of downstream processes following the activation of Cdc2, and many of their functions are cell cycle-related. They play critical roles in microtubule dynamics during ciliogenesis and mitosis. The specific function of Nek5 is unknown. Nek5 is one in a family of 11 different Neks (Nek1-11). The Nek family is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 173765 [Multi-domain] Cd Length: 257 Bit Score: 40.33 E-value: 2.94e-04
|
||||||||
PTKc_Fes | cd05084 | Catalytic domain of the Protein Tyrosine Kinase, Fes; PTKs catalyze the transfer of the ... |
47-144 | 2.98e-04 | ||||
Catalytic domain of the Protein Tyrosine Kinase, Fes; PTKs catalyze the transfer of the gamma-phosphoryl group from ATP to tyrosine (tyr) residues in protein substrates. Fes (or Fps) is a cytoplasmic (or nonreceptor) PTK containing an N-terminal region with FCH (Fes/Fer/CIP4 homology) and coiled-coil domains, followed by a SH2 domain, and a C-terminal catalytic domain. The genes for Fes (feline sarcoma) and Fps (Fujinami poultry sarcoma) were first isolated from tumor-causing retroviruses. The viral oncogenes encode chimeric Fes proteins consisting of Gag sequences at the N-termini, resulting in unregulated PTK activity. Fes kinase is expressed in myeloid, vascular endothelial, epithelial, and neuronal cells. It plays important roles in cell growth and differentiation, angiogenesis, inflammation and immunity, and cytoskeletal regulation. A recent study implicates Fes kinase as a tumor suppressor in colorectal cancer. The Fes subfamily is part of a larger superfamily that includes the catalytic domains of other kinases such as protein serine/threonine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270667 [Multi-domain] Cd Length: 252 Bit Score: 40.30 E-value: 2.98e-04
|
||||||||
STKc_TAO1 | cd06635 | Catalytic domain of the Serine/Threonine Kinase, Thousand-and-One Amino acids 1; STKs catalyze ... |
12-142 | 3.01e-04 | ||||
Catalytic domain of the Serine/Threonine Kinase, Thousand-and-One Amino acids 1; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. TAO1 is sometimes referred to as prostate-derived sterile 20-like kinase 2 (PSK2). TAO1 activates the p38 MAPK through direct interaction with and activation of MEK3. TAO1 is highly expressed in the brain and may play a role in neuronal apoptosis. TAO1 interacts with the checkpoint proteins BubR1 and Mad2, and plays an important role in regulating mitotic progression, which is required for both chromosome congression and checkpoint-induced anaphase delay. TAO1 may play a role in protecting genomic stability. TAO proteins possess MAPK kinase kinase activity. MAPK signaling cascades are important in mediating cellular responses to extracellular signals. The TAO1 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270805 [Multi-domain] Cd Length: 317 Bit Score: 40.42 E-value: 3.01e-04
|
||||||||
PTKc_Csk_like | cd05039 | Catalytic domain of C-terminal Src kinase-like Protein Tyrosine Kinases; PTKs catalyze the ... |
58-144 | 3.26e-04 | ||||
Catalytic domain of C-terminal Src kinase-like Protein Tyrosine Kinases; PTKs catalyze the transfer of the gamma-phosphoryl group from ATP to tyrosine (tyr) residues in protein substrates. This subfamily is composed of Csk, Chk, and similar proteins. They are cytoplasmic (or nonreceptor) PTKs containing the Src homology domains, SH3 and SH2, N-terminal to the catalytic tyr kinase domain. They negatively regulate the activity of Src kinases that are anchored to the plasma membrane. To inhibit Src kinases, Csk and Chk are translocated to the membrane via binding to specific transmembrane proteins, G-proteins, or adaptor proteins near the membrane. Csk catalyzes the tyr phosphorylation of the regulatory C-terminal tail of Src kinases, resulting in their inactivation. Chk inhibit Src kinases using a noncatalytic mechanism by simply binding to them. As negative regulators of Src kinases, Csk and Chk play important roles in cell proliferation, survival, and differentiation, and consequently, in cancer development and progression. The Csk-like subfamily is part of a larger superfamily that includes the catalytic domains of other kinases such as protein serine/threonine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270635 [Multi-domain] Cd Length: 256 Bit Score: 40.41 E-value: 3.26e-04
|
||||||||
STKc_RSK2_C | cd14176 | C-terminal catalytic domain of the Serine/Threonine Kinase, Ribosomal S6 kinase 2 (also called ... |
55-157 | 3.45e-04 | ||||
C-terminal catalytic domain of the Serine/Threonine Kinase, Ribosomal S6 kinase 2 (also called 90kDa ribosomal protein S6 kinase 3 or Ribosomal protein S6 kinase alpha-3); STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. RSK2 is also called p90RSK3, RPS6KA3, S6K-alpha-3, or MAPK-activated protein kinase 1b (MAPKAPK-1b). RSK2 is expressed highly in the regions of the brain with high synaptic activity. It plays a role in the maintenance and consolidation of excitatory synapses. It is a specific modulator of phospholipase D in calcium-regulated exocytosis. Mutations in the RSK2 gene, RPS6KA3, cause Coffin-Lowry syndrome (CLS), a rare syndromic form of X-linked mental retardation characterized by growth and psychomotor retardation and skeletal abnormalities. RSK2 is one of four RSK isoforms (RSK1-4) from distinct genes present in vertebrates. RSKs contain an N-terminal kinase domain (NTD) from the AGC family and a C-terminal kinase domain (CTD) from the CAMK family. They are activated by signaling inputs from extracellular regulated kinase (ERK) and phosphoinositide dependent kinase 1 (PDK1). ERK phosphorylates and activates the CTD of RSK, serving as a docking site for PDK1, which phosphorylates and activates the NTD, which in turn phosphorylates all known RSK substrates. RSKs act as downstream effectors of mitogen-activated protein kinase (MAPK) and play key roles in mitogen-activated cell growth, differentiation, and survival. The RSK2 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 271078 [Multi-domain] Cd Length: 339 Bit Score: 40.39 E-value: 3.45e-04
|
||||||||
STKc_MLK1 | cd14145 | Catalytic domain of the Serine/Threonine Kinase, Mixed Lineage Kinase 1; STKs catalyze the ... |
58-144 | 3.49e-04 | ||||
Catalytic domain of the Serine/Threonine Kinase, Mixed Lineage Kinase 1; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. MLK1 is a mitogen-activated protein kinase kinase kinase (MAP3K, MKKK, MAPKKK) and is also called MAP3K9. MAP3Ks phosphorylate and activate MAPK kinases (MAPKKs or MKKs or MAP2Ks), which in turn phosphorylate and activate MAPKs during signaling cascades that are important in mediating cellular responses to extracellular signals. Little is known about the specific function of MLK1. It is capable of activating the c-Jun N-terminal kinase pathway. Mice lacking both MLK1 and MLK2 are viable, fertile, and have normal life spans. There could be redundancy in the function of MLKs. Mammals have four MLKs, mostly conserved in vertebrates, which contain an SH3 domain, a catalytic kinase domain, a leucine zipper, a proline-rich region, and a CRIB domain that mediates binding to GTP-bound Cdc42 and Rac. MLKs play roles in immunity and inflammation, as well as in cell death, proliferation, and cell cycle regulation. The MLK1 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 271047 [Multi-domain] Cd Length: 270 Bit Score: 40.41 E-value: 3.49e-04
|
||||||||
STKc_DRAK1 | cd14197 | Catalytic domain of the Serine/Threonine Kinase, Death-associated protein kinase-Related ... |
48-145 | 3.60e-04 | ||||
Catalytic domain of the Serine/Threonine Kinase, Death-associated protein kinase-Related Apoptosis-inducing protein Kinase 1; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. DRAKs were named based on their similarity (around 50% identity) to the kinase domain of DAPKs. They contain an N-terminal kinase domain and a C-terminal regulatory domain. Vertebrates contain two subfamily members, DRAK1 (also called STK17A) and DRAK2. Both DRAKs are localized to the nucleus, autophosphorylate themselves, and phosphorylate myosin light chain as a substrate. Rabbit DRAK1 has been shown to induce apoptosis in osteoclasts and overexpressio of human DRAK1 induces apoptosis in cultured fibroblast cells. DRAK1 may be involved in apoptotic signaling. The DRAK1 subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 271099 [Multi-domain] Cd Length: 271 Bit Score: 40.30 E-value: 3.60e-04
|
||||||||
PKc_MAPKK | cd06605 | Catalytic domain of the dual-specificity Protein Kinase, Mitogen-Activated Protein Kinase ... |
59-142 | 3.71e-04 | ||||
Catalytic domain of the dual-specificity Protein Kinase, Mitogen-Activated Protein Kinase Kinase; PKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine (ST) or tyrosine residues on protein substrates. MAPKKs are dual-specificity PKs that phosphorylate their downstream targets, MAPKs, at specific threonine and tyrosine residues. The MAPK signaling pathways are important mediators of cellular responses to extracellular signals. The pathways involve a triple kinase core cascade comprising the MAPK, which is phosphorylated and activated by a MAPK kinase (MAPKK or MKK or MAP2K), which itself is phosphorylated and activated by a MAPKK kinase (MAPKKK or MKKK or MAP3K). There are three MAPK subfamilies: extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK), and p38. In mammalian cells, there are seven MAPKKs (named MKK1-7) and 20 MAPKKKs. Each MAPK subfamily can be activated by at least two cognate MAPKKs and by multiple MAPKKKs. The MAPKK subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270782 [Multi-domain] Cd Length: 265 Bit Score: 40.02 E-value: 3.71e-04
|
||||||||
STKc_Chk2 | cd14084 | Catalytic domain of the Serine/Threonine kinase, Cell cycle Checkpoint Kinase 2; STKs catalyze ... |
62-142 | 3.75e-04 | ||||
Catalytic domain of the Serine/Threonine kinase, Cell cycle Checkpoint Kinase 2; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. Checkpoint Kinase 2 (Chk2) plays an important role in cellular responses to DNA double-strand breaks and related lesions. It is phosphorylated and activated by ATM kinase, resulting in its dissociation from sites of damage to phosphorylate downstream targets such as BRCA1, p53, cell cycle transcription factor E2F1, the promyelocytic leukemia protein (PML) involved in apoptosis, and CDC25 phosphatases, among others. Mutations in Chk2 is linked to a variety of cancers including familial breast cancer, myelodysplastic syndromes, prostate cancer, lung cancer, and osteosarcomas. Chk2 contains an N-terminal SQ/TQ cluster domain (SCD), a central forkhead-associated (FHA) domain, and a C-terminal catalytic kinase domain. The Chk2 subfamily is part of a larger superfamily that includes the catalytic domains of other protein kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270986 [Multi-domain] Cd Length: 275 Bit Score: 40.07 E-value: 3.75e-04
|
||||||||
STKc_MLK4 | cd14146 | Catalytic domain of the Serine/Threonine Kinase, Mixed Lineage Kinase 4; STKs catalyze the ... |
53-144 | 3.90e-04 | ||||
Catalytic domain of the Serine/Threonine Kinase, Mixed Lineage Kinase 4; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. MLK4 is a mitogen-activated protein kinase kinase kinase (MAP3K, MKKK, MAPKKK), which phosphorylates and activates MAPK kinases (MAPKKs or MKKs or MAP2Ks), which in turn phosphorylate and activate MAPKs during signaling cascades that are important in mediating cellular responses to extracellular signals. The specific function of MLK4 is yet to be determined. Mutations in the kinase domain of MLK4 have been detected in colorectal cancers. Mammals have four MLKs, mostly conserved in vertebrates, which contain an SH3 domain, a catalytic kinase domain, a leucine zipper, a proline-rich region, and a CRIB domain that mediates binding to GTP-bound Cdc42 and Rac. MLKs play roles in immunity and inflammation, as well as in cell death, proliferation, and cell cycle regulation.The MLK4 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 271048 [Multi-domain] Cd Length: 268 Bit Score: 40.02 E-value: 3.90e-04
|
||||||||
PTZ00284 | PTZ00284 | protein kinase; Provisional |
55-142 | 4.09e-04 | ||||
protein kinase; Provisional Pssm-ID: 140307 [Multi-domain] Cd Length: 467 Bit Score: 40.33 E-value: 4.09e-04
|
||||||||
PKc_TESK | cd14155 | Catalytic domain of the Dual-specificity protein kinase, Testicular protein kinase; ... |
