unnamed protein product [Ostreobium quekettii]
bZIP transcription factor( domain architecture ID 10199862)
basic leucine zipper (bZIP) transcription factor binds to the promoter regions of genes to control their expression
List of domain hits
Name | Accession | Description | Interval | E-value | ||
bZIP | cd14686 | Basic leucine zipper (bZIP) domain of bZIP transcription factors: a DNA-binding and ... |
179-229 | 7.34e-16 | ||
Basic leucine zipper (bZIP) domain of bZIP transcription factors: a DNA-binding and dimerization domain; Basic leucine zipper (bZIP) factors comprise one of the most important classes of enhancer-type transcription factors. They act in networks of homo and heterodimers in the regulation of a diverse set of cellular processes including cell survival, learning and memory, lipid metabolism, and cancer progression, among others. They also play important roles in responses to stimuli or stress signals such as cytokines, genotoxic agents, or physiological stresses. The bZIP structural motif contains a basic region and a leucine zipper, composed of alpha helices with leucine residues 7 amino acids apart, which stabilize dimerization with a parallel leucine zipper domain. Dimerization of leucine zippers creates a pair of the adjacent basic regions that bind DNA and undergo conformational change. Dimerization occurs in a specific and predictable manner resulting in hundreds of dimers having unique effects on transcription. : Pssm-ID: 269834 [Multi-domain] Cd Length: 52 Bit Score: 69.50 E-value: 7.34e-16
|
||||||
Name | Accession | Description | Interval | E-value | ||
bZIP | cd14686 | Basic leucine zipper (bZIP) domain of bZIP transcription factors: a DNA-binding and ... |
179-229 | 7.34e-16 | ||
Basic leucine zipper (bZIP) domain of bZIP transcription factors: a DNA-binding and dimerization domain; Basic leucine zipper (bZIP) factors comprise one of the most important classes of enhancer-type transcription factors. They act in networks of homo and heterodimers in the regulation of a diverse set of cellular processes including cell survival, learning and memory, lipid metabolism, and cancer progression, among others. They also play important roles in responses to stimuli or stress signals such as cytokines, genotoxic agents, or physiological stresses. The bZIP structural motif contains a basic region and a leucine zipper, composed of alpha helices with leucine residues 7 amino acids apart, which stabilize dimerization with a parallel leucine zipper domain. Dimerization of leucine zippers creates a pair of the adjacent basic regions that bind DNA and undergo conformational change. Dimerization occurs in a specific and predictable manner resulting in hundreds of dimers having unique effects on transcription. Pssm-ID: 269834 [Multi-domain] Cd Length: 52 Bit Score: 69.50 E-value: 7.34e-16
|
||||||
BRLZ | smart00338 | basic region leucin zipper; |
179-235 | 1.20e-10 | ||
basic region leucin zipper; Pssm-ID: 197664 [Multi-domain] Cd Length: 65 Bit Score: 55.65 E-value: 1.20e-10
|
||||||
bZIP_1 | pfam00170 | bZIP transcription factor; The Pfam entry includes the basic region and the leucine zipper ... |
179-229 | 7.35e-10 | ||
bZIP transcription factor; The Pfam entry includes the basic region and the leucine zipper region. Pssm-ID: 395118 [Multi-domain] Cd Length: 60 Bit Score: 53.54 E-value: 7.35e-10
|
||||||
PRK03992 | PRK03992 | proteasome-activating nucleotidase; Provisional |
178-240 | 3.03e-03 | ||
proteasome-activating nucleotidase; Provisional Pssm-ID: 179699 [Multi-domain] Cd Length: 389 Bit Score: 38.27 E-value: 3.03e-03
|
||||||
COG2433 | COG2433 | Possible nuclease of RNase H fold, RuvC/YqgF family [General function prediction only]; |
166-240 | 5.31e-03 | ||
Possible nuclease of RNase H fold, RuvC/YqgF family [General function prediction only]; Pssm-ID: 441980 [Multi-domain] Cd Length: 644 Bit Score: 37.92 E-value: 5.31e-03
|
||||||
Name | Accession | Description | Interval | E-value | ||
bZIP | cd14686 | Basic leucine zipper (bZIP) domain of bZIP transcription factors: a DNA-binding and ... |
179-229 | 7.34e-16 | ||
Basic leucine zipper (bZIP) domain of bZIP transcription factors: a DNA-binding and dimerization domain; Basic leucine zipper (bZIP) factors comprise one of the most important classes of enhancer-type transcription factors. They act in networks of homo and heterodimers in the regulation of a diverse set of cellular processes including cell survival, learning and memory, lipid metabolism, and cancer progression, among others. They also play important roles in responses to stimuli or stress signals such as cytokines, genotoxic agents, or physiological stresses. The bZIP structural motif contains a basic region and a leucine zipper, composed of alpha helices with leucine residues 7 amino acids apart, which stabilize dimerization with a parallel leucine zipper domain. Dimerization of leucine zippers creates a pair of the adjacent basic regions that bind DNA and undergo conformational change. Dimerization occurs in a specific and predictable manner resulting in hundreds of dimers having unique effects on transcription. Pssm-ID: 269834 [Multi-domain] Cd Length: 52 Bit Score: 69.50 E-value: 7.34e-16
|
||||||
bZIP_YAP | cd14688 | Basic leucine zipper (bZIP) domain of Yeast Activator Protein (YAP) and similar proteins: a ... |
179-238 | 1.04e-14 | ||
