putative protein [Arabidopsis thaliana]
RGLG family E3 ubiquitin-protein ligase( domain architecture ID 11619187)
RING domain ligase (RGLG) family E3 ubiquitin-protein ligase similar to Arabidopsis thaliana E3 ubiquitin-protein ligases RGLG1 and RGLG2, which function as RING E3 ligases that interact with ethylene response factor 53 (ERF53) in the nucleus and negatively regulate the plant drought stress response
List of domain hits
Name | Accession | Description | Interval | E-value | |||||
vWFA super family | cl00057 | Von Willebrand factor type A (vWA) domain was originally found in the blood coagulation ... |
99-349 | 7.61e-107 | |||||
Von Willebrand factor type A (vWA) domain was originally found in the blood coagulation protein von Willebrand factor (vWF). Typically, the vWA domain is made up of approximately 200 amino acid residues folded into a classic a/b para-rossmann type of fold. The vWA domain, since its discovery, has drawn great interest because of its widespread occurrence and its involvement in a wide variety of important cellular functions. These include basal membrane formation, cell migration, cell differentiation, adhesion, haemostasis, signaling, chromosomal stability, malignant transformation and in immune defenses In integrins these domains form heterodimers while in vWF it forms multimers. There are different interaction surfaces of this domain as seen by the various molecules it complexes with. Ligand binding in most cases is mediated by the presence of a metal ion dependent adhesion site termed as the MIDAS motif that is a characteristic feature of most, if not all A domains. The actual alignment was detected with superfamily member cd01459: Pssm-ID: 469594 Cd Length: 254 Bit Score: 317.39 E-value: 7.61e-107
|
|||||||||
RING-HC_RGLG_plant | cd16729 | RING finger, HC subclass, found in RING domain ligase RGLG1, RGLG2 and similar proteins from ... |
421-468 | 3.58e-31 | |||||
RING finger, HC subclass, found in RING domain ligase RGLG1, RGLG2 and similar proteins from plant; RGLG1 is a ubiquitously expressed E3 ubiquitin-protein ligase that interacts with UBC13 and, together with UBC13, catalyzes the formation of K63-linked polyubiquitin chains, which is involved in DNA damage repair. RGLG1 mediates the formation of canonical, K48-linked polyubiquitin chains that target proteins for degradation. It also regulates apical dominance by acting on the auxin transport proteins abundance. RGLG1 has overlapping functions with its closest sequelog, RGLG2. They both function as RING E3 ligases that interact with ethylene response factor 53 (ERF53) in the nucleus and negatively regulate the plant drought stress response. Members of this subfamily contain a Von Willebrand factor type A (vWA) domain and a C3HC4-type RING-HC finger. : Pssm-ID: 438389 Cd Length: 48 Bit Score: 113.73 E-value: 3.58e-31
|
|||||||||
Name | Accession | Description | Interval | E-value | |||||
vWA_copine_like | cd01459 | VWA Copine: Copines are phospholipid-binding proteins originally identified in paramecium. ... |
99-349 | 7.61e-107 | |||||
VWA Copine: Copines are phospholipid-binding proteins originally identified in paramecium. They are found in human and orthologues have been found in C. elegans and Arabidopsis Thaliana. None have been found in D. Melanogaster or S. Cereviciae. Phylogenetic distribution suggests that copines have been lost in some eukaryotes. No functional properties have been assigned to the VWA domains present in copines. The members of this subgroup contain a functional MIDAS motif based on their preferential binding to magnesium and manganese. However, the MIDAS motif is not totally conserved, in most cases the MIDAS consists of the sequence DxTxS instead of the motif DxSxS that is found in most cases. The C2 domains present in copines mediate phospholipid binding. Pssm-ID: 238736 Cd Length: 254 Bit Score: 317.39 E-value: 7.61e-107
|
|||||||||
Copine | pfam07002 | Copine; This family represents a conserved region approximately 220 residues long within ... |
145-357 | 2.03e-101 | |||||
Copine; This family represents a conserved region approximately 220 residues long within eukaryotic copines. Copines are Ca(2+)-dependent phospholipid-binding proteins that are thought to be involved in membrane-trafficking, and may also be involved in cell division and growth. Pssm-ID: 462064 Cd Length: 214 Bit Score: 301.95 E-value: 2.03e-101
|
|||||||||
RING-HC_RGLG_plant | cd16729 | RING finger, HC subclass, found in RING domain ligase RGLG1, RGLG2 and similar proteins from ... |
421-468 | 3.58e-31 | |||||