58-142 | 4.34e-04 | ||||
Catalytic domain of the Dual-specificity protein kinase, Testicular protein kinase; Dual-specificity PKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine as well as tyrosine residues on protein substrates. TESK proteins phosphorylate cofilin and induce actin cytoskeletal reorganization. In the Drosphila eye, TESK is required for epithelial cell organization. Mammals contain two TESK proteins, TESK1 and TESK2, which are highly expressed in testis and play roles in spermatogenesis. TESK1 is found in testicular germ cells while TESK2 is expressed mainly in nongerminal Sertoli cells. TESK1 is stimulated by integrin-mediated signaling pathways. It regulates cell spreading and focal adhesion formation. The TESK subfamily is part of a larger superfamily that includes the catalytic domains of other protein serine/threonine PKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 271057 [Multi-domain] Cd Length: 253 Bit Score: 39.77 E-value: 4.34e-04
|
||||||||
STKc_MST3 | cd06641 | Catalytic domain of the Serine/Threonine Kinase, Mammalian Ste20-like protein kinase 3; STKs ... |
38-145 | 4.42e-04 | ||||
Catalytic domain of the Serine/Threonine Kinase, Mammalian Ste20-like protein kinase 3; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. MST3 phosphorylates the STK NDR and may play a role in cell cycle progression and cell morphology. It may also regulate paxillin and consequently, cell migration. MST3 is present in human placenta, where it plays an essential role in the oxidative stress-induced apoptosis of trophoblasts in normal spontaneous delivery. Dysregulation of trophoblast apoptosis may result in pregnancy complications such as preeclampsia and intrauterine growth retardation. The MST3 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270809 [Multi-domain] Cd Length: 277 Bit Score: 40.06 E-value: 4.42e-04
|
||||||||
STKc_MAST_like | cd05579 | Catalytic domain of Microtubule-associated serine/threonine (MAST) kinase-like proteins; STKs ... |
58-142 | 4.84e-04 | ||||
Catalytic domain of Microtubule-associated serine/threonine (MAST) kinase-like proteins; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. This subfamily includes MAST kinases, MAST-like (MASTL) kinases (also called greatwall kinase or Gwl), and fungal kinases with similarity to Saccharomyces cerevisiae Rim15 and Schizosaccharomyces pombe cek1. MAST kinases contain an N-terminal domain of unknown function, a central catalytic domain, and a C-terminal PDZ domain that mediates protein-protein interactions. MASTL kinases carry only a catalytic domain which contains a long insert relative to other kinases. The fungal kinases in this subfamily harbor other domains in addition to a central catalytic domain, which like in MASTL, also contains an insert relative to MAST kinases. Rim15 contains a C-terminal signal receiver (REC) domain while cek1 contains an N-terminal PAS domain. MAST kinases are cytoskeletal associated kinases of unknown function that are also expressed at neuromuscular junctions and postsynaptic densities. MASTL/Gwl is involved in the regulation of mitotic entry, mRNA stabilization, and DNA checkpoint recovery. The fungal proteins Rim15 and cek1 are involved in the regulation of meiosis and mitosis, respectively. The MAST-like kinase subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270731 [Multi-domain] Cd Length: 272 Bit Score: 39.89 E-value: 4.84e-04
|
||||||||
STKc_cPKC_beta | cd05616 | Catalytic domain of the Serine/Threonine Kinase, Classical Protein Kinase C beta; STKs ... |
58-144 | 5.20e-04 | ||||
Catalytic domain of the Serine/Threonine Kinase, Classical Protein Kinase C beta; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. The PKC beta isoforms (I and II), generated by alternative splicing of a single gene, are preferentially activated by hyperglycemia-induced DAG (1,2-diacylglycerol) in retinal tissues. This is implicated in diabetic microangiopathy such as ischemia, neovascularization, and abnormal vasodilator function. PKC-beta also plays an important role in VEGF signaling. In addition, glucose regulates proliferation in retinal endothelial cells via PKC-betaI. PKC-beta is also being explored as a therapeutic target in cancer. It contributes to tumor formation and is involved in the tumor host mechanisms of inflammation and angiogenesis. PKCs are classified into three groups (classical, atypical, and novel) depending on their mode of activation and the structural characteristics of their regulatory domain. PKCs undergo three phosphorylations in order to take mature forms. In addition, cPKCs depend on calcium, DAG, and in most cases, phosphatidylserine (PS) for activation. The cPKC-beta subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270767 [Multi-domain] Cd Length: 323 Bit Score: 39.98 E-value: 5.20e-04
|
||||||||
STKc_TAO | cd06607 | Catalytic domain of the Serine/Threonine Kinases, Thousand-and-One Amino acids proteins; STKs ... |
12-142 | 5.25e-04 | ||||
Catalytic domain of the Serine/Threonine Kinases, Thousand-and-One Amino acids proteins; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. TAO proteins possess mitogen-activated protein kinase (MAPK) kinase kinase activity. They activate the MAPKs, p38 and c-Jun N-terminal kinase (JNK), by phosphorylating and activating the respective MAP/ERK kinases (MEKs, also known as MKKs or MAPKKs), MEK3/MEK6 and MKK4/MKK7. MAPK signaling cascades are important in mediating cellular responses to extracellular signals. Vertebrates contain three TAO subfamily members, named TAO1, TAO2, and TAO3. The TAO subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270784 [Multi-domain] Cd Length: 258 Bit Score: 39.74 E-value: 5.25e-04
|
||||||||
STKc_AGC | cd05123 | Catalytic domain of AGC family Serine/Threonine Kinases; STKs catalyze the transfer of the ... |
58-142 | 5.46e-04 | ||||
Catalytic domain of AGC family Serine/Threonine Kinases; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. AGC kinases regulate many cellular processes including division, growth, survival, metabolism, motility, and differentiation. Many are implicated in the development of various human diseases. Members of this family include cAMP-dependent Protein Kinase (PKA), cGMP-dependent Protein Kinase (PKG), Protein Kinase C (PKC), Protein Kinase B (PKB), G protein-coupled Receptor Kinase (GRK), Serum- and Glucocorticoid-induced Kinase (SGK), and 70 kDa ribosomal Protein S6 Kinase (p70S6K or S6K), among others. AGC kinases share an activation mechanism based on the phosphorylation of up to three sites: the activation loop (A-loop), the hydrophobic motif (HM) and the turn motif. Phosphorylation at the A-loop is required of most AGC kinases, which results in a disorder-to-order transition of the A-loop. The ordered conformation results in the access of substrates and ATP to the active site. A subset of AGC kinases with C-terminal extensions containing the HM also requires phosphorylation at this site. Phosphorylation at the HM allows the C-terminal extension to form an ordered structure that packs into the hydrophobic pocket of the catalytic domain, which then reconfigures the kinase into an active bi-lobed state. In addition, growth factor-activated AGC kinases such as PKB, p70S6K, RSK, MSK, PKC, and SGK, require phosphorylation at the turn motif (also called tail or zipper site), located N-terminal to the HM at the C-terminal extension. The AGC family is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and Phosphoinositide 3-Kinase. Pssm-ID: 270693 [Multi-domain] Cd Length: 250 Bit Score: 39.42 E-value: 5.46e-04
|
||||||||
STKc_PhKG | cd14093 | Catalytic domain of the Serine/Threonine Kinase, Phosphorylase kinase Gamma subunit; STKs ... |
11-104 | 5.66e-04 | ||||
Catalytic domain of the Serine/Threonine Kinase, Phosphorylase kinase Gamma subunit; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. Phosphorylase kinase (PhK) catalyzes the phosphorylation of inactive phosphorylase b to form the active phosphorylase a. It coordinates hormonal, metabolic, and neuronal signals to initiate the breakdown of glycogen stores, which enables the maintenance of blood-glucose homeostasis during fasting, and is also used as a source of energy for muscle contraction. PhK is one of the largest and most complex protein kinases, composed of a heterotetramer containing four molecules each of four subunit types: one catalytic (gamma) and three regulatory (alpha, beta, and delta). Each subunit has tissue-specific isoforms or splice variants. Vertebrates contain two isoforms of the gamma subunit (gamma 1 and gamma 2). The gamma subunit, when isolated, is constitutively active and does not require phosphorylation of the A-loop for activity. The regulatory subunits restrain this kinase activity until signals are received to relieve this inhibition. For example, the kinase is activated in response to hormonal stimulation, after autophosphorylation or phosphorylation by cAMP-dependent kinase of the alpha and beta subunits. The high-affinity binding of ADP to the beta subunit also stimulates kinase activity, whereas calcium relieves inhibition by binding to the delta (calmodulin) subunit. The PhKG subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270995 [Multi-domain] Cd Length: 272 Bit Score: 39.64 E-value: 5.66e-04
|
||||||||
STKc_Bub1_BubR1 | cd13981 | Catalytic domain of the Serine/Threonine kinases, Spindle assembly checkpoint proteins Bub1 ... |
12-103 | 5.96e-04 | ||||
Catalytic domain of the Serine/Threonine kinases, Spindle assembly checkpoint proteins Bub1 and BubR1; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. This subfamily is composed of Bub1 (Budding uninhibited by benzimidazoles 1), BubR1, and similar proteins. They contain an N-terminal Bub1/Mad3 homology domain essential for Cdc20 binding and a C-terminal kinase domain. Bub1 and BubR1 are involved in SAC, a surveillance system that delays metaphase to anaphase transition by blocking the activity of APC/C (the anaphase promoting complex) until all chromosomes achieve proper attachments to the mitotic spindle, to avoid chromosome missegregation. Impaired SAC leads to genomic instabilities and tumor development. Bub1 and BubR1 facilitate the localization of SAC proteins to kinetochores and regulate kinetochore-microtubule (K-MT) attachments. Repression studies of Bub1 and BubR1 show that they exert an additive effect in misalignment phenotypes and may function cooperatively or in parallel pathways in regulating K-MT attachments. The Bub1/BubR1 subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270883 [Multi-domain] Cd Length: 298 Bit Score: 39.65 E-value: 5.96e-04
|
||||||||
PKc_Byr1_like | cd06620 | Catalytic domain of fungal Byr1-like dual-specificity Mitogen-activated protein Kinase Kinases; ... |
59-142 | 6.68e-04 | ||||
Catalytic domain of fungal Byr1-like dual-specificity Mitogen-activated protein Kinase Kinases; PKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine (ST) or tyrosine residues on protein substrates. Members of this group include the MAPKKs Byr1 from Schizosaccharomyces pombe, FUZ7 from Ustilago maydis, and related proteins. Byr1 phosphorylates its downstream target, the MAPK Spk1, and is regulated by the MAPKK kinase Byr2. The Spk1 cascade is pheromone-responsive and is essential for sporulation and sexual differentiation in fission yeast. FUZ7 phosphorylates and activates its target, the MAPK Crk1, which is required in mating and virulence in U. maydis. MAPK signaling pathways are important mediators of cellular responses to extracellular signals. The Byr-1 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270792 [Multi-domain] Cd Length: 286 Bit Score: 39.34 E-value: 6.68e-04
|
||||||||
PKc_DYRK2_3 | cd14224 | Catalytic domain of the protein kinases, Dual-specificity tYrosine-phosphorylated and ... |
66-142 | 7.00e-04 | ||||