Basic leucine zipper (bZIP) domain of Yeast Activator Protein (YAP) and similar proteins: a DNA-binding and dimerization domain; This subfamily is composed predominantly of AP-1-like transcription factors including Saccharomyces cerevisiae YAPs, Schizosaccharomyces pombe PAP1, and similar proteins. Members of this subfamily belong to the Basic leucine zipper (bZIP) family of transcription factors. The YAP subfamily is composed of eight members (YAP1-8) which may all be involved in stress responses. YAP1 is the major oxidative stress regulator and is also involved in iron metabolism (like YAP5) and detoxification of arsenic (like YAP8). YAP2 is involved in cadmium stress responses while YAP4 and YAP6 play roles in osmotic stress. bZIP factors act in networks of homo and heterodimers in the regulation of a diverse set of cellular processes. The bZIP structural motif contains a basic region and a leucine zipper, composed of alpha helices with leucine residues 7 amino acids apart, which stabilize dimerization with a parallel leucine zipper domain. Dimerization of leucine zippers creates a pair of the adjacent basic regions that bind DNA and undergo conformational change. Dimerization occurs in a specific and predictable manner resulting in hundreds of dimers having unique effects on transcription. Pssm-ID: 269836 [Multi-domain] Cd Length: 63 Bit Score: 66.59 E-value: 1.04e-14
|
||||||
BRLZ | smart00338 | basic region leucin zipper; |
179-235 | 1.20e-10 | ||
basic region leucin zipper; Pssm-ID: 197664 [Multi-domain] Cd Length: 65 Bit Score: 55.65 E-value: 1.20e-10
|
||||||
bZIP_XBP1 | cd14691 | Basic leucine zipper (bZIP) domain of X-box binding protein 1 (XBP1) and similar proteins: a ... |
180-239 | 1.26e-10 | ||
Basic leucine zipper (bZIP) domain of X-box binding protein 1 (XBP1) and similar proteins: a DNA-binding and dimerization domain; XBP1, a member of the Basic leucine zipper (bZIP) family, is the key transcription factor that orchestrates the unfolded protein response (UPR). It is the most conserved component of the UPR and is critical for cell fate determination in response to ER stress. The inositol-requiring enzyme 1 (IRE1)-XBP1 pathway is one of the three major sensors at the ER membrane that initiates the UPR upon activation. IRE1, a type I transmembrane protein kinase and endoribonuclease, oligomerizes upon ER stress leading to its increased activity. It splices the XBP1 mRNA, producing a variant that translocates to the nucleus and activates its target genes, which are involved in protein folding, degradation, and trafficking. bZIP factors act in networks of homo and heterodimers in the regulation of a diverse set of cellular processes. The bZIP structural motif contains a basic region and a leucine zipper, composed of alpha helices with leucine residues 7 amino acids apart, which stabilize dimerization with a parallel leucine zipper domain. Dimerization of leucine zippers creates a pair of the adjacent basic regions that bind DNA and undergo conformational change. Dimerization occurs in a specific and predictable manner resulting in hundreds of dimers having unique effects on transcription. Pssm-ID: 269839 [Multi-domain] Cd Length: 58 Bit Score: 55.68 E-value: 1.26e-10
|
||||||
bZIP_HY5-like | cd14704 | Basic leucine zipper (bZIP) domain of Plant Elongated/Long Hypocotyl5 (HY5)-like transcription ... |
179-228 | 2.45e-10 | ||
Basic leucine zipper (bZIP) domain of Plant Elongated/Long Hypocotyl5 (HY5)-like transcription factors and similar proteins: a DNA-binding and dimerization domain; This subfamily is predominantly composed of plant Basic leucine zipper (bZIP) transcription factors with similarity to Solanum lycopersicum and Arabidopsis thaliana HY5. Also included are the Dictyostelium discoideum bZIP transcription factors E and F. HY5 plays an important role in seedling development and is a positive regulator of photomorphogenesis. Plants with decreased levels of HY5 show defects in light responses including inhibited photomorphogenesis, loss of alkaloid organization, and reduced carotenoid accumulation. bZIP factors act in networks of homo and heterodimers in the regulation of a diverse set of cellular processes. The bZIP structural motif contains a basic region and a leucine zipper, composed of alpha helices with leucine residues 7 amino acids apart, which stabilize dimerization with a parallel leucine zipper domain. Dimerization of leucine zippers creates a pair of the adjacent basic regions that bind DNA and undergo conformational change. Dimerization occurs in a specific and predictable manner resulting in hundreds of dimers having unique effects on transcription. Pssm-ID: 269852 [Multi-domain] Cd Length: 52 Bit Score: 54.50 E-value: 2.45e-10
|
||||||
bZIP_1 | pfam00170 | bZIP transcription factor; The Pfam entry includes the basic region and the leucine zipper ... |
179-229 | 7.35e-10 | ||
bZIP transcription factor; The Pfam entry includes the basic region and the leucine zipper region. Pssm-ID: 395118 [Multi-domain] Cd Length: 60 Bit Score: 53.54 E-value: 7.35e-10
|
||||||
bZIP_Jun | cd14696 | Basic leucine zipper (bZIP) domain of Jun proteins and similar proteins: a DNA-binding and ... |
179-227 | 5.08e-09 | ||