RING finger, HC subclass, found in RING domain ligase RGLG1, RGLG2 and similar proteins from plant; RGLG1 is a ubiquitously expressed E3 ubiquitin-protein ligase that interacts with UBC13 and, together with UBC13, catalyzes the formation of K63-linked polyubiquitin chains, which is involved in DNA damage repair. RGLG1 mediates the formation of canonical, K48-linked polyubiquitin chains that target proteins for degradation. It also regulates apical dominance by acting on the auxin transport proteins abundance. RGLG1 has overlapping functions with its closest sequelog, RGLG2. They both function as RING E3 ligases that interact with ethylene response factor 53 (ERF53) in the nucleus and negatively regulate the plant drought stress response. Members of this subfamily contain a Von Willebrand factor type A (vWA) domain and a C3HC4-type RING-HC finger. Pssm-ID: 438389 Cd Length: 48 Bit Score: 113.73 E-value: 3.58e-31
|
|||||||||
zf-C3HC4_3 | pfam13920 | Zinc finger, C3HC4 type (RING finger); |
421-464 | 8.33e-11 | |||||
Zinc finger, C3HC4 type (RING finger); Pssm-ID: 464042 [Multi-domain] Cd Length: 50 Bit Score: 57.00 E-value: 8.33e-11
|
|||||||||
VWA | smart00327 | von Willebrand factor (vWF) type A domain; VWA domains in extracellular eukaryotic proteins ... |
152-324 | 1.42e-09 | |||||
von Willebrand factor (vWF) type A domain; VWA domains in extracellular eukaryotic proteins mediate adhesion via metal ion-dependent adhesion sites (MIDAS). Intracellular VWA domains and homologues in prokaryotes have recently been identified. The proposed VWA domains in integrin beta subunits have recently been substantiated using sequence-based methods. Pssm-ID: 214621 [Multi-domain] Cd Length: 175 Bit Score: 57.08 E-value: 1.42e-09
|
|||||||||
RING | smart00184 | Ring finger; E3 ubiquitin-protein ligase activity is intrinsic to the RING domain of c-Cbl and ... |
425-457 | 8.73e-04 | |||||
Ring finger; E3 ubiquitin-protein ligase activity is intrinsic to the RING domain of c-Cbl and is likely to be a general function of this domain; Various RING fingers exhibit binding activity towards E2 ubiquitin-conjugating enzymes (Ubc' s) Pssm-ID: 214546 [Multi-domain] Cd Length: 40 Bit Score: 37.10 E-value: 8.73e-04
|
|||||||||
Name | Accession | Description | Interval | E-value | |||||
vWA_copine_like | cd01459 | VWA Copine: Copines are phospholipid-binding proteins originally identified in paramecium. ... |
99-349 | 7.61e-107 | |||||
VWA Copine: Copines are phospholipid-binding proteins originally identified in paramecium. They are found in human and orthologues have been found in C. elegans and Arabidopsis Thaliana. None have been found in D. Melanogaster or S. Cereviciae. Phylogenetic distribution suggests that copines have been lost in some eukaryotes. No functional properties have been assigned to the VWA domains present in copines. The members of this subgroup contain a functional MIDAS motif based on their preferential binding to magnesium and manganese. However, the MIDAS motif is not totally conserved, in most cases the MIDAS consists of the sequence DxTxS instead of the motif DxSxS that is found in most cases. The C2 domains present in copines mediate phospholipid binding. Pssm-ID: 238736 Cd Length: 254 Bit Score: 317.39 E-value: 7.61e-107
|
|||||||||
Copine | pfam07002 | Copine; This family represents a conserved region approximately 220 residues long within ... |
145-357 | 2.03e-101 | |||||
Copine; This family represents a conserved region approximately 220 residues long within eukaryotic copines. Copines are Ca(2+)-dependent phospholipid-binding proteins that are thought to be involved in membrane-trafficking, and may also be involved in cell division and growth. Pssm-ID: 462064 Cd Length: 214 Bit Score: 301.95 E-value: 2.03e-101
|
|||||||||
RING-HC_RGLG_plant | cd16729 | RING finger, HC subclass, found in RING domain ligase RGLG1, RGLG2 and similar proteins from ... |
421-468 | 3.58e-31 | |||||
RING finger, HC subclass, found in RING domain ligase RGLG1, RGLG2 and similar proteins from plant; RGLG1 is a ubiquitously expressed E3 ubiquitin-protein ligase that interacts with UBC13 and, together with UBC13, catalyzes the formation of K63-linked polyubiquitin chains, which is involved in DNA damage repair. RGLG1 mediates the formation of canonical, K48-linked polyubiquitin chains that target proteins for degradation. It also regulates apical dominance by acting on the auxin transport proteins abundance. RGLG1 has overlapping functions with its closest sequelog, RGLG2. They both function as RING E3 ligases that interact with ethylene response factor 53 (ERF53) in the nucleus and negatively regulate the plant drought stress response. Members of this subfamily contain a Von Willebrand factor type A (vWA) domain and a C3HC4-type RING-HC finger. Pssm-ID: 438389 Cd Length: 48 Bit Score: 113.73 E-value: 3.58e-31