Catalytic domain of the protein kinases, Dual-specificity tYrosine-phosphorylated and -Regulated Kinases 2 and 3; Dual-specificity PKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine (S/T) as well as tyrosine residues on protein substrates. This subfamily is composed of DYRK2 and DYRK3, and similar proteins. Drosophila DYRK2 interacts and phosphorylates the chromatin remodelling factor, SNR1 (Snf5-related 1), and also interacts with the essential chromatin component, trithorax. It may play a role in chromatin remodelling. Vertebrate DYRK2 phosphorylates and regulates the tumor suppressor p53 to induce apoptosis in response to DNA damage. It can also phosphorylate the transcription factor, nuclear factor of activated T cells (NFAT). DYRK2 is overexpressed in lung adenocarcinoma and esophageal carcinomas, and is a predictor for favorable prognosis in lung adenocarcinoma. DYRK3, also called regulatory erythroid kinase (REDK), is highly expressed in erythroid cells and the testis, and is also present in adult kidney and liver. It promotes cell survival by phosphorylating and activating SIRT1, an NAD(+)-dependent protein deacetylase, which promotes p53 deacetylation, resulting in the inhibition of apoptosis. DYRKs autophosphorylate themselves on tyrosine residues and phosphorylate their substrates exclusively on S/T residues. The DYRK2/3 subfamily is part of a larger superfamily that includes the catalytic domains of other S/T kinases, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 271126 [Multi-domain] Cd Length: 380 Bit Score: 39.34 E-value: 7.00e-04
|
||||||||
STKc_JNK2 | cd07876 | Catalytic domain of the Serine/Threonine Kinase, c-Jun N-terminal Kinase 2; STKs catalyze the ... |
49-148 | 7.30e-04 | ||||
Catalytic domain of the Serine/Threonine Kinase, c-Jun N-terminal Kinase 2; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. JNK2 is expressed in every cell and tissue type. It is specifically translocated to the mitochondria during dopaminergic cell death. Specific substrates include the microtubule-associated proteins DCX and Tau, as well as TIF-IA which is involved in ribosomal RNA synthesis regulation. Mice deficient in Jnk2 show protection against arthritis, type 1 diabetes, atherosclerosis, abdominal aortic aneurysm, cardiac cell death, TNF-induced liver damage, and tumor growth, indicating that JNK2 may play roles in the pathogenesis of these diseases. Initially it was thought that JNK1 and JNK2 were functionally redundant as mice deficient in either genes could survive but disruption of both genes resulted in lethality. However, recent studies have shown that JNK1 and JNK2 perform distinct functions through specific binding partners and substrates. JNKs are mitogen-activated protein kinases (MAPKs) that are involved in many stress-activated responses including those during inflammation, neurodegeneration, apoptosis, and persistent pain sensitization, among others. The JNK2 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 143381 [Multi-domain] Cd Length: 359 Bit Score: 39.63 E-value: 7.30e-04
|
||||||||
STKc_Byr2_like | cd06628 | Catalytic domain of the Serine/Threonine Kinases, fungal Byr2-like Mitogen-Activated Protein ... |
7-144 | 7.57e-04 | ||||
Catalytic domain of the Serine/Threonine Kinases, fungal Byr2-like Mitogen-Activated Protein Kinase Kinase Kinases; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. Members of this group include the MAPKKKs Schizosaccharomyces pombe Byr2, Saccharomyces cerevisiae and Cryptococcus neoformans Ste11, and related proteins. They contain an N-terminal SAM (sterile alpha-motif) domain, which mediates protein-protein interaction, and a C-terminal catalytic domain. MAPKKKs phosphorylate and activate MAPK kinases, which in turn phosphorylate and activate MAPKs during signaling cascades that are important in mediating cellular responses to extracellular signals. Fission yeast Byr2 is regulated by Ras1. It responds to pheromone signaling and controls mating through the MAPK pathway. Budding yeast Ste11 functions in MAPK cascades that regulate mating, high osmolarity glycerol, and filamentous growth responses. The Byr2 subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270798 [Multi-domain] Cd Length: 267 Bit Score: 39.05 E-value: 7.57e-04
|
||||||||
PKc_LIMK_like | cd14065 | Catalytic domain of the LIM domain kinase-like protein kinases; PKs catalyze the transfer of ... |
7-142 | 8.23e-04 | ||||
Catalytic domain of the LIM domain kinase-like protein kinases; PKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine or tyrosine residues on protein substrates. Members of this subfamily include LIMK, Testicular or testis-specific protein kinase (TESK), and similar proteins. LIMKs are characterized as serine/threonine kinases (STKs) while TESKs are dual-specificity protein kinases. Both LIMK and TESK phosphorylate and inactivate cofilin, an actin depolymerizing factor, to induce the reorganization of the actin cytoskeleton. They are implicated in many cellular functions including cell spreading, motility, morphogenesis, meiosis, mitosis, and spermatogenesis. The LIMK-like subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270967 [Multi-domain] Cd Length: 252 Bit Score: 39.01 E-value: 8.23e-04
|
||||||||
STKc_ROCK_NDR_like | cd05573 | Catalytic domain of Rho-associated coiled-coil containing protein kinase (ROCK)- and Nuclear ... |
17-101 | 8.67e-04 | ||||
Catalytic domain of Rho-associated coiled-coil containing protein kinase (ROCK)- and Nuclear Dbf2-Related (NDR)-like Serine/Threonine Kinases; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. Members of this subfamily include ROCK and ROCK-like proteins such as DMPK, MRCK, and CRIK, as well as NDR and NDR-like proteins such as LATS, CBK1 and Sid2p. ROCK and CRIK are effectors of the small GTPase Rho, while MRCK is an effector of the small GTPase Cdc42. NDR and NDR-like kinases contain an N-terminal regulatory (NTR) domain and an insert within the catalytic domain that contains an auto-inhibitory sequence. Proteins in this subfamily are involved in regulating many cellular functions including contraction, motility, division, proliferation, apoptosis, morphogenesis, and cytokinesis. The ROCK/NDR-like subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270725 [Multi-domain] Cd Length: 350 Bit Score: 39.19 E-value: 8.67e-04
|
||||||||
STKc_FA2-like | cd08529 | Catalytic domain of the Serine/Threonine Kinases, Chlamydomonas reinhardtii FA2 and similar ... |
58-142 | 8.79e-04 | ||||
Catalytic domain of the Serine/Threonine Kinases, Chlamydomonas reinhardtii FA2 and similar proteins; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. Chlamydomonas reinhardtii FA2 was discovered in a genetic screen for deflagellation-defective mutants. It is essential for basal-body/centriole-associated microtubule severing, and plays a role in cell cycle progression. No cellular function has yet been ascribed to CNK4. The Chlamydomonas reinhardtii FA2-like subfamily belongs to the (NIMA)-related kinase (Nek) family, which includes seven different Chlamydomonas Neks (CNKs 1-6 and Fa2). This subfamily contains FA2 and CNK4. The Nek family is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270868 [Multi-domain] Cd Length: 256 Bit Score: 38.93 E-value: 8.79e-04
|
||||||||
STKc_MAPKAPK | cd14089 | Catalytic domain of the Serine/Threonine kinases, Mitogen-activated protein kinase-activated ... |
55-103 | 8.81e-04 | ||||
Catalytic domain of the Serine/Threonine kinases, Mitogen-activated protein kinase-activated protein kinases; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. This subfamily is composed of the MAPK-activated protein kinases MK2, MK3, MK5 (also called PRAK for p38-regulated/activated protein kinase), and related proteins. These proteins contain a catalytic kinase domain followed by a C-terminal autoinhibitory region that contains nuclear localization (NLS) and nuclear export (NES) signals with a p38 MAPK docking motif that overlaps the NLS. In addition, MK2 and MK3 contain an N-terminal proline-rich region that can bind to SH3 domains. MK2 and MK3 are bonafide substrates for the MAPK p38, while MK5 plays a functional role in the p38 MAPK pathway although their direct interaction has been difficult to detect. MK2 and MK3 are closely related and show, thus far, indistinguishable substrate specificity, while MK5 shows a distinct spectrum of substrates. MK2 and MK3 are mainly involved in the regulation of gene expression and they participate in diverse cellular processes such as endocytosis, cytokine production, cytoskeletal reorganization, cell migration, cell cycle control and chromatin remodeling. They are implicated in inflammation and cance and their substrates include mRNA-AU-rich-element (ARE)-binding proteins (TTP and hnRNP A0), Hsp proteins (Hsp27 and Hsp25) and RSK, among others. MK2/3 are both expressed ubiquitously but MK2 is expressed at significantly higher levels. MK5 is a ubiquitous protein that is implicated in neuronal morphogenesis, cell migration, and tumor angiogenesis. It interacts with PKA, which induces cytoplasmic translocation of MK5. Its substrates includes p53, ERK3/4, Hsp27, and cytosolic phospholipase A2 (cPLA2). The MAPKAPK subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270991 [Multi-domain] Cd Length: 263 Bit Score: 38.81 E-value: 8.81e-04
|
||||||||
STKc_PAK5 | cd06658 | Catalytic domain of the Serine/Threonine Kinase, p21-activated kinase 5; STKs catalyze the ... |
40-144 | 9.81e-04 | ||||
Catalytic domain of the Serine/Threonine Kinase, p21-activated kinase 5; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. PAK5 is mainly expressed in the brain. It is not required for viability, but together with PAK6, it is required for normal levels of locomotion and activity, and for learning and memory. PAK5 cooperates with Inca (induced in neural crest by AP2) in the regulation of cell adhesion and cytoskeletal organization in the embryo and in neural crest cells during craniofacial development. PAK5 may also play a role in controlling the signaling of Raf-1, an effector of Ras, at the mitochondria. PAK5 belongs to the group II PAKs, which contain a PBD (p21-binding domain) and a C-terminal catalytic domain, but do not harbor an AID (autoinhibitory domain) or SH3 binding sites. PAKs are Rho family GTPase-regulated kinases that serve as important mediators in the function of Cdc42 (cell division cycle 42) and Rac. The PAK subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 132989 [Multi-domain] Cd Length: 292 Bit Score: 38.87 E-value: 9.81e-04
|
||||||||
STKc_Nek4 | cd08223 | Catalytic domain of the Serine/Threonine Kinase, Never In Mitosis gene A (NIMA)-related kinase ... |
58-142 | 1.04e-03 | ||||
Catalytic domain of the Serine/Threonine Kinase, Never In Mitosis gene A (NIMA)-related kinase 4; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. Nek4 is highly abundant in the testis. Its specific function is unknown. Neks are involved in the regulation of downstream processes following the activation of Cdc2, and many of their functions are cell cycle-related. They play critical roles in microtubule dynamics during ciliogenesis and mitosis. Nek4 is one in a family of 11 different Neks (Nek1-11). The Nek family is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270862 [Multi-domain] Cd Length: 257 Bit Score: 38.57 E-value: 1.04e-03
|
||||||||
STKc_MEKK2 | cd06652 | Catalytic domain of the Serine/Threonine Kinase, Mitogen-Activated Protein (MAP)/Extracellular ... |
12-142 | 1.15e-03 | ||||
Catalytic domain of the Serine/Threonine Kinase, Mitogen-Activated Protein (MAP)/Extracellular signal-Regulated Kinase (ERK) Kinase Kinase 2; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. MEKK2 is a MAPK kinase kinase (MAPKKK or MKKK), that phosphorylates and activates the MAPK kinase MEK5 (or MKK5), which in turn phosphorylates and activates ERK5. The ERK5 cascade plays roles in promoting cell proliferation, differentiation, neuronal survival, and neuroprotection. MEKK2 also activates ERK1/2, c-Jun N-terminal kinase (JNK) and p38 through their respective MAPKKs MEK1/2, JNK-activating kinase 2 (JNKK2), and MKK3/6. MEKK2 plays roles in T cell receptor signaling, immune synapse formation, cytokine gene expression, as well as in EGF and FGF receptor signaling. The MEKK2 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270818 [Multi-domain] Cd Length: 264 Bit Score: 38.87 E-value: 1.15e-03
|
||||||||
STKc_DCKL | cd14095 | Catalytic domain of the Serine/Threonine Kinase, Doublecortin-like kinase (also called ... |
56-103 | 1.26e-03 | ||||