Basic leucine zipper (bZIP) domain of Jun proteins and similar proteins: a DNA-binding and dimerization domain; Jun is a member of the activator protein-1 (AP-1) complex, which is mainly composed of Basic leucine zipper (bZIP) dimers of the Jun and Fos families, and to a lesser extent, the activating transcription factor (ATF) and musculoaponeurotic fibrosarcoma (Maf) families. The broad combinatorial possibilities for various dimers determine binding specificity, affinity, and the spectrum of regulated genes. The AP-1 complex is implicated in many cell functions including proliferation, apoptosis, survival, migration, tumorigenesis, and morphogenesis, among others. There are three Jun proteins: c-Jun, JunB, and JunD. c-Jun is the most potent transcriptional activator of the AP-1 proteins. Both c-Jun and JunB are essential during development; deletion of either results in embryonic lethality in mice. c-Jun is essential in hepatogenesis and liver erythropoiesis, while JunB is required in vasculogenesis and angiogenesis in extraembryonic tissues. While JunD is dispensable in embryonic development, it is involved in transcription regulation of target genes that help cells to cope with environmental signals. bZIP factors act in networks of homo and heterodimers in the regulation of a diverse set of cellular processes. The bZIP structural motif contains a basic region and a leucine zipper, composed of alpha helices with leucine residues 7 amino acids apart, which stabilize dimerization with a parallel leucine zipper domain. Dimerization of leucine zippers creates a pair of the adjacent basic regions that bind DNA and undergo conformational change. Dimerization occurs in a specific and predictable manner resulting in hundreds of dimers having unique effects on transcription. Pssm-ID: 269844 [Multi-domain] Cd Length: 61 Bit Score: 51.43 E-value: 5.08e-09
|
||||||
bZIP_2 | pfam07716 | Basic region leucine zipper; |
178-227 | 4.01e-08 | ||
Basic region leucine zipper; Pssm-ID: 462244 [Multi-domain] Cd Length: 51 Bit Score: 48.37 E-value: 4.01e-08
|
||||||
bZIP_CREB1 | cd14690 | Basic leucine zipper (bZIP) domain of Cyclic AMP-responsive element-binding protein 1 (CREB1) ... |
179-238 | 3.09e-07 | ||
Basic leucine zipper (bZIP) domain of Cyclic AMP-responsive element-binding protein 1 (CREB1) and similar proteins: a DNA-binding and dimerization domain; CREB1 is a Basic leucine zipper (bZIP) transcription factor that plays a role in propagating signals initiated by receptor activation through the induction of cAMP-responsive genes. Because it responds to many signal transduction pathways, CREB1 is implicated to function in many processes including learning, memory, circadian rhythm, immune response, and reproduction, among others. bZIP factors act in networks of homo and heterodimers in the regulation of a diverse set of cellular processes. The bZIP structural motif contains a basic region and a leucine zipper, composed of alpha helices with leucine residues 7 amino acids apart, which stabilize dimerization with a parallel leucine zipper domain. Dimerization of leucine zippers creates a pair of the adjacent basic regions that bind DNA and undergo conformational change. Dimerization occurs in a specific and predictable manner resulting in hundreds of dimers having unique effects on transcription. Pssm-ID: 269838 [Multi-domain] Cd Length: 55 Bit Score: 46.09 E-value: 3.09e-07
|
||||||
bZIP_ATF4 | cd14692 | Basic leucine zipper (bZIP) domain of Activating Transcription Factor-4 (ATF-4) and similar ... |
179-237 | 6.71e-07 | ||
Basic leucine zipper (bZIP) domain of Activating Transcription Factor-4 (ATF-4) and similar proteins: a DNA-binding and dimerization domain; ATF-4 was also isolated and characterized as the cAMP-response element binding protein 2 (CREB2). It is a Basic leucine zipper (bZIP) transcription factor that has been reported to act as both an activator or repressor. It is a critical component in both the unfolded protein response (UPR) and amino acid response (AAR) pathways. Under certain stress conditions, ATF-4 transcription is increased; accumulation of ATF-4 induces the expression of genes involved in amino acid metabolism and transport, mitochondrial function, redox chemistry, and others that ensure protein synthesis and recovery from stress. bZIP factors act in networks of homo and heterodimers in the regulation of a diverse set of cellular processes. The bZIP structural motif contains a basic region and a leucine zipper, composed of alpha helices with leucine residues 7 amino acids apart, which stabilize dimerization with a parallel leucine zipper domain. Dimerization of leucine zippers creates a pair of the adjacent basic regions that bind DNA and undergo conformational change. Dimerization occurs in a specific and predictable manner resulting in hundreds of dimers having unique effects on transcription. Pssm-ID: 269840 [Multi-domain] Cd Length: 63 Bit Score: 45.26 E-value: 6.71e-07
|
||||||
bZIP_Fos_like | cd14699 | Basic leucine zipper (bZIP) domain of the oncogene Fos (Fos)-like transcription factors: a ... |
179-235 | 6.83e-07 | ||
Basic leucine zipper (bZIP) domain of the oncogene Fos (Fos)-like transcription factors: a DNA-binding and dimerization domain; This subfamily is composed of Fos proteins (c-Fos, FosB, Fos-related antigen 1 (Fra-1), and Fra-2), Activating Transcription Factor-3 (ATF-3), and similar proteins. Fos proteins are members of the activator protein-1 (AP-1) complex, which is mainly composed of bZIP dimers of the Jun and Fos families, and to a lesser extent, ATF and musculoaponeurotic fibrosarcoma (Maf) families. The broad combinatorial possibilities for various dimers determine binding specificity, affinity, and the spectrum of regulated genes. The AP-1 complex is implicated in many cell functions including proliferation, apoptosis, survival, migration, tumorigenesis, and morphogenesis, among others. ATF3 is induced by various stress signals such as cytokines, genotoxic agents, or physiological stresses. It is implicated in cancer and host defense against pathogens. It negatively regulates the transcription of pro-inflammatory cytokines and is critical in preventing acute inflammatory syndromes. ATF3 dimerizes with Jun and other ATF proteins; the heterodimers function either as activators or repressors depending on the promoter context. bZIP factors act in networks of homo and heterodimers in the regulation of a diverse set of cellular processes. The bZIP structural motif contains a basic region and a leucine zipper, composed of alpha helices with leucine residues 7 amino acids apart, which stabilize dimerization with a parallel leucine zipper domain. Dimerization of leucine zippers creates a pair of the adjacent basic regions that bind DNA and undergo conformational change. Dimerization occurs in a specific and predictable manner resulting in hundreds of dimers having unique effects on transcription. Pssm-ID: 269847 [Multi-domain] Cd Length: 59 Bit Score: 45.33 E-value: 6.83e-07
