Ferroportin1 (FPN1); This family represents a conserved region approximately 100 residues long ...
1-396
8.57e-148
Ferroportin1 (FPN1); This family represents a conserved region approximately 100 residues long within eukaryotic Ferroportin1 (FPN1), a protein that may play a role in iron export from the cell. This family may represent a number of transmembrane regions in Ferroportin1.
The actual alignment was detected with superfamily member pfam06963:
Pssm-ID: 462052 Cd Length: 430 Bit Score: 427.10 E-value: 8.57e-148
Ferroportin1 (FPN1); This family represents a conserved region approximately 100 residues long ...
1-396
8.57e-148
Ferroportin1 (FPN1); This family represents a conserved region approximately 100 residues long within eukaryotic Ferroportin1 (FPN1), a protein that may play a role in iron export from the cell. This family may represent a number of transmembrane regions in Ferroportin1.
Pssm-ID: 462052 Cd Length: 430 Bit Score: 427.10 E-value: 8.57e-148
Solute carrier family 40 member 1 of the Major Facilitator Superfamily of transporters; Solute ...
1-406
5.34e-121
Solute carrier family 40 member 1 of the Major Facilitator Superfamily of transporters; Solute carrier family 40 member 1 (SLC40A1 or SLC11A3) is also called ferroportin-1 (FPN1) or iron-regulated transporter 1 (IREG1). In the presence of a ferroxidase (hephaestin and/or ceruloplasmin), SLC40A1 acts as an iron exporter ferroportin releases Fe(2+) from cells into plasma, thereby maintaining iron homeostasis. Specially, it is involved in iron export from duodenal epithelial cell and also in the transfer of iron between maternal and fetal circulation. The transport activity of SLC40A1 is suppressed by the peptide hormone hepcidin. This family also includes a bacterial homologue of SLC40A1 (Bdellovibrio bacteriovorus ferroportin). It adopts the major facilitator superfamily fold, but undergoes an intra-domain conformational rearrangement during the transport cycle. SLC40A1 belongs to the Major Facilitator Superfamily (MFS) of membrane transport proteins, which are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement.
Pssm-ID: 341033 Cd Length: 386 Bit Score: 357.29 E-value: 5.34e-121
Ferroportin1 (FPN1); This family represents a conserved region approximately 100 residues long ...
1-396
8.57e-148
Ferroportin1 (FPN1); This family represents a conserved region approximately 100 residues long within eukaryotic Ferroportin1 (FPN1), a protein that may play a role in iron export from the cell. This family may represent a number of transmembrane regions in Ferroportin1.
Pssm-ID: 462052 Cd Length: 430 Bit Score: 427.10 E-value: 8.57e-148
Solute carrier family 40 member 1 of the Major Facilitator Superfamily of transporters; Solute ...
1-406
5.34e-121
Solute carrier family 40 member 1 of the Major Facilitator Superfamily of transporters; Solute carrier family 40 member 1 (SLC40A1 or SLC11A3) is also called ferroportin-1 (FPN1) or iron-regulated transporter 1 (IREG1). In the presence of a ferroxidase (hephaestin and/or ceruloplasmin), SLC40A1 acts as an iron exporter ferroportin releases Fe(2+) from cells into plasma, thereby maintaining iron homeostasis. Specially, it is involved in iron export from duodenal epithelial cell and also in the transfer of iron between maternal and fetal circulation. The transport activity of SLC40A1 is suppressed by the peptide hormone hepcidin. This family also includes a bacterial homologue of SLC40A1 (Bdellovibrio bacteriovorus ferroportin). It adopts the major facilitator superfamily fold, but undergoes an intra-domain conformational rearrangement during the transport cycle. SLC40A1 belongs to the Major Facilitator Superfamily (MFS) of membrane transport proteins, which are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement.
Pssm-ID: 341033 Cd Length: 386 Bit Score: 357.29 E-value: 5.34e-121
Database: CDSEARCH/cdd Low complexity filter: no Composition Based Adjustment: yes E-value threshold: 0.01
References:
Wang J et al. (2023), "The conserved domain database in 2023", Nucleic Acids Res.51(D)384-8.
Lu S et al. (2020), "The conserved domain database in 2020", Nucleic Acids Res.48(D)265-8.
Marchler-Bauer A et al. (2017), "CDD/SPARCLE: functional classification of proteins via subfamily domain architectures.", Nucleic Acids Res.45(D)200-3.
of the residues that compose this conserved feature have been mapped to the query sequence.
Click on the triangle to view details about the feature, including a multiple sequence alignment
of your query sequence and the protein sequences used to curate the domain model,
where hash marks (#) above the aligned sequences show the location of the conserved feature residues.
The thumbnail image, if present, provides an approximate view of the feature's location in 3 dimensions.
Click on the triangle for interactive 3D structure viewing options.
Functional characterization of the conserved domain architecture found on the query.
Click here to see more details.
This image shows a graphical summary of conserved domains identified on the query sequence.
The Show Concise/Full Display button at the top of the page can be used to select the desired level of detail: only top scoring hits
(labeled illustration) or all hits
(labeled illustration).
Domains are color coded according to superfamilies
to which they have been assigned. Hits with scores that pass a domain-specific threshold
(specific hits) are drawn in bright colors.
Others (non-specific hits) and
superfamily placeholders are drawn in pastel colors.
if a domain or superfamily has been annotated with functional sites (conserved features),
they are mapped to the query sequence and indicated through sets of triangles
with the same color and shade of the domain or superfamily that provides the annotation. Mouse over the colored bars or triangles to see descriptions of the domains and features.
click on the bars or triangles to view your query sequence embedded in a multiple sequence alignment of the proteins used to develop the corresponding domain model.
The table lists conserved domains identified on the query sequence. Click on the plus sign (+) on the left to display full descriptions, alignments, and scores.
Click on the domain model's accession number to view the multiple sequence alignment of the proteins used to develop the corresponding domain model.
To view your query sequence embedded in that multiple sequence alignment, click on the colored bars in the Graphical Summary portion of the search results page,
or click on the triangles, if present, that represent functional sites (conserved features)
mapped to the query sequence.
Concise Display shows only the best scoring domain model, in each hit category listed below except non-specific hits, for each region on the query sequence.
(labeled illustration) Standard Display shows only the best scoring domain model from each source, in each hit category listed below for each region on the query sequence.
(labeled illustration) Full Display shows all domain models, in each hit category below, that meet or exceed the RPS-BLAST threshold for statistical significance.
(labeled illustration) Four types of hits can be shown, as available,
for each region on the query sequence:
specific hits meet or exceed a domain-specific e-value threshold
(illustrated example)
and represent a very high confidence that the query sequence belongs to the same protein family as the sequences use to create the domain model
non-specific hits
meet or exceed the RPS-BLAST threshold for statistical significance (default E-value cutoff of 0.01, or an E-value selected by user via the
advanced search options)
the domain superfamily to which the specific and non-specific hits belong
multi-domain models that were computationally detected and are likely to contain multiple single domains
Retrieve proteins that contain one or more of the domains present in the query sequence, using the Conserved Domain Architecture Retrieval Tool
(CDART).
Modify your query to search against a different database and/or use advanced search options