Catalytic domain of the Serine/Threonine Kinase, Doublecortin-like kinase (also called Doublecortin-like and CAM kinase-like); STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. DCKL (or DCAMKL) proteins belong to the doublecortin (DCX) family of proteins which are involved in neuronal migration, neurogenesis, and eye receptor development, among others. Family members typically contain tandem doublecortin (DCX) domains at the N-terminus; DCX domains can bind microtubules and serve as protein-interaction platforms. In addition, DCKL proteins contain a C-terminal kinase domain with similarity to CAMKs. They are involved in the regulation of cAMP signaling. Vertebrates contain three DCKL proteins (DCKL1-3); DCKL1 and 2 also contain a serine, threonine, and proline rich domain (SP), while DCKL3 contains only a single DCX domain instead of tandem domains. The DCKL subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270997 [Multi-domain] Cd Length: 258 Bit Score: 38.46 E-value: 1.26e-03
|
||||||||
STKc_ULK2 | cd14201 | Catalytic domain of the Serine/Threonine kinase, Unc-51-like kinase 2; STKs catalyze the ... |
56-142 | 1.32e-03 | ||||
Catalytic domain of the Serine/Threonine kinase, Unc-51-like kinase 2; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. The ATG1/ULK complex is conserved from yeast to humans and it plays a critical role in the initiation of autophagy, the intracellular system that leads to the lysosomal degradation of cellular components and their recycling into basic metabolic units. ULK2 is ubiquitously expressed and is essential in autophagy induction. It displays partially redundant functions with ULK1 and is able to compensate for the loss of ULK1 in non-selective autophagy. It also displays neuron-specific functions and is important in axon development. The ULK2 subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 271103 [Multi-domain] Cd Length: 271 Bit Score: 38.45 E-value: 1.32e-03
|
||||||||
STKc_EIF2AK4_GCN2_rpt2 | cd14046 | Catalytic domain, repeat 2, of the Serine/Threonine kinase, eukaryotic translation Initiation ... |
34-142 | 1.32e-03 | ||||
Catalytic domain, repeat 2, of the Serine/Threonine kinase, eukaryotic translation Initiation Factor 2-Alpha Kinase 4 or General Control Non-derepressible-2; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. GCN2 (or EIF2AK4) is activated by amino acid or serum starvation and UV irradiation. It induces GCN4, a transcriptional activator of amino acid biosynthetic genes, leading to increased production of amino acids under amino acid-deficient conditions. In serum-starved cells, GCN2 activation induces translation of the stress-responsive transcription factor ATF4, while under UV stress, GCN2 triggers transcriptional rescue via NF-kB signaling. GCN2 contains an N-terminal RWD, a degenerate kinase-like (repeat 1), the catalytic kinase (repeat 2), a histidyl-tRNA synthetase (HisRS)-like, and a C-terminal ribosome-binding and dimerization (RB/DD) domains. Its kinase domain is activated via conformational changes as a result of the binding of uncharged tRNA to the HisRS-like domain. EIF2AKs phosphorylate the alpha subunit of eIF-2, resulting in the overall downregulation of protein synthesis. The GCN2 subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270948 [Multi-domain] Cd Length: 278 Bit Score: 38.50 E-value: 1.32e-03
|
||||||||
STKc_MAPKAPK3 | cd14172 | Catalytic domain of the Serine/Threonine kinase, Mitogen-activated protein kinase-activated ... |
51-142 | 1.32e-03 | ||||
Catalytic domain of the Serine/Threonine kinase, Mitogen-activated protein kinase-activated protein kinase 3; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. MAPK-activated protein kinase 3 (MAPKAP3 or MK3) contains an N-terminal proline-rich region that can bind to SH3 domains, a catalytic kinase domain followed by a C-terminal autoinhibitory region that contains nuclear localization (NLS) and nuclear export (NES) signals with a p38 MAPK docking motif that overlaps the NLS. MK3 is a bonafide substrate for the MAPK p38. It is closely related to MK2 and thus far, MK2/3 show indistinguishable substrate specificity. They are mainly involved in the regulation of gene expression and they participate in diverse cellular processes such as endocytosis, cytokine production, cytoskeletal reorganization, cell migration, cell cycle control and chromatin remodeling. They are implicated in inflammation and cance and their substrates include mRNA-AU-rich-element (ARE)-binding proteins (TTP and hnRNP A0), Hsp proteins (Hsp27 and Hsp25) and RSK, among others. MK2/3 are both expressed ubiquitously but MK2 is expressed at significantly higher levels. MK3 activity is only significant when MK2 is absent. The MK3 subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 271074 [Multi-domain] Cd Length: 267 Bit Score: 38.43 E-value: 1.32e-03
|
||||||||
STKc_IKK_beta | cd14038 | Catalytic domain of the Serine/Threonine kinase, Inhibitor of Nuclear Factor-KappaB Kinase ... |
47-145 | 1.35e-03 | ||||
Catalytic domain of the Serine/Threonine kinase, Inhibitor of Nuclear Factor-KappaB Kinase (IKK) beta; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. IKKbeta is involved in the classical pathway of regulating Nuclear Factor-KappaB (NF-kB) proteins, a family of transcription factors which are critical in many cellular functions including inflammatory responses, immune development, cell survival, and cell proliferation, among others. The classical pathway regulates the majority of genes activated by NF-kB including those encoding cytokines, chemokines, leukocyte adhesion molecules, and anti-apoptotic factors. It involves NEMO (NF-kB Essential MOdulator)- and IKKbeta-dependent phosphorylation and degradation of the Inhibitor of NF-kB (IkB), which liberates NF-kB dimers (typified by the p50-p65 heterodimer) from an inactive IkB/dimeric NF-kB complex, enabling them to migrate to the nucleus where they regulate gene transcription. The IKKbeta subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270940 [Multi-domain] Cd Length: 290 Bit Score: 38.40 E-value: 1.35e-03
|
||||||||
STKc_EIF2AK3_PERK | cd14048 | Catalytic domain of the Serine/Threonine kinase, eukaryotic translation Initiation Factor ... |
34-82 | 1.44e-03 | ||||
Catalytic domain of the Serine/Threonine kinase, eukaryotic translation Initiation Factor 2-Alpha Kinase 3 or PKR-like Endoplasmic Reticulum Kinase; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. PERK (or EIF2AK3) is a type-I ER transmembrane protein containing a luminal domain bound with the chaperone BiP under unstressed conditions and a cytoplasmic catalytic kinase domain. In response to the accumulation of misfolded or unfolded proteins in the ER, PERK is activated through the release of BiP, allowing it to dimerize and autophosphorylate. It functions as the central regulator of translational control during the Unfolded Protein Response (UPR) pathway. In addition to the eIF-2 alpha subunit, PERK also phosphorylates Nrf2, a leucine zipper transcription factor which regulates cellular redox status and promotes cell survival during the UPR. EIF2AKs phosphorylate the alpha subunit of eIF-2, resulting in the downregulation of protein synthesis. The PERK subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270950 [Multi-domain] Cd Length: 281 Bit Score: 38.32 E-value: 1.44e-03
|
||||||||
STKc_JNK3 | cd07874 | Catalytic domain of the Serine/Threonine Kinase, c-Jun N-terminal Kinase 3; STKs catalyze the ... |
49-178 | 1.60e-03 | ||||
Catalytic domain of the Serine/Threonine Kinase, c-Jun N-terminal Kinase 3; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. JNK3 is expressed primarily in the brain, and to a lesser extent in the heart and testis. Mice deficient in JNK3 are protected against kainic acid-induced seizures, stroke, sciatic axotomy neural death, and neuronal death due to NGF deprivation, oxidative stress, or exposure to beta-amyloid peptide. This suggests that JNK3 may play roles in the pathogenesis of these diseases. JNKs are mitogen-activated protein kinases (MAPKs) that are involved in many stress-activated responses including those during inflammation, neurodegeneration, apoptosis, and persistent pain sensitization, among others. The JNK3 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 143379 [Multi-domain] Cd Length: 355 Bit Score: 38.53 E-value: 1.60e-03
|
||||||||
STKc_CAMKK | cd14118 | Catalytic domain of the Serine/Threonine kinase, Calmodulin Dependent Protein Kinase Kinase; ... |
58-104 | 1.70e-03 | ||||
Catalytic domain of the Serine/Threonine kinase, Calmodulin Dependent Protein Kinase Kinase; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. CaMKKs are upstream kinases of the CaM kinase cascade that phosphorylate and activate CaMKI and CamKIV. They may also phosphorylate other substrates including PKB and AMP-activated protein kinase (AMPK). Vertebrates contain two CaMKKs, CaMKK1 (or alpha) and CaMKK2 (or beta). CaMKK1 is involved in the regulation of glucose uptake in skeletal muscles. CaMKK2 is involved in regulating energy balance, glucose metabolism, adiposity, hematopoiesis, inflammation, and cancer. The CaMKK subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 271020 [Multi-domain] Cd Length: 275 Bit Score: 38.11 E-value: 1.70e-03
|
||||||||
STKc_PFTAIRE2 | cd07870 | Catalytic domain of the Serine/Threonine Kinase, PFTAIRE-2 kinase; STKs catalyze the transfer ... |
62-142 | 1.72e-03 | ||||
Catalytic domain of the Serine/Threonine Kinase, PFTAIRE-2 kinase; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. PFTAIRE-2 is also referred to as ALS2CR7 (amyotrophic lateral sclerosis 2 (juvenile) chromosome region candidate 7). It may be associated with amyotrophic lateral sclerosis 2 (ALS2), an autosomal recessive form of juvenile ALS. The function of PFTAIRE-2 is not yet known. It shares sequence similarity with Cyclin-Dependent Kinases (CDKs), which belong to a large family of STKs that are regulated by their cognate cyclins. Together, CDKs and cyclins are involved in the control of cell-cycle progression, transcription, and neuronal function. The PFTAIRE-2 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270852 [Multi-domain] Cd Length: 286 Bit Score: 38.40 E-value: 1.72e-03
|
||||||||
STKc_Bck1_like | cd06629 | Catalytic domain of the Serine/Threonine Kinases, fungal Bck1-like Mitogen-Activated Protein ... |
54-83 | 1.80e-03 | ||||
Catalytic domain of the Serine/Threonine Kinases, fungal Bck1-like Mitogen-Activated Protein Kinase Kinase Kinases; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. Members of this group include the MAPKKKs Saccharomyces cerevisiae Bck1 and Schizosaccharomyces pombe Mkh1, and related proteins. Budding yeast Bck1 is part of the cell integrity MAPK pathway, which is activated by stresses and aggressions to the cell wall. The MAPKKK Bck1, MAPKKs Mkk1 and Mkk2, and the MAPK Slt2 make up the cascade that is important in the maintenance of cell wall homeostasis. Fission yeast Mkh1 is involved in MAPK cascades regulating cell morphology, cell wall integrity, salt resistance, and filamentous growth in response to stress. MAPKKKs phosphorylate and activate MAPK kinases, which in turn phosphorylate and activate MAPKs during signaling cascades that are important in mediating cellular responses to extracellular signals. The Bck1 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270799 [Multi-domain] Cd Length: 270 Bit Score: 38.13 E-value: 1.80e-03
|
||||||||
STKc_ULK1 | cd14202 | Catalytic domain of the Serine/Threonine kinase, Unc-51-like kinase 1; STKs catalyze the ... |
56-142 | 1.80e-03 | ||||
Catalytic domain of the Serine/Threonine kinase, Unc-51-like kinase 1; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. The ATG1/ULK complex is conserved from yeast to humans and it plays a critical role in the initiation of autophagy, the intracellular system that leads to the lysosomal degradation of cellular components and their recycling into basic metabolic units. ULK1 is required for efficient amino acid starvation-induced autophagy and mitochondrial clearance. It associates with three autophagy-related proteins (Atg13, FIP200 amd Atg101) to form the ULK1 complex. All fours proteins are essential for autophagosome formation. ULK1 is regulated by both mammalian target-of rapamycin complex 1 (mTORC1) and AMP-activated protein kinase (AMPK). mTORC1 negatively regulates the ULK1 complex in a nutrient-dependent manner while AMPK stimulates autophagy by inhibiting mTORC1. ULK1 also plays neuron-specific roles and is involved in non-clathrin-coated endocytosis in growth cones, filopodia extension, neurite extension, and axon branching. The ULK1 subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 271104 [Multi-domain] Cd Length: 267 Bit Score: 38.07 E-value: 1.80e-03