|
||||||
bZIP_ATF2 | cd14687 | Basic leucine zipper (bZIP) domain of Activating Transcription Factor-2 (ATF-2) and similar ... |
180-235 | 6.89e-07 | ||
Basic leucine zipper (bZIP) domain of Activating Transcription Factor-2 (ATF-2) and similar proteins: a DNA-binding and dimerization domain; ATF-2 is a sequence-specific DNA-binding protein that belongs to the Basic leucine zipper (bZIP) family of transcription factors. In response to stress, it activates a variety of genes including cyclin A, cyclin D, and c-Jun. ATF-2 also plays a role in the DNA damage response that is independent of its transcriptional activity. bZIP factors act in networks of homo and heterodimers in the regulation of a diverse set of cellular processes. The bZIP structural motif contains a basic region and a leucine zipper, composed of alpha helices with leucine residues 7 amino acids apart, which stabilize dimerization with a parallel leucine zipper domain. Dimerization of leucine zippers creates a pair of the adjacent basic regions that bind DNA and undergo conformational change. Dimerization occurs in a specific and predictable manner resulting in hundreds of dimers having unique effects on transcription. Pssm-ID: 269835 [Multi-domain] Cd Length: 61 Bit Score: 45.21 E-value: 6.89e-07
|
||||||
bZIP_Zip1 | cd14705 | Basic leucine zipper (bZIP) domain of Fungal Zip1-like transcription factors: a DNA-binding ... |
178-224 | 2.02e-06 | ||
Basic leucine zipper (bZIP) domain of Fungal Zip1-like transcription factors: a DNA-binding and dimerization domain; This subfamily is composed of fungal bZIP transcription factors including Schizosaccharomyces pombe Zip1, Saccharomyces cerevisiae Methionine-requiring protein 28 (Met28p), and Neurospora crassa cys-3, among others. Zip1 is required for the production of key proteins involved in sulfur metabolism and also plays a role in cadmium response. Met28p acts as a cofactor of Met4p, a transcriptional activator of the sulfur metabolic network; it stabilizes DNA:Met4 complexes. bZIP factors act in networks of homo and heterodimers in the regulation of a diverse set of cellular processes. The bZIP structural motif contains a basic region and a leucine zipper, composed of alpha helices with leucine residues 7 amino acids apart, which stabilize dimerization with a parallel leucine zipper domain. Dimerization of leucine zippers creates a pair of the adjacent basic regions that bind DNA and undergo conformational change. Dimerization occurs in a specific and predictable manner resulting in hundreds of dimers having unique effects on transcription. Pssm-ID: 269853 [Multi-domain] Cd Length: 55 Bit Score: 44.06 E-value: 2.02e-06
|
||||||
bZIP_u1 | cd14810 | Basic leucine zipper (bZIP) domain of bZIP transcription factors: a DNA-binding and ... |
178-229 | 2.04e-06 | ||
Basic leucine zipper (bZIP) domain of bZIP transcription factors: a DNA-binding and dimerization domain; uncharacterized subfamily; Basic leucine zipper (bZIP) factors comprise one of the most important classes of enhancer-type transcription factors. They act in networks of homo and heterodimers in the regulation of a diverse set of cellular processes including cell survival, learning and memory, lipid metabolism, and cancer progression, among others. They also play important roles in responses to stimuli or stress signals such as cytokines, genotoxic agents, or physiological stresses. The bZIP structural motif contains a basic region and a leucine zipper, composed of alpha helices with leucine residues 7 amino acids apart, which stabilize dimerization with a parallel leucine zipper domain. Dimerization of leucine zippers creates a pair of the adjacent basic regions that bind DNA and undergo conformational change. Dimerization occurs in a specific and predictable manner resulting in hundreds of dimers having unique effects on transcription. Pssm-ID: 269872 Cd Length: 52 Bit Score: 43.79 E-value: 2.04e-06
|
||||||
bZIP_GCN4 | cd12193 | Basic leucine zipper (bZIP) domain of General control protein GCN4: a DNA-binding and ... |
179-235 | 7.50e-06 | ||
Basic leucine zipper (bZIP) domain of General control protein GCN4: a DNA-binding and dimerization domain; GCN4 was identified in Saccharomyces cerevisiae from mutations in a deficiency in activation with the general amino acid control pathway. GCN4 encodes a trans-activator of amino acid biosynthetic genes containing 2 acidic activation domains and a C-terminal bZIP domain. In amino acid-deprived cells, GCN4 is up-regulated leading to transcriptional activation of genes encoding amino acid biosynthetic enzymes. bZIP factors act in networks of homo and heterodimers in the regulation of a diverse set of cellular processes. The bZIP structural motif contains a basic region and a leucine zipper, composed of alpha helices with leucine residues 7 amino acids apart, which stabilize dimerization with a parallel leucine zipper domain. Dimerization of leucine zippers creates a pair of the adjacent basic regions that bind DNA and undergo conformational change. Dimerization occurs in a specific and predictable manner resulting in hundreds of dimers having unique effects on transcription. Pssm-ID: 269833 [Multi-domain] Cd Length: 54 Bit Score: 42.17 E-value: 7.50e-06