|
||||||||
STKc_IRAK1 | cd14159 | Catalytic domain of the Serine/Threonine kinase, Interleukin-1 Receptor Associated Kinase 1; ... |
53-142 | 1.92e-03 | ||||
Catalytic domain of the Serine/Threonine kinase, Interleukin-1 Receptor Associated Kinase 1; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. IRAKs are involved in Toll-like receptor (TLR) and interleukin-1 (IL-1) signalling pathways, and are thus critical in regulating innate immune responses and inflammation. IRAKs contain an N-terminal Death domain (DD), a proST region (rich in serines, prolines, and threonines), a central kinase domain, and a C-terminal domain; IRAK-4 lacks the C-terminal domain. Vertebrates contain four IRAKs (IRAK-1, -2, -3 (or -M), and -4) that display distinct functions and patterns of expression and subcellular distribution, and can differentially mediate TLR signaling. IRAK1 plays a role in the activation of IRF3/7, STAT, and NFkB. It mediates IL-6 and IFN-gamma responses following IL-1 and IL-18 stimulation, respectively. It also plays an essential role in IFN-alpha induction downstream of TLR7 and TLR9. The IRAK1 subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 271061 [Multi-domain] Cd Length: 296 Bit Score: 38.27 E-value: 1.92e-03
|
||||||||
PHA03209 | PHA03209 | serine/threonine kinase US3; Provisional |
55-142 | 2.08e-03 | ||||
serine/threonine kinase US3; Provisional Pssm-ID: 177557 [Multi-domain] Cd Length: 357 Bit Score: 37.93 E-value: 2.08e-03
|
||||||||
STKc_MLK3 | cd14147 | Catalytic domain of the Serine/Threonine Kinase, Mixed Lineage Kinase 3; STKs catalyze the ... |
53-144 | 2.08e-03 | ||||
Catalytic domain of the Serine/Threonine Kinase, Mixed Lineage Kinase 3; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. MLK3 is a mitogen-activated protein kinase kinase kinases (MAP3K, MKKK, MAPKKK), which phosphorylates and activates MAPK kinases (MAPKKs or MKKs or MAP2Ks), which in turn phosphorylate and activate MAPKs during signaling cascades that are important in mediating cellular responses to extracellular signals. MLK3 activates multiple MAPK pathways and plays a role in apoptosis, proliferation, migration, and differentiation, depending on the cellular context. It is highly expressed in breast cancer cells and its signaling through c-Jun N-terminal kinase has been implicated in the migration, invasion, and malignancy of cancer cells. MLK3 also functions as a negative regulator of Inhibitor of Nuclear Factor-KappaB Kinase (IKK) and consequently, it also impacts inflammation and immunity. Mammals have four MLKs, mostly conserved in vertebrates, which contain an SH3 domain, a catalytic kinase domain, a leucine zipper, a proline-rich region, and a CRIB domain that mediates binding to GTP-bound Cdc42 and Rac. MLKs play roles in immunity and inflammation, as well as in cell death, proliferation, and cell cycle regulation.The MLK3 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 271049 [Multi-domain] Cd Length: 267 Bit Score: 38.09 E-value: 2.08e-03
|
||||||||
PK_eIF2AK_GCN2_rpt1 | cd14012 | Pseudokinase domain, repeat 1, of eukaryotic translation Initiation Factor 2-Alpha Kinase 4 or ... |
61-145 | 2.13e-03 | ||||
Pseudokinase domain, repeat 1, of eukaryotic translation Initiation Factor 2-Alpha Kinase 4 or General Control Non-derepressible-2; The pseudokinase domain shows similarity to protein kinases but lacks crucial residues for catalytic activity. EIF2AKs phosphorylate the alpha subunit of eIF-2, resulting in the overall downregulation of protein synthesis. eIF-2 phosphorylation is induced in response to cellular stresses including virus infection, heat shock, nutrient deficiency, and the accummulation of unfolded proteins, among others. There are four distinct kinases that phosphorylate eIF-2 and control protein synthesis under different stress conditions: GCN2, protein kinase regulated by RNA (PKR), heme-regulated inhibitor kinase (HRI), and PKR-like endoplasmic reticulum kinase (PERK). GCN2 is activated by amino acid or serum starvation and UV irradiation. It induces GCN4, a transcriptional activator of amino acid biosynthetic genes, leading to increased production of amino acids under amino acid-deficient conditions. In serum-starved cells, GCN2 activation induces translation of the stress-responsive transcription factor ATF4, while under UV stress, GCN2 triggers transcriptional rescue via NF-kappaB signaling. GCN2 contains an N-terminal RWD, a degenerate kinase-like (repeat 1), the catalytic kinase (repeat 2), a histidyl-tRNA synthetase (HisRS)-like, and a C-terminal ribosome-binding and dimerization (RB/DD) domains. The degenerate pseudokinase domain of GCN2 may function as a regulatory domain. The GCN2 subfamily is part of a larger superfamily that includes the catalytic domains of serine/threonine kinases, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270914 [Multi-domain] Cd Length: 254 Bit Score: 37.72 E-value: 2.13e-03
|
||||||||
STKc_CDC2L1 | cd07843 | Catalytic domain of the Serine/Threonine Kinase, Cell Division Cycle 2-like 1; STKs catalyze ... |
17-103 | 2.14e-03 | ||||
Catalytic domain of the Serine/Threonine Kinase, Cell Division Cycle 2-like 1; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. CDC2L1, also called PITSLRE, exists in different isoforms which are named using the alias CDK11(p). The CDC2L1 gene produces two protein products, CDK11(p110) and CDK11(p58). CDC2L1 is also represented by the caspase-processed CDK11(p46). CDK11(p110), the major isoform, associates with cyclin L and is expressed throughout the cell cycle. It is involved in RNA processing and the regulation of transcription. CDK11(p58) associates with cyclin D3 and is expressed during the G2/M phase of the cell cycle. It plays roles in spindle morphogenesis, centrosome maturation, sister chromatid cohesion, and the completion of mitosis. CDK11(p46) is formed from the larger isoforms by caspases during TNFalpha- and Fas-induced apoptosis. It functions as a downstream effector kinase in apoptotic signaling pathways and interacts with eukaryotic initiation factor 3f (eIF3f), p21-activated kinase (PAK1), and Ran-binding protein (RanBPM). CDKs belong to a large family of STKs that are regulated by their cognate cyclins. Together, they are involved in the control of cell-cycle progression, transcription, and neuronal function. The CDC2L1 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 173741 [Multi-domain] Cd Length: 293 Bit Score: 37.97 E-value: 2.14e-03
|
||||||||
STKc_MLCK2 | cd14190 | Catalytic domain of the Serine/Threonine Kinase, Myosin Light Chain Kinase 2; STKs catalyze ... |
58-142 | 2.16e-03 | ||||
Catalytic domain of the Serine/Threonine Kinase, Myosin Light Chain Kinase 2; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. MLCK2 (or MYLK2) phosphorylates myosin regulatory light chain and controls the contraction of skeletal muscles. MLCK2 contains a single kinase domain near the C-terminus followed by a regulatory segment containing an autoinhibitory Ca2+/calmodulin binding site. The MLCK2 subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 271092 [Multi-domain] Cd Length: 261 Bit Score: 37.98 E-value: 2.16e-03
|
||||||||
STKc_CDK1_euk | cd07861 | Catalytic domain of the Serine/Threonine Kinase, Cyclin-Dependent protein Kinase 1 from higher ... |
13-142 | 2.24e-03 | ||||
Catalytic domain of the Serine/Threonine Kinase, Cyclin-Dependent protein Kinase 1 from higher eukaryotes; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. CDK1 is also called Cell division control protein 2 (Cdc2) or p34 protein kinase, and is regulated by cyclins A, B, and E. The CDK1/cyclin A complex controls G2 phase entry and progression. CDK1/cyclin A2 has also been implicated as an important regulator of S phase events. The CDK1/cyclin B complex is critical for G2 to M phase transition. It induces mitosis by activating nuclear enzymes that regulate chromatin condensation, nuclear membrane degradation, mitosis-specific microtubule and cytoskeletal reorganization. CDK1 also associates with cyclin E and plays a role in the entry into S phase. CDK1 transcription is stable throughout the cell cycle but is modulated in some pathological conditions. It may play a role in regulating apoptosis under these conditions. In breast cancer cells, HER2 can mediate apoptosis by inactivating CDK1. Activation of CDK1 may contribute to HIV-1 induced apoptosis as well as neuronal apoptosis in neurodegenerative diseases. CDKs belong to a large family of STKs that are regulated by their cognate cyclins. Together, they are involved in the control of cell-cycle progression, transcription, and neuronal function. The CDK1 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270845 [Multi-domain] Cd Length: 285 Bit Score: 37.78 E-value: 2.24e-03
|
||||||||
STKc_JNK1 | cd07875 | Catalytic domain of the Serine/Threonine Kinase, c-Jun N-terminal Kinase 1; STKs catalyze the ... |
49-151 | 2.30e-03 | ||||
Catalytic domain of the Serine/Threonine Kinase, c-Jun N-terminal Kinase 1; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. JNK1 is expressed in every cell and tissue type. It specifically binds with JAMP (JNK1-associated membrane protein), which regulates the duration of JNK1 activity in response to stimuli. Specific JNK1 substrates include Itch and SG10, which are implicated in Th2 responses and airway inflammation, and microtubule dynamics and axodendritic length, respectively. Mice deficient in JNK1 are protected against arthritis, obesity, type 2 diabetes, cardiac cell death, and non-alcoholic liver disease, suggesting that JNK1 may play roles in the pathogenesis of these diseases. Initially, it was thought that JNK1 and JNK2 were functionally redundant as mice deficient in either genes could survive but disruption of both genes resulted in lethality. However, recent studies have shown that JNK1 and JNK2 perform distinct functions through specific binding partners and substrates. JNKs are mitogen-activated protein kinases that are involved in many stress-activated responses including those during inflammation, neurodegeneration, apoptosis, and persistent pain sensitization, among others. The JNK1 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 143380 [Multi-domain] Cd Length: 364 Bit Score: 38.10 E-value: 2.30e-03
|
||||||||
STKc_TGFbR-like | cd13998 | Catalytic domain of Transforming Growth Factor beta Receptor-like Serine/Threonine Kinases; ... |
53-176 | 2.70e-03 | ||||
Catalytic domain of Transforming Growth Factor beta Receptor-like Serine/Threonine Kinases; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. This subfamily is composed of receptors for the TGFbeta family of secreted signaling molecules including TGFbeta, bone morphogenetic proteins (BMPs), activins, growth and differentiation factors (GDFs), and anti-Mullerian hormone, among others. These receptors contain an extracellular domain that binds ligands, a single transmembrane (TM) region, and a cytoplasmic catalytic kinase domain. There are two types of TGFbeta receptors included in this subfamily, I and II, that play different roles in signaling. For signaling to occur, the ligand first binds to the high-affinity type II receptor, which is followed by the recruitment of the low-affinity type I receptor to the complex and its activation through trans-phosphorylation by the type II receptor. The active type I receptor kinase starts intracellular signaling to the nucleus by phosphorylating SMAD proteins. Type I receptors contain an additional domain located between the TM and kinase domains called the the GS domain, which contains the activating phosphorylation site and confers preference for specific SMAD proteins. Different ligands interact with various combinations of types I and II receptors to elicit a specific signaling pathway. Activins primarily signal through combinations of ACVR1b/ALK7 and ACVR2a/b; myostatin and GDF11 through TGFbR1/ALK4 and ACVR2a/b; BMPs through ACVR1/ALK1 and BMPR2; and TGFbeta through TGFbR1 and TGFbR2. The TGFbR-like subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270900 [Multi-domain] Cd Length: 289 Bit Score: 37.80 E-value: 2.70e-03
|