|
||||||
bZIP_CNC | cd14698 | Basic leucine zipper (bZIP) domain of Cap'n'Collar (CNC) transcription factors: a DNA-binding ... |
180-227 | 1.10e-05 | ||
Basic leucine zipper (bZIP) domain of Cap'n'Collar (CNC) transcription factors: a DNA-binding and dimerization domain; CNC proteins form a subfamily of Basic leucine zipper (bZIP) transcription factors that are defined by a conserved 43-amino acid region (called the CNC domain) located N-terminal to the bZIP DNA-binding domain. This subfamily includes Drosophila Cnc and four vertebrate counterparts, NFE2 (nuclear factor, erythroid-derived 2), NFE2-like 1 or NFE2-related factor 1 (NFE2L1 or Nrf1), NFE2L2 (or Nrf2), and NFE2L3 (or Nrf3). It also includes BACH1 and BACH2, which contain an additional BTB domain (Broad complex###Tramtrack###Bric-a-brac domain, also known as the POZ [poxvirus and zinc finger] domain). CNC proteins function during development and/or contribute in maintaining homeostasis during stress responses. In flies, Cnc functions both in development and in stress responses. In vertebrates, several CNC proteins encoded by distinct genes show varying functions and expression patterns. NFE2 is required for the proper development of platelets while the three Nrfs function in stress responses. Nrf2, the most extensively studied member of this subfamily, acts as a xenobiotic-activated receptor that regulates the adaptive response to oxidants and electrophiles. BACH1 forms heterodimers with small Mafs such as MafK to function as a repressor of heme oxygenase-1 (HO-1) gene (Hmox-1) enhancers. BACH2 is a B-cell specific transcription factor that plays a critical role in oxidative stress-mediated apoptosis. bZIP factors act in networks of homo and heterodimers in the regulation of a diverse set of cellular processes. The bZIP structural motif contains a basic region and a leucine zipper, composed of alpha helices with leucine residues 7 amino acids apart, which stabilize dimerization with a parallel leucine zipper domain. Dimerization of leucine zippers creates a pair of the adjacent basic regions that bind DNA and undergo conformational change. Dimerization occurs in a specific and predictable manner resulting in hundreds of dimers having unique effects on transcription. Pssm-ID: 269846 [Multi-domain] Cd Length: 68 Bit Score: 42.24 E-value: 1.10e-05
|
||||||
bZIP_BATF | cd14701 | Basic leucine zipper (bZIP) domain of BATF proteins: a DNA-binding and dimerization domain; ... |
179-227 | 1.56e-05 | ||
Basic leucine zipper (bZIP) domain of BATF proteins: a DNA-binding and dimerization domain; Basic leucine zipper (bZIP) transcription factor ATF-like (BATF or SFA2), BATF2 (or SARI) and BATF3 form heterodimers with Jun proteins. They function as inhibitors of AP-1-driven transcription. Unlike most bZIP transcription factors that contain additional domains, BATF and BATF3 contain only the the bZIP DNA-binding and dimerization domain. BATF2 contains an additional C-terminal domain of unknown function. BATF:Jun hetrodimers preferentially bind to TPA response elements (TREs) with the consensus sequence TGA(C/G)TCA, and can also bind to a TGACGTCA cyclic AMP response element (CRE). In addition to negative regulation, BATF proteins also show positive transcriptional activities in the development of classical dendritic cells and T helper cell subsets, and in antibody production. bZIP factors act in networks of homo and heterodimers in the regulation of a diverse set of cellular processes. The bZIP structural motif contains a basic region and a leucine zipper, composed of alpha helices with leucine residues 7 amino acids apart, which stabilize dimerization with a parallel leucine zipper domain. Dimerization of leucine zippers creates a pair of the adjacent basic regions that bind DNA and undergo conformational change. Dimerization occurs in a specific and predictable manner resulting in hundreds of dimers having unique effects on transcription. Pssm-ID: 269849 [Multi-domain] Cd Length: 58 Bit Score: 41.69 E-value: 1.56e-05
|
||||||
bZIP_HLF | cd14695 | Basic leucine zipper (bZIP) domain of Hepatic leukemia factor (HLF) and similar proteins: a ... |
179-232 | 1.74e-05 | ||
Basic leucine zipper (bZIP) domain of Hepatic leukemia factor (HLF) and similar proteins: a DNA-binding and dimerization domain; HLF, also called vitellogenin gene-binding protein (VBP) in birds, is a circadian clock-controlled Basic leucine zipper (bZIP) transcription factor which is a direct transcriptional target of CLOCK/BMAL1. It is implicated, together with bZIPs DBP and TEF, in the regulation of genes involved in the metabolism of endobiotic and xenobiotic agents. Triple knockout mice display signs of early aging and suffer premature death, likely due to impaired defense against xenobiotic stress. A leukemogenic translocation results in the chimeric fusion protein E2A-HLF that results in a rare form of pro-B-cell acute lymphoblastic leukemia (ALL). bZIP factors act in networks of homo and heterodimers in the regulation of a diverse set of cellular processes. The bZIP structural motif contains a basic region and a leucine zipper, composed of alpha helices with leucine residues 7 amino acids apart, which stabilize dimerization with a parallel leucine zipper domain. Dimerization of leucine zippers creates a pair of the adjacent basic regions that bind DNA and undergo conformational change. Dimerization occurs in a specific and predictable manner resulting in hundreds of dimers having unique effects on transcription. Pssm-ID: 269843 [Multi-domain] Cd Length: 60 Bit Score: 41.38 E-value: 1.74e-05