||||||||
STKc_cPKC_alpha | cd05615 | Catalytic domain of the Serine/Threonine Kinase, Classical Protein Kinase C alpha; STKs ... |
58-144 | 2.74e-03 | ||||
Catalytic domain of the Serine/Threonine Kinase, Classical Protein Kinase C alpha; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. PKC-alpha is expressed in many tissues and is associated with cell proliferation, apoptosis, and cell motility. It plays a role in the signaling of the growth factors PDGF, VEGF, EGF, and FGF. Abnormal levels of PKC-alpha have been detected in many transformed cell lines and several human tumors. In addition, PKC-alpha is required for HER2 dependent breast cancer invasion. PKCs are classified into three groups (classical, atypical, and novel) depending on their mode of activation and the structural characteristics of their regulatory domain. PKCs undergo three phosphorylations in order to take mature forms. In addition, cPKCs depend on calcium, DAG (1,2-diacylglycerol), and in most cases, phosphatidylserine (PS) for activation. The cPKC-alpha subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270766 [Multi-domain] Cd Length: 341 Bit Score: 37.67 E-value: 2.74e-03
|
||||||||
STKc_aPKC | cd05588 | Catalytic domain of the Serine/Threonine Kinase, Atypical Protein Kinase C; STKs catalyze the ... |
58-160 | 2.99e-03 | ||||
Catalytic domain of the Serine/Threonine Kinase, Atypical Protein Kinase C; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. aPKCs only require phosphatidylserine (PS) for activation. They contain a C2-like region, instead of a calcium-binding (C2) region found in classical PKCs, in their regulatory domain. There are two aPKC isoforms, zeta and iota. aPKCs are involved in many cellular functions including proliferation, migration, apoptosis, polarity maintenance and cytoskeletal regulation. They also play a critical role in the regulation of glucose metabolism and in the pathogenesis of type 2 diabetes. PKCs are classified into three groups (classical, atypical, and novel) depending on their mode of activation and the structural characteristics of their regulatory domain. The aPKC subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270740 [Multi-domain] Cd Length: 328 Bit Score: 37.40 E-value: 2.99e-03
|
||||||||
STKc_PLK | cd14099 | Catalytic domain of the Serine/Threonine Kinases, Polo-like kinases; STKs catalyze the ... |
56-142 | 3.28e-03 | ||||
Catalytic domain of the Serine/Threonine Kinases, Polo-like kinases; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. PLKs play important roles in cell cycle progression and in DNA damage responses. They regulate mitotic entry, mitotic exit, and cytokinesis. In general PLKs contain an N-terminal catalytic kinase domain and a C-terminal regulatory polo box domain (PBD), which is comprised by two bipartite polo-box motifs (or polo boxes) and is involved in protein interactions. PLKs derive their names from homology to polo, a kinase first identified in Drosophila. There are five mammalian PLKs (PLK1-5) from distinct genes. There is good evidence that PLK1 may function as an oncogene while PLK2-5 have tumor suppressive properties. PLK1 functions as a positive regulator of mitosis, meiosis, and cytokinesis. PLK2 functions in G1 progression, S-phase arrest, and centriole duplication. PLK3 regulates angiogenesis and responses to DNA damage. PLK4 is required for late mitotic progression, cell survival, and embryonic development. PLK5 was first identified as a pseudogene containing a stop codon within the kinase domain, however, both murine and human genes encode expressed proteins. PLK5 functions in cell cycle arrest. Pssm-ID: 271001 [Multi-domain] Cd Length: 258 Bit Score: 37.15 E-value: 3.28e-03
|
||||||||
STKc_NAK_like | cd14037 | Catalytic domain of Numb-Associated Kinase (NAK)-like Serine/Threonine kinases; STKs catalyze ... |
51-144 | 3.35e-03 | ||||
Catalytic domain of Numb-Associated Kinase (NAK)-like Serine/Threonine kinases; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. This subfamily is composed of Drosophila melanogaster NAK, human BMP-2-inducible protein kinase (BMP2K or BIKe) and similar vertebrate proteins, as well as the Saccharomyces cerevisiae proteins Prk1, Actin-regulating kinase 1 (Ark1), and Akl1. NAK was the first characterized member of this subfamily. It plays a role in asymmetric cell division through its association with Numb. It also regulates the localization of Dlg, a protein essential for septate junction formation. BMP2K contains a nuclear localization signal and a kinase domain that is capable of phosphorylating itself and myelin basic protein. The expression of the BMP2K gene is increase during BMP-2-induced osteoblast differentiation. It may function to control the rate of differentiation. Prk1, Ark1, and Akl1 comprise a subfamily of yeast proteins that are important regulators of the actin cytoskeleton and endocytosis. They share an N-terminal kinase domain but no significant homology in other regions of their sequences. The NAK-like subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270939 [Multi-domain] Cd Length: 277 Bit Score: 37.26 E-value: 3.35e-03
|
||||||||
STKc_SNT7_plant | cd14013 | Catalytic domain of the Serine/Threonine kinase, Plant SNT7; STKs catalyze the transfer of the ... |
55-103 | 3.37e-03 | ||||
Catalytic domain of the Serine/Threonine kinase, Plant SNT7; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. SNT7 is a plant thylakoid-associated kinase that is essential in short- and long-term acclimation responses to cope with various light conditions in order to maintain photosynthetic redox poise for optimal photosynthetic performance. Short-term response involves state transitions over periods of minutes while the long-term response (LTR) occurs over hours to days and involves changing the relative amounts of photosystems I and II. SNT7 acts as a redox sensor and a signal transducer for both responses, which are triggered by the redox state of the plastoquinone (PQ) pool. It is positioned at the top of a phosphorylation cascade that induces state transitions by phosphorylating light-harvesting complex II (LHCII), and triggers the LTR through the phosphorylation of chloroplast proteins. The SNT7 subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270915 [Multi-domain] Cd Length: 318 Bit Score: 37.42 E-value: 3.37e-03
|
||||||||
STKc_MEKK3_like | cd06625 | Catalytic domain of Mitogen-Activated Protein (MAP)/Extracellular signal-Regulated Kinase (ERK) ... |
43-82 | 3.42e-03 | ||||
Catalytic domain of Mitogen-Activated Protein (MAP)/Extracellular signal-Regulated Kinase (ERK) Kinase Kinase 3-like Serine/Threonine Kinases; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. This subfamily is composed of MEKK3, MEKK2, and related proteins; all contain an N-terminal PB1 domain, which mediates oligomerization, and a C-terminal catalytic domain. MEKK2 and MEKK3 are MAPK kinase kinases (MAPKKKs or MKKK) that activate MEK5 (also called MKK5), which activates ERK5. The ERK5 cascade plays roles in promoting cell proliferation, differentiation, neuronal survival, and neuroprotection. MEKK3 plays an essential role in embryonic angiogenesis and early heart development. MEKK2 and MEKK3 can also activate the MAPKs, c-Jun N-terminal kinase (JNK) and p38, through their respective MAPKKs. The MEKK3-like subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270795 [Multi-domain] Cd Length: 260 Bit Score: 37.33 E-value: 3.42e-03
|
||||||||
STKc_MAPKAPK2 | cd14170 | Catalytic domain of the Serine/Threonine kinase, Mitogen-activated protein kinase-activated ... |
51-144 | 3.43e-03 | ||||
Catalytic domain of the Serine/Threonine kinase, Mitogen-activated protein kinase-activated protein kinase 2; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. MAPK-activated protein kinase 2 (MAPKAP2 or MK2) contains an N-terminal proline-rich region that can bind to SH3 domains, a catalytic kinase domain followed by a C-terminal autoinhibitory region that contains nuclear localization (NLS) and nuclear export (NES) signals with a p38 MAPK docking motif that overlaps the NLS. MK2 is a bonafide substrate for the MAPK p38. It is closely related to MK3 and thus far, MK2/3 show indistinguishable substrate specificity. They are mainly involved in the regulation of gene expression and they participate in diverse cellular processes such as endocytosis, cytokine production, cytoskeletal reorganization, cell migration, cell cycle control and chromatin remodeling. They are implicated in inflammation and cance and their substrates include mRNA-AU-rich-element (ARE)-binding proteins (TTP and hnRNP A0), Hsp proteins (Hsp27 and Hsp25) and RSK, among others. MK2/3 are both expressed ubiquitously but MK2 is expressed at significantly higher levels. The MK2 subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 271072 [Multi-domain] Cd Length: 303 Bit Score: 37.32 E-value: 3.43e-03
|
||||||||
STKc_NUAK | cd14073 | Catalytic domain of the Serine/Threonine Kinase, novel (nua) kinase family NUAK; STKs catalyze ... |
30-101 | 3.55e-03 | ||||
Catalytic domain of the Serine/Threonine Kinase, novel (nua) kinase family NUAK; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. NUAK proteins are classified as AMP-activated protein kinase (AMPK)-related kinases, which like AMPK are activated by the major tumor suppressor LKB1. Vertebrates contain two NUAK proteins, called NUAK1 and NUAK2. NUAK1, also called ARK5 (AMPK-related protein kinase 5), regulates cell proliferation and displays tumor suppression through direct interaction and phosphorylation of p53. It is also involved in cell senescence and motility. High NUAK1 expression is associated with invasiveness of nonsmall cell lung cancer (NSCLC) and breast cancer cells. NUAK2, also called SNARK (Sucrose, non-fermenting 1/AMP-activated protein kinase-related kinase), is involved in energy metabolism. It is activated by hyperosmotic stress, DNA damage, and nutrients such as glucose and glutamine. NUAK2-knockout mice develop obesity, altered serum lipid profiles, hyperinsulinaemia, hyperglycaemia, and impaired glucose tolerance. The NUAK subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270975 [Multi-domain] Cd Length: 254 Bit Score: 36.98 E-value: 3.55e-03
|
||||||||
STKc_CaMKIV | cd14085 | Catalytic domain of the Serine/Threonine kinase, Calcium/calmodulin-dependent protein kinase ... |
58-145 | 3.63e-03 | ||||
Catalytic domain of the Serine/Threonine kinase, Calcium/calmodulin-dependent protein kinase Type IV; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. CaMKs are multifunctional calcium and calmodulin (CaM) stimulated STKs involved in cell cycle regulation. There are several types of CaMKs including CaMKI, CaMKII, and CaMKIV. CaMKs contain an N-terminal catalytic domain and a C-terminal regulatory domain that harbors a CaM binding site. CaMKIV is found predominantly in neurons and immune cells. It is activated by the binding of calcium/CaM and phosphorylation by CaMKK (alpha or beta). The CaMKK-CaMKIV cascade participates in regulating several transcription factors like CREB, MEF2, and retinoid orphan receptors. It also is implicated in T-cell development and signaling, cytokine secretion, and signaling through Toll-like receptors, and is thus, pivotal in immune response and inflammation. The CaMKIV subfamily is part of a larger superfamily that includes the catalytic domains of other protein kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270987 [Multi-domain] Cd Length: 294 Bit Score: 37.11 E-value: 3.63e-03
|
||||||||
PTK_Jak_rpt1 | cd05037 | Pseudokinase (repeat 1) domain of the Protein Tyrosine Kinases, Janus kinases; The Jak ... |
55-142 | 3.67e-03 | ||||
Pseudokinase (repeat 1) domain of the Protein Tyrosine Kinases, Janus kinases; The Jak subfamily is composed of Jak1, Jak2, Jak3, TYK2, and similar proteins. They are cytoplasmic (or nonreceptor) PTKs containing an N-terminal FERM domain, followed by a Src homology 2 (SH2) domain, a pseudokinase domain, and a C-terminal catalytic tyr kinase domain. The pseudokinase domain shows similarity to tyr kinases but lacks crucial residues for catalytic activity and ATP binding. It modulates the kinase activity of the C-terminal catalytic domain. In the case of Jak2, the presumed pseudokinase (repeat 1) domain exhibits dual-specificity kinase activity, phosphorylating two negative regulatory sites in Jak2: Ser523 and Tyr570. Most Jaks are expressed in a wide variety of tissues, except for Jak3, which is expressed only in hematopoietic cells. Jaks are crucial for cytokine receptor signaling. They are activated by autophosphorylation upon cytokine-induced receptor aggregation, and subsequently trigger downstream signaling events such as the phosphorylation of signal transducers and activators of transcription (STATs). Jaks are also involved in regulating the surface expression of some cytokine receptors. The Jak-STAT pathway is involved in many biological processes including hematopoiesis, immunoregulation, host defense, fertility, lactation, growth, and embryogenesis. The Jak subfamily is part of a larger superfamily that includes the catalytic domains of other kinases such as serine/threonine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270633 [Multi-domain] Cd Length: 259 Bit Score: 37.07 E-value: 3.67e-03
|
||||||||
STKc_MSK2_C | cd14180 | C-terminal catalytic domain of the Serine/Threonine Kinase, Mitogen and stress-activated ... |
46-142 | 3.67e-03 | ||||
C-terminal catalytic domain of the Serine/Threonine Kinase, Mitogen and stress-activated kinase 2; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. MSK2 and MSK1 play nonredundant roles in activating histone H3 kinases, which play pivotal roles in compaction of the chromatin fiber. MSK2 is the required H3 kinase in response to stress stimuli and activation of the p38 MAPK pathway. MSK2 also plays a role in the pathogenesis of psoriasis. MSKs contain an N-terminal kinase domain (NTD) from the AGC family and a C-terminal kinase domain (CTD) from the CAMK family, similar to 90 kDa ribosomal protein S6 kinases (RSKs). MSKs are activated by two major signaling cascades, the Ras-MAPK and p38 stress kinase pathways, which trigger phosphorylation in the activation loop (A-loop) of the CTD of MSK. The active CTD phosphorylates the hydrophobic motif (HM) of NTD, which facilitates the phosphorylation of the A-loop and activates the NTD, which in turn phosphorylates downstream targets. The MSK2 subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 271082 [Multi-domain] Cd Length: 309 Bit Score: 37.16 E-value: 3.67e-03
|
||||||||
STKc_MARK | cd14072 | Catalytic domain of the Serine/Threonine Kinases, MAP/microtubule affinity-regulating kinases; ... |
47-142 | 3.82e-03 | ||||
Catalytic domain of the Serine/Threonine Kinases, MAP/microtubule affinity-regulating kinases; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. MARKs, also called Partitioning-defective 1 (Par1) proteins, function as regulators of diverse cellular processes in nematodes, Drosophila, yeast, and vertebrates. They are involved in embryogenesis, epithelial cell polarization, cell signaling, and neuronal differentiation. MARKs phosphorylate tau and related microtubule-associated proteins (MAPs), and regulates microtubule-based intracellular transport. Vertebrates contain four isoforms, namely MARK1 (or Par1c), MARK2 (or Par1b), MARK3 (Par1a), and MARK4 (or MARKL1). Known substrates of MARKs include the cell cycle-regulating phosphatase Cdc25, tyrosine phosphatase PTPH1, MAPK scaffolding protein KSR1, class IIa histone deacetylases, and plakophilin 2. The MARK subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270974 [Multi-domain] Cd Length: 253 Bit Score: 37.11 E-value: 3.82e-03
|
||||||||
STKc_PIM2 | cd14101 | Catalytic domain of the Serine/Threonine kinase, Proviral Integration Moloney virus (PIM) ... |
56-102 | 3.84e-03 | ||||
Catalytic domain of the Serine/Threonine kinase, Proviral Integration Moloney virus (PIM) kinase 2; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. The PIM gene locus was discovered as a result of the cloning of retroviral intergration sites in murine Moloney leukemia virus, leading to the identification of PIM kinases. They are constitutively active STKs with a broad range of cellular targets and are overexpressed in many haematopoietic malignancies and solid cancers. Vertebrates contain three distinct PIM kinase genes (PIM1-3); each gene may result in mutliple protein isoforms. There are three PIM2 isoforms resulting from alternative translation initiation sites. PIM2 is highly expressed in leukemia and lymphomas and has been shown to promote the survival and proliferation of tumor cells. The PIM2 subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 271003 [Multi-domain] Cd Length: 257 Bit Score: 37.14 E-value: 3.84e-03
|
||||||||
STKc_SnRK2 | cd14662 | Catalytic domain of the Serine/Threonine Kinases, Sucrose nonfermenting 1-related protein ... |
61-126 | 4.09e-03 | ||||
Catalytic domain of the Serine/Threonine Kinases, Sucrose nonfermenting 1-related protein kinase subfamily 2; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. The SnRKs form three different subfamilies designated SnRK1-3. SnRK2 is represented in this cd. SnRK2s are involved in plant response to abiotic stresses and abscisic acid (ABA)-dependent plant development. The SnRK2s subfamily is in turn classed into three subgroups, all 3 of which are represented in this CD. Group 1 comprises kinases not activated by ABA, group 2 - kinases not activated or activated very weakly by ABA (depending on plant species), and group 3 - kinases strongly activated by ABA. The SnRKs belong to a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 271132 [Multi-domain] Cd Length: 257 Bit Score: 37.06 E-value: 4.09e-03
|
||||||||
STKc_STK36 | cd14002 | Catalytic domain of Serine/Threonine Kinase 36; STKs catalyze the transfer of the ... |
64-103 | 4.23e-03 | ||||
Catalytic domain of Serine/Threonine Kinase 36; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. STK36, also called Fused (or Fu) kinase, is involved in the Hedgehog signaling pathway. It is activated by the Smoothened (SMO) signal transducer, resulting in the stabilization of GLI transcription factors and the phosphorylation of SUFU to facilitate the nuclear accumulation of GLI. In Drosophila, Fused kinase is maternally required for proper segmentation during embryonic development and for the development of legs and wings during the larval stage. In mice, STK36 is not necessary for embryonic development, although mice deficient in STK36 display growth retardation postnatally. The STK36 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270904 [Multi-domain] Cd Length: 253 Bit Score: 36.85 E-value: 4.23e-03
|
||||||||
STKc_Rad53_Cds1 | cd14098 | Catalytic domain of the yeast Serine/Threonine Kinases, Rad53 and Cds1; STKs catalyze the ... |
55-144 | 4.25e-03 | ||||
Catalytic domain of the yeast Serine/Threonine Kinases, Rad53 and Cds1; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. Rad53 and Cds1 are the checkpoint kinase 2 (Chk2) homologs found in budding and fission yeast, respectively. They play a central role in the cell's response to DNA lesions to prevent genome rearrangements and maintain genome integrity. They are phosphorylated in response to DNA damage and incomplete replication, and are essential for checkpoint control. They help promote DNA repair by stalling the cell cycle prior to mitosis in the presence of DNA damage. The Rad53/Cds1 subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 271000 [Multi-domain] Cd Length: 265 Bit Score: 37.07 E-value: 4.25e-03
|
||||||||
STKc_16 | cd13986 | Catalytic domain of Serine/Threonine Kinase 16; STKs catalyze the transfer of the ... |
34-142 | 4.46e-03 | ||||
Catalytic domain of Serine/Threonine Kinase 16; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. STK16 is associated with many names including Myristylated and Palmitylated Serine/threonine Kinase 1 (MPSK1), Kinase related to cerevisiae and thaliana (Krct), and Protein Kinase expressed in day 12 fetal liver (PKL12). It is widely expressed in mammals with highest levels found in liver, testis, and kidney. It is localized in the Golgi but is translocated to the nucleus upon disorganization of the Golgi. STK16 is constitutively active and is capable of phosphorylating itself and other substrates. It may be involved in regulating stromal-epithelial interactions during mammary gland ductal morphogenesis. It may also function as a transcriptional co-activator of type-C natriuretic peptide and VEGF. The STK16 subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270888 [Multi-domain] Cd Length: 282 Bit Score: 36.89 E-value: 4.46e-03
|
||||||||
PTK_Jak1_rpt1 | cd05077 | Pseudokinase (repeat 1) domain of the Protein Tyrosine Kinase, Janus kinase 1; Jak1 is widely ... |
4-142 | 4.65e-03 | ||||
Pseudokinase (repeat 1) domain of the Protein Tyrosine Kinase, Janus kinase 1; Jak1 is widely expressed in many tissues. Many cytokines are dependent on Jak1 for signaling, including those that use the shared receptor subunits, common gamma chain (IL-2, IL-4, IL-7, IL-9, IL-15, IL-21) and gp130 (IL-6, IL-11, oncostatin M, G-CSF, and IFNs, among others). The many varied interactions of Jak1 and its ubiquitous expression suggest many biological roles. Jak1 is important in neurological development, as well as in lymphoid development and function. It also plays a role in the pathophysiology of cardiac hypertrophy and heart failure. A mutation in the ATP-binding site of Jak1 was identified in a human uterine leiomyosarcoma cell line, resulting in defective cytokine induction and antigen presentation, thus allowing the tumor to evade the immune system. Jak1 is a cytoplasmic (or nonreceptor) PTK containing an N-terminal FERM domain, followed by a Src homology 2 (SH2) domain, a pseudokinase domain, and a C-terminal tyr kinase domain. The pseudokinase domain shows similarity to tyr kinases but lacks crucial residues for catalytic activity and ATP binding. It modulates the kinase activity of the C-terminal catalytic domain. The Jak1 subfamily is part of a larger superfamily that includes the catalytic domains of other kinases such as serine/threonine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270662 [Multi-domain] Cd Length: 266 Bit Score: 36.84 E-value: 4.65e-03
|
||||||||
PKc_LIMK_like_unk | cd14156 | Catalytic domain of an unknown subfamily of LIM domain kinase-like protein kinases; PKs ... |
58-142 | 4.73e-03 | ||||
Catalytic domain of an unknown subfamily of LIM domain kinase-like protein kinases; PKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine or tyrosine residues on protein substrates. This group is composed of uncharacterized proteins with similarity to LIMK and Testicular or testis-specific protein kinase (TESK). LIMKs are characterized as serine/threonine kinases (STKs) while TESKs are dual-specificity protein kinases. Both LIMK and TESK phosphorylate and inactivate cofilin, an actin depolymerizing factor, to induce the reorganization of the actin cytoskeleton. They are implicated in many cellular functions including cell spreading, motility, morphogenesis, meiosis, mitosis, and spermatogenesis. The LIMK-like subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 271058 [Multi-domain] Cd Length: 256 Bit Score: 36.73 E-value: 4.73e-03
|
||||||||
STKc_Kin1_2 | cd14077 | Catalytic domain of Kin1, Kin2, and simlar Serine/Threonine Kinases; STKs catalyze the ... |
58-101 | 4.86e-03 | ||||
Catalytic domain of Kin1, Kin2, and simlar Serine/Threonine Kinases; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. This subfamily is composed of yeast Kin1, Kin2, and similar proteins. Fission yeast Kin1 is a membrane-associated kinase that is involved in regulating cell surface cohesiveness during interphase. It also plays a role during mitosis, linking actomyosin ring assembly with septum synthesis and membrane closure to ensure separation of daughter cells. Budding yeast Kin1 and Kin2 act downstream of the Rab-GTPase Sec4 and are associated with the exocytic apparatus; they play roles in the secretory pathway. The Kin1/2 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270979 [Multi-domain] Cd Length: 267 Bit Score: 36.66 E-value: 4.86e-03
|
||||||||
STKc_CDK9 | cd07865 | Catalytic domain of the Serine/Threonine Kinase, Cyclin-Dependent protein Kinase 9; STKs ... |
55-86 | 5.97e-03 | ||||