|
||||||
bZIP_BmCbz-like | cd14813 | Basic leucine zipper (bZIP) domain of Bombyx mori chorion b-ZIP transcription factor and ... |
177-227 | 1.07e-04 | ||
Basic leucine zipper (bZIP) domain of Bombyx mori chorion b-ZIP transcription factor and similar bZIP domains; Bombyx mori chorion b-ZIP transcription factor, is encoded by the Cbz gene. The bZIP structural motif contains a basic region and a leucine zipper, composed of alpha helices with leucine residues 7 amino acids apart, which stabilize dimerization with a parallel leucine zipper domain. Dimerization of leucine zippers creates a pair of the adjacent basic regions that bind DNA and undergo conformational change. Dimerization occurs in a specific and predictable manner resulting in hundreds of dimers having unique effects on transcription. Pssm-ID: 269875 [Multi-domain] Cd Length: 52 Bit Score: 38.89 E-value: 1.07e-04
|
||||||
bZIP_u3 | cd14812 | Basic leucine zipper (bZIP) domain of bZIP transcription factors: a DNA-binding and ... |
179-224 | 1.20e-04 | ||
Basic leucine zipper (bZIP) domain of bZIP transcription factors: a DNA-binding and dimerization domain; uncharacterized subfamily; Basic leucine zipper (bZIP) factors comprise one of the most important classes of enhancer-type transcription factors. They act in networks of homo and heterodimers in the regulation of a diverse set of cellular processes including cell survival, learning and memory, lipid metabolism, and cancer progression, among others. They also play important roles in responses to stimuli or stress signals such as cytokines, genotoxic agents, or physiological stresses. The bZIP structural motif contains a basic region and a leucine zipper, composed of alpha helices with leucine residues 7 amino acids apart, which stabilize dimerization with a parallel leucine zipper domain. Dimerization of leucine zippers creates a pair of the adjacent basic regions that bind DNA and undergo conformational change. Dimerization occurs in a specific and predictable manner resulting in hundreds of dimers having unique effects on transcription. Pssm-ID: 269874 [Multi-domain] Cd Length: 52 Bit Score: 38.73 E-value: 1.20e-04
|
||||||
bZIP_HAC1-like | cd14710 | Basic leucine zipper (bZIP) domain of Fungal HAC1-like transcription factors: a DNA-binding ... |
181-236 | 2.00e-04 | ||
Basic leucine zipper (bZIP) domain of Fungal HAC1-like transcription factors: a DNA-binding and dimerization domain; HAC1 (also called Hac1p or HacA) is a bZIP transcription factor that plays a critical role in the unfolded protein response (UPR). The UPR is initiated by the ER-resident protein kinase and endonuclease IRE1, which promotes non-conventional splicing of the HAC1 mRNA, facilitating its translation. HAC1 binds to and activates promoters of genes that encode chaperones and other targets of the UPR. bZIP factors act in networks of homo and heterodimers in the regulation of a diverse set of cellular processes. The bZIP structural motif contains a basic region and a leucine zipper, composed of alpha helices with leucine residues 7 amino acids apart, which stabilize dimerization with a parallel leucine zipper domain. Dimerization of leucine zippers creates a pair of the adjacent basic regions that bind DNA and undergo conformational change. Dimerization occurs in a specific and predictable manner resulting in hundreds of dimers having unique effects on transcription. Pssm-ID: 269858 [Multi-domain] Cd Length: 53 Bit Score: 38.32 E-value: 2.00e-04
|
||||||
bZIP_Fos | cd14721 | Basic leucine zipper (bZIP) domain of the oncogene Fos (Fos): a DNA-binding and dimerization ... |
180-236 | 2.47e-04 | ||
Basic leucine zipper (bZIP) domain of the oncogene Fos (Fos): a DNA-binding and dimerization domain; Fos proteins are members of the activator protein-1 (AP-1) complex, which is mainly composed of Basic leucine zipper (bZIP) dimers of the Jun and Fos families, and to a lesser extent, the activating transcription factor (ATF) and musculoaponeurotic fibrosarcoma (Maf) families. The broad combinatorial possibilities for various dimers determine binding specificity, affinity, and the spectrum of regulated genes. The AP-1 complex is implicated in many cell functions including proliferation, apoptosis, survival, migration, tumorigenesis, and morphogenesis, among others. There are four Fos proteins: c-Fos, FosB, Fos-related antigen 1 (Fra-1), and Fra-2. In addition, FosB also exists as smaller splice variants FosB2 and deltaFosB2. They all contain an N-terminal region and a bZIP domain. c-Fos and FosB also contain a C-terminal transactivation domain which is absent in Fra-1/2 and the smaller FosB variants. Fos proteins can only heterodimerize with Jun and other AP-1 proteins, but cannot homodimerize. Fos:Jun heterodimers are more stable and can bind DNA with more affinity that Jun:Jun homodimers. Fos proteins can enhance the trans-activating and transforming properties of Jun proteins. bZIP factors act in networks of homo and heterodimers in the regulation of a diverse set of cellular processes. The bZIP structural motif contains a basic region and a leucine zipper, composed of alpha helices with leucine residues 7 amino acids apart, which stabilize dimerization with a parallel leucine zipper domain. Dimerization of leucine zippers creates a pair of the adjacent basic regions that bind DNA and undergo conformational change. Dimerization occurs in a specific and predictable manner resulting in hundreds of dimers having unique effects on transcription. Pssm-ID: 269869 [Multi-domain] Cd Length: 62 Bit Score: 38.11 E-value: 2.47e-04
|
||||||
bZIP_CEBP | cd14693 | Basic leucine zipper (bZIP) domain of CCAAT/enhancer-binding protein (CEBP) and similar ... |
179-226 | 3.55e-04 | ||
Basic leucine zipper (bZIP) domain of CCAAT/enhancer-binding protein (CEBP) and similar proteins: a DNA-binding and dimerization domain; CEBPs (or C/EBPs) are Basic leucine zipper (bZIP) transcription factors that regulate the cell cycle, differentiation, growth, survival, energy metabolism, innate and adaptive immunity, and inflammation, among others. They are also associated with cancer and viral disease. There are six CEBP proteins in mammalian cells including CEBPA (alpha), CEBPB (beta), CEBPG (gamma), CEBPD (delta), and CEBPE (epsilon), which all contain highly conserved bZIP domains at their C-termini and variations at their N-terminal regions. Each possesses unique properties to regulate cell type-specific growth and differentiation. The sixth isoform, CEBPZ (zeta), lacks an intact DNA-binding domain and is excluded from this subfamily. bZIP factors act in networks of homo and heterodimers in the regulation of a diverse set of cellular processes. The bZIP structural motif contains a basic region and a leucine zipper, composed of alpha helices with leucine residues 7 amino acids apart, which stabilize dimerization with a parallel leucine zipper domain. Dimerization of leucine zippers creates a pair of the adjacent basic regions that bind DNA and undergo conformational change. Dimerization occurs in a specific and predictable manner resulting in hundreds of dimers having unique effects on transcription. Pssm-ID: 269841 [Multi-domain] Cd Length: 60 Bit Score: 37.92 E-value: 3.55e-04
|
||||||
bZIP_CREBL2 | cd14709 | Basic leucine zipper (bZIP) domain of Cyclic AMP-responsive element-binding protein-like 2 ... |
181-239 | 1.03e-03 | ||
Basic leucine zipper (bZIP) domain of Cyclic AMP-responsive element-binding protein-like 2 (CREBL2): a DNA-binding and dimerization domain; CREBL2 is a bZIP transcription factor that interacts with CREB and plays a critical role in adipogenesis and lipogenesis. Its overexpression upregulates the expression of PPARgamma and CEBPalpha to promote adipogenesis as well as accelerate lipogenesis by increasing GLUT1 and GLUT4. bZIP factors act in networks of homo and heterodimers in the regulation of a diverse set of cellular processes. The bZIP structural motif contains a basic region and a leucine zipper, composed of alpha helices with leucine residues 7 amino acids apart, which stabilize dimerization with a parallel leucine zipper domain. Dimerization of leucine zippers creates a pair of the adjacent basic regions that bind DNA and undergo conformational change. Dimerization occurs in a specific and predictable manner resulting in hundreds of dimers having unique effects on transcription. Pssm-ID: 269857 [Multi-domain] Cd Length: 56 Bit Score: 36.54 E-value: 1.03e-03
|
||||||
bZIP_HBP1b-like | cd14708 | Basic leucine zipper (bZIP) domain of uncharaterized BZIP transcription factors with ... |
180-213 | 1.45e-03 | ||
Basic leucine zipper (bZIP) domain of uncharaterized BZIP transcription factors with similarity to Triticum aestivum HBP-1b: a DNA-binding and dimerization domain; This subfamily is composed primarily of uncharacterized bZIP transciption factors from flowering plants, mosses, clubmosses, and algae. Included in this subfamily is wheat HBP-1b, which contains a C-terminal DOG1 domain, which is a specific plant regulator for seed dormancy. bZIP factors act in networks of homo and heterodimers in the regulation of a diverse set of cellular processes. The bZIP structural motif contains a basic region and a leucine zipper, composed of alpha helices with leucine residues 7 amino acids apart, which stabilize dimerization with a parallel leucine zipper domain. Dimerization of leucine zippers creates a pair of the adjacent basic regions that bind DNA and undergo conformational change. Dimerization occurs in a specific and predictable manner resulting in hundreds of dimers having unique effects on transcription. Pssm-ID: 269856 [Multi-domain] Cd Length: 53 Bit Score: 35.74 E-value: 1.45e-03
|
||||||
GAS | pfam13851 | Growth-arrest specific micro-tubule binding; This family is the highly conserved central ... |
180-227 | 1.82e-03 | ||
Growth-arrest specific micro-tubule binding; This family is the highly conserved central region of a number of metazoan proteins referred to as growth-arrest proteins. In mouse, Gas8 is predominantly a testicular protein, whose expression is developmentally regulated during puberty and spermatogenesis. In humans, it is absent in infertile males who lack the ability to generate gametes. The localization of Gas8 in the motility apparatus of post-meiotic gametocytes and mature spermatozoa, together with the detection of Gas8 also in cilia at the apical surfaces of epithelial cells lining the pulmonary bronchi and Fallopian tubes suggests that the Gas8 protein may have a role in the functioning of motile cellular appendages. Gas8 is a microtubule-binding protein localized to regions of dynein regulation in mammalian cells. Pssm-ID: 464001 [Multi-domain] Cd Length: 200 Bit Score: 38.35 E-value: 1.82e-03
|
||||||
bZIP_ATF3 | cd14722 | Basic leucine zipper (bZIP) domain of Activating Transcription Factor-3 (ATF-3) and similar ... |
179-233 | 2.94e-03 | ||