Catalytic domain of the Serine/Threonine Kinase, Cyclin-Dependent protein Kinase 9; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. CDK9, together with a cyclin partner (cyclin T1, T2a, T2b, or K), is the main component of distinct positive transcription elongation factors (P-TEFb), which function as Ser2 C-terminal domain kinases of RNA polymerase II. P-TEFb participates in multiple steps of gene expression including transcription elongation, mRNA synthesis, processing, export, and translation. It also plays a role in mediating cytokine induced transcription networks such as IL6-induced STAT3 signaling. In addition, the CDK9/cyclin T2a complex promotes muscle differentiation and enhances the function of some myogenic regulatory factors. CDKs belong to a large family of STKs that are regulated by their cognate cyclins. Together, they are involved in the control of cell-cycle progression, transcription, and neuronal function. The CDK9 subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270848 [Multi-domain] Cd Length: 310 Bit Score: 36.58 E-value: 5.97e-03
|
||||||||
PKc_like | cd13968 | Catalytic domain of the Protein Kinase superfamily; The PK superfamily contains the large ... |
8-101 | 6.06e-03 | ||||
Catalytic domain of the Protein Kinase superfamily; The PK superfamily contains the large family of typical PKs that includes serine/threonine kinases (STKs), protein tyrosine kinases (PTKs), and dual-specificity PKs that phosphorylate both serine/threonine and tyrosine residues of target proteins, as well as pseudokinases that lack crucial residues for catalytic activity and/or ATP binding. It also includes phosphoinositide 3-kinases (PI3Ks), aminoglycoside 3'-phosphotransferases (APHs), choline kinase (ChoK), Actin-Fragmin Kinase (AFK), and the atypical RIO and Abc1p-like protein kinases. These proteins catalyze the transfer of the gamma-phosphoryl group from ATP to their target substrates; these include serine/threonine/tyrosine residues in proteins for typical or atypical PKs, the 3-hydroxyl of the inositol ring of D-myo-phosphatidylinositol (PtdIns) or its derivatives for PI3Ks, the 4-hydroxyl of PtdIns for PI4Ks, and other small molecule substrates for APH/ChoK and similar proteins such as aminoglycosides, macrolides, choline, ethanolamine, and homoserine. Pssm-ID: 270870 [Multi-domain] Cd Length: 136 Bit Score: 35.50 E-value: 6.06e-03
|
||||||||
STKc_cGK | cd05572 | Catalytic domain of the Serine/Threonine Kinase, cGMP-dependent protein kinase (cGK or PKG); ... |
64-103 | 6.27e-03 | ||||
Catalytic domain of the Serine/Threonine Kinase, cGMP-dependent protein kinase (cGK or PKG); STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. Mammals have two cGK isoforms from different genes, cGKI and cGKII. cGKI exists as two splice variants, cGKI-alpha and cGKI-beta. cGK consists of an N-terminal regulatory domain containing a dimerization and an autoinhibitory pseudosubstrate region, two cGMP-binding domains, and a C-terminal catalytic domain. Binding of cGMP to both binding sites releases the inhibition of the catalytic center by the pseudosubstrate region, allowing autophosphorylation and activation of the kinase. cGKI is a soluble protein expressed in all smooth muscles, platelets, cerebellum, and kidney. It is also expressed at lower concentrations in other tissues. cGKII is a membrane-bound protein that is most abundantly expressed in the intestine. It is also present in the brain nuclei, adrenal cortex, kidney, lung, and prostate. cGKI is involved in the regulation of smooth muscle tone, smooth cell proliferation, and platelet activation. cGKII plays a role in the regulation of secretion, such as renin secretion by the kidney and aldosterone secretion by the adrenal. It also regulates bone growth and the circadian rhythm. The cGK subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270724 [Multi-domain] Cd Length: 262 Bit Score: 36.43 E-value: 6.27e-03
|
||||||||
STKc_TAO2 | cd06634 | Catalytic domain of the Serine/Threonine Kinase, Thousand-and-One Amino acids 2; STKs catalyze ... |
12-142 | 6.35e-03 | ||||
Catalytic domain of the Serine/Threonine Kinase, Thousand-and-One Amino acids 2; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. Human TAO2 is also known as prostate-derived Ste20-like kinase (PSK) and was identified in a screen for overexpressed RNAs in prostate cancer. TAO2 possesses mitogen-activated protein kinase (MAPK) kinase kinase activity and activates both p38 and c-Jun N-terminal kinase (JNK), by phosphorylating and activating their respective MAP/ERK kinases, MEK3/MEK6 and MKK4/MKK7. It contains a long C-terminal extension with autoinhibitory segments, and is activated by the release of this inhibition and the phosphorylation of its activation loop serine. TAO2 functions as a regulator of actin cytoskeletal and microtubule organization. In addition, it regulates the transforming growth factor-activated kinase 1 (TAK1), which is a MAPKKK that plays an essential role in the signaling pathways of tumor necrosis factor, interleukin 1, and Toll-like receptor. The TAO2 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270804 [Multi-domain] Cd Length: 308 Bit Score: 36.54 E-value: 6.35e-03
|
||||||||
STKc_BRSK1_2 | cd14081 | Catalytic domain of Brain-specific serine/threonine-protein kinases 1 and 2; STKs catalyze the ... |
17-142 | 6.82e-03 | ||||
Catalytic domain of Brain-specific serine/threonine-protein kinases 1 and 2; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. BRSK1, also called SAD-B or SAD1 (Synapses of Amphids Defective homolog 1), and BRSK2, also called SAD-A, are highly expressed in mammalian forebrain. They play important roles in establishing neuronal polarity. BRSK1/2 double knock-out mice die soon after birth, showing thin cerebral cortices due to disordered subplate layers and neurons that lack distinct axons and dendrites. BRSK1 regulates presynaptic neurotransmitter release. Its activity fluctuates during cell cysle progression and it acts as a regulator of centrosome duplication. BRSK2 is also abundant in pancreatic islets, where it is involved in the regulation of glucose-stimulated insulin secretion. The BRSK1/2 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270983 [Multi-domain] Cd Length: 255 Bit Score: 36.46 E-value: 6.82e-03
|
||||||||
STKc_MELK | cd14078 | Catalytic domain of the Serine/Threonine Kinase, Maternal Embryonic Leucine zipper Kinase; ... |
11-144 | 7.27e-03 | ||||
Catalytic domain of the Serine/Threonine Kinase, Maternal Embryonic Leucine zipper Kinase; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. MELK is a cell cycle dependent protein which functions in cytokinesis, cell cycle, apoptosis, cell proliferation, and mRNA processing. It is found upregulated in many types of cancer cells, playing an indispensable role in cancer cell survival. It makes an attractive target in the design of inhibitors for use in the treatment of a wide range of human cancer. The MELK subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270980 [Multi-domain] Cd Length: 257 Bit Score: 36.21 E-value: 7.27e-03
|
||||||||
STKc_MOK | cd07831 | Catalytic domain of the Serine/Threonine Kinase, MAPK/MAK/MRK Overlapping Kinase; STKs ... |
39-104 | 7.27e-03 | ||||
Catalytic domain of the Serine/Threonine Kinase, MAPK/MAK/MRK Overlapping Kinase; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. MOK, also called Renal tumor antigen 1 (RAGE-1), is widely expressed and is enriched in testis, kidney, lung, and brain. It is expressed in approximately 50% of renal cell carcinomas (RCC) and is a potential target for immunotherapy. MOK is stabilized by its association with the HSP90 molecular chaperone. It is induced by the transcription factor Cdx2 and may be involved in regulating intestinal epithelial development and differentiation. The MOK subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270825 [Multi-domain] Cd Length: 282 Bit Score: 36.48 E-value: 7.27e-03
|
||||||||
PTKc_Trk | cd05049 | Catalytic domain of the Protein Tyrosine Kinases, Tropomyosin Related Kinases; PTKs catalyze ... |
19-83 | 7.48e-03 | ||||
Catalytic domain of the Protein Tyrosine Kinases, Tropomyosin Related Kinases; PTKs catalyze the transfer of the gamma-phosphoryl group from ATP to tyrosine (tyr) residues in protein substrates. The Trk subfamily consists of TrkA, TrkB, TrkC, and similar proteins. They are receptor PTKs (RTKs) containing an extracellular region with arrays of leucine-rich motifs flanked by two cysteine-rich clusters followed by two immunoglobulin-like domains, a transmembrane segment, and an intracellular catalytic domain. Binding to their ligands, the nerve growth factor (NGF) family of neutrotrophins, leads to Trk receptor oligomerization and activation of the catalytic domain. Trk receptors are mainly expressed in the peripheral and central nervous systems. They play important roles in cell fate determination, neuronal survival and differentiation, as well as in the regulation of synaptic plasticity. Altered expression of Trk receptors is associated with many human diseases. The Trk subfamily is part of a larger superfamily that includes the catalytic domains of other kinases such as protein serine/threonine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270643 [Multi-domain] Cd Length: 280 Bit Score: 36.29 E-value: 7.48e-03
|
||||||||
STKc_aPKC_zeta | cd05617 | Catalytic domain of the Serine/Threonine Kinase, Atypical Protein Kinase C zeta; STKs catalyze ... |
58-160 | 8.35e-03 | ||||
Catalytic domain of the Serine/Threonine Kinase, Atypical Protein Kinase C zeta; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. PKC-zeta plays a critical role in activating the glucose transport response. It is activated by glucose, insulin, and exercise through diverse pathways. PKC-zeta also plays a central role in maintaining cell polarity in yeast and mammalian cells. In addition, it affects actin remodeling in muscle cells. PKCs are classified into three groups (classical, atypical, and novel) depending on their mode of activation and the structural characteristics of their regulatory domain. aPKCs only require phosphatidylserine (PS) for activation. The aPKC-zeta subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270768 [Multi-domain] Cd Length: 357 Bit Score: 36.15 E-value: 8.35e-03
|
||||||||
STKc_RIP1 | cd14027 | Catalytic domain of the Serine/Threonine kinase, Receptor Interacting Protein 1; STKs catalyze ... |
58-142 | 9.22e-03 | ||||
Catalytic domain of the Serine/Threonine kinase, Receptor Interacting Protein 1; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. RIP1 harbors a C-terminal Death domain (DD), which binds death receptors (DRs) including TNF receptor 1, Fas, TNF-related apoptosis-inducing ligand receptor 1 (TRAILR1), and TRAILR2. It also interacts with other DD-containing adaptor proteins such as TRADD and FADD. RIP1 can also recruit other kinases including MEKK1, MEKK3, and RIP3 through an intermediate domain (ID) that bears a RIP homotypic interaction motif (RHIM). RIP1 plays a crucial role in determining a cell's fate, between survival or death, following exposure to stress signals. It is important in the signaling of NF-kappaB and MAPKs, and it links DR-associated signaling to reactive oxygen species (ROS) production. Abnormal RIP1 function may result in ROS accummulation affecting inflammatory responses, innate immunity, stress responses, and cell survival. RIP kinases serve as essential sensors of cellular stress. The RIP1 subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270929 [Multi-domain] Cd Length: 267 Bit Score: 35.94 E-value: 9.22e-03
|
||||||||
STKc_RCK1-like | cd14096 | Catalytic domain of RCK1-like Serine/Threonine Kinases; STKs catalyze the transfer of the ... |
55-82 | 9.51e-03 | ||||
Catalytic domain of RCK1-like Serine/Threonine Kinases; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. This subfamily is composed of fungal STKs including Saccharomyces cerevisiae RCK1 and RCK2, Schizosaccharomyces pombe Sty1-regulated kinase 1 (Srk1), and similar proteins. RCK1, RCK2 (or Rck2p), and Srk1 are MAPK-activated protein kinases. RCK1 and RCK2 are involved in oxidative and metal stress resistance in budding yeast. RCK2 also regulates rapamycin sensitivity in both S. cerevisiae and Candida albicans. Srk1 is activated by Sty1/Spc1 and is involved in negatively regulating cell cycle progression by inhibiting Cdc25. The RCK1-like subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270998 [Multi-domain] Cd Length: 295 Bit Score: 35.88 E-value: 9.51e-03
|
||||||||
Blast search parameters | ||||
|