Basic leucine zipper (bZIP) domain of Activating Transcription Factor-3 (ATF-3) and similar proteins: a DNA-binding and dimerization domain; ATF-3 is a Basic leucine zipper (bZIP) transcription factor that is induced by various stress signals such as cytokines, genetoxic agents, or physiological stresses. It is implicated in cancer and host defense against pathogens. It negatively regulates the transcription of pro-inflammatory cytokines and is critical in preventing acute inflammatory syndromes. Mice deficient with ATF3 display increased susceptibility to endotoxic shock induced death. ATF3 dimerizes with Jun and other ATF proteins; the heterodimers function either as activators or repressors depending on the promoter context. bZIP factors act in networks of homo and heterodimers in the regulation of a diverse set of cellular processes. The bZIP structural motif contains a basic region and a leucine zipper, composed of alpha helices with leucine residues 7 amino acids apart, which stabilize dimerization with a parallel leucine zipper domain. Dimerization of leucine zippers creates a pair of the adjacent basic regions that bind DNA and undergo conformational change. Dimerization occurs in a specific and predictable manner resulting in hundreds of dimers having unique effects on transcription. Pssm-ID: 269870 Cd Length: 62 Bit Score: 35.13 E-value: 2.94e-03
|
||||||
PRK03992 | PRK03992 | proteasome-activating nucleotidase; Provisional |
178-240 | 3.03e-03 | ||
proteasome-activating nucleotidase; Provisional Pssm-ID: 179699 [Multi-domain] Cd Length: 389 Bit Score: 38.27 E-value: 3.03e-03
|
||||||
bZIP_u2 | cd14811 | Basic leucine zipper (bZIP) domain of bZIP transcription factors: a DNA-binding and ... |
178-217 | 4.72e-03 | ||
Basic leucine zipper (bZIP) domain of bZIP transcription factors: a DNA-binding and dimerization domain; uncharacterized subfamily; Basic leucine zipper (bZIP) factors comprise one of the most important classes of enhancer-type transcription factors. They act in networks of homo and heterodimers in the regulation of a diverse set of cellular processes including cell survival, learning and memory, lipid metabolism, and cancer progression, among others. They also play important roles in responses to stimuli or stress signals such as cytokines, genotoxic agents, or physiological stresses. The bZIP structural motif contains a basic region and a leucine zipper, composed of alpha helices with leucine residues 7 amino acids apart, which stabilize dimerization with a parallel leucine zipper domain. Dimerization of leucine zippers creates a pair of the adjacent basic regions that bind DNA and undergo conformational change. Dimerization occurs in a specific and predictable manner resulting in hundreds of dimers having unique effects on transcription. Pssm-ID: 269873 [Multi-domain] Cd Length: 52 Bit Score: 34.50 E-value: 4.72e-03
|
||||||
bZIP_AUREO-like | cd14809 | Basic leucine zipper (bZIP) domain of blue light (BL) receptor aureochrome (AUREO) and similar ... |
178-227 | 4.92e-03 | ||
Basic leucine zipper (bZIP) domain of blue light (BL) receptor aureochrome (AUREO) and similar bZIP domains; AUREO is a BL-activated transcription factor specific to phototrophic stramenopiles. It has a bZIP and a BL-sensing light-oxygen voltage (LOV) domain. It has been shown to mediate BL-induced branching and regulate the development of the sex organ in Vaucheria frigida. bZIP factors act in networks of homo and heterodimers in the regulation of a diverse set of cellular processes. The bZIP structural motif contains a basic region and a leucine zipper, composed of alpha helices with leucine residues 7 amino acids apart, which stabilize dimerization with a parallel leucine zipper domain. Dimerization of leucine zippers creates a pair of the adjacent basic regions that bind DNA and undergo conformational change. Dimerization occurs in a specific and predictable manner resulting in hundreds of dimers having unique effects on transcription. This subgroup also includes the Epstein-Barr virus (EBV) immediate-early transcription factor ZEBRA (BZLF1, Zta, Z, EB1). ZEBRA exhibits a variant of the bZIP fold, it has a unique dimer interface and a substantial hydrophobic pocket; it has a C-terminal moiety which stabilizes the coiled coil involved in dimer formation. ZEBRA functions to trigger the switch of EBV's biphasic infection cycle from latent to lytic infection. It activates the promoters of EBV lytic genes by binding ZEBRA response elements (ZREs) and inducing a cascade of expression of over 50 viral genes. It also down regulates latency-associated promoters, is an essential replication factor, induces host cell cycle arrest, and alters cellular immune responses and transcription factor activity. Pssm-ID: 269871 [Multi-domain] Cd Length: 52 Bit Score: 34.14 E-value: 4.92e-03
|
||||||
COG2433 | COG2433 | Possible nuclease of RNase H fold, RuvC/YqgF family [General function prediction only]; |
166-240 | 5.31e-03 | ||
Possible nuclease of RNase H fold, RuvC/YqgF family [General function prediction only]; Pssm-ID: 441980 [Multi-domain] Cd Length: 644 Bit Score: 37.92 E-value: 5.31e-03
|
||||||
Casc1_N | pfam15927 | Cancer susceptibility candidate 1 N-terminus; This presumed domain is functionally ... |
178-239 | 8.33e-03 | ||
Cancer susceptibility candidate 1 N-terminus; This presumed domain is functionally uncharacterized. This domain family is found in eukaryotes, and is approximately 200 amino acids in length. The family is found in association with pfam12366. There are two completely conserved residues (N and W) that may be functionally important. Pssm-ID: 464947 [Multi-domain] Cd Length: 201 Bit Score: 36.57 E-value: 8.33e-03
|
||||||
Blast search parameters | ||||
|