|
|||||||||
RING-HC_MIBs-like | cd16520 | RING finger, HC subclass, found in mind bomb MIB1, MIB2, RGLG1, RGLG2, and similar proteins; ... |
423-461 | 2.04e-18 | |||||
RING finger, HC subclass, found in mind bomb MIB1, MIB2, RGLG1, RGLG2, and similar proteins; MIBs are large, multi-domain E3 ubiquitin-protein ligases that promote ubiquitination of the cytoplasmic tails of Notch ligands. They are also responsible for TBK1 K63-linked ubiquitination and activation, promoting interferon production and controlling antiviral immunity. Moreover, MIBs selectively control responses to cytosolic RNA and regulate type I interferon transcription. Both MIB1 and MIB2 have similar domain architectures, which consist of two Mib-Herc2 domains flanking a ZZ zinc finger, a REP region including two tandem Mib repeats, an ANK region that spans ankyrin repeats, and a RNG region, where MIB1 and MIB2 contain three and two C3HC4-type RING-HC fingers, respectively. This model corresponds to the third RING-HC finger of MIB1, as well as the second RING-HC finger of MIB2. In addition to MIB1 and MIB2, the RING-HC fingers of RING domain ligase RGLG1, RGLG2 and similar proteins from plant are also included in this model. RGLG1 is a ubiquitously expressed E3 ubiquitin-protein ligase that interacts with UBC13 and, together with UBC13, catalyzes the formation of K63-linked polyubiquitin chains, which is involved in DNA damage repair. RGLG1 mediates the formation of canonical, K48-linked polyubiquitin chains that target proteins for degradation. It also regulates apical dominance by acting on the auxin transport proteins abundance. RGLG1 has overlapping functions with its closest sequelog, RGLG2. They both function as RING E3 ligases that interact with ethylene response factor 53 (ERF53) in the nucleus and negatively regulate the plant drought stress response. All RGLG proteins contain a Von Willebrand factor type A (vWA) domain and a C3HC4-type RING-HC finger. Pssm-ID: 438183 [Multi-domain] Cd Length: 39 Bit Score: 78.10 E-value: 2.04e-18
|
|||||||||
RING-HC_MIB1_rpt3 | cd16727 | third RING finger, HC subclass, found in mind bomb 1 (MIB1) and similar proteins; MIB1, also ... |
424-468 | 3.49e-13 | |||||
third RING finger, HC subclass, found in mind bomb 1 (MIB1) and similar proteins; MIB1, also known as DAPK-interacting protein 1 (DIP-1) or zinc finger ZZ type with ankyrin repeat domain protein 2, is a large, multi-domain E3 ubiquitin-protein ligase that promotes ubiquitination of the cytoplasmic tails of Notch ligands, and thus plays an essential role in controlling metazoan development by Notch signaling. It is also involved in Wnt/beta-catenin signaling and nuclear factor (NF)-kappaB signaling, and has been implicated in innate immunity, neuronal function, genomic stability, and cell death. MIB1 contains an MZM region with two Mib-Herc2 domains flanking a ZZ zinc finger, a REP region including two tandem Mib repeats, an ANK region that spans ankyrin repeats, and a RNG region consisting of three C3HC4-type RING-HC fingers. This model corresponds to the third RING-HC finger. Pssm-ID: 438387 Cd Length: 46 Bit Score: 63.61 E-value: 3.49e-13
|
|||||||||
RING-HC_MIB2_rpt2 | cd16728 | second RING finger, HC subclass, found in mind bomb 2 (MIB2) and similar proteins; MIB2, also ... |
425-468 | 1.02e-11 | |||||
second RING finger, HC subclass, found in mind bomb 2 (MIB2) and similar proteins; MIB2, also known as novel zinc finger protein (Novelzin), putative NF-kappa-B-activating protein 002N, skeletrophin, or zinc finger ZZ type with ankyrin repeat domain protein 1, is a large, multi-domain E3 ubiquitin-protein ligase that promotes ubiquitination of the cytoplasmic tails of Notch ligands. Especially, it promotes Delta ubiquitylation and endocytosis in Notch activation. Overexpression of MIB2, activates NF-kappaB and interferon-stimulated response element (ISRE) reporter activity. Moreover, MIB2 acts as a novel component of the activated B-cell CLL/lymphoma 10 (BCL10) complex and controls BCL10-dependent NF-kappaB activation. It also functions as a founder myoblast-specific protein that regulates myoblast fusion and muscle stability. MIB2 contains an MZM region with two Mib-Herc2 domains flanking a ZZ zinc finger, a REP region including two tandem Mib repeats, an ANK region that spans ankyrin repeats, and a RNG region consisting of two C3HC4-type RING-HC fingers. This model corresponds to the second RING-HC finger. Pssm-ID: 438388 Cd Length: 51 Bit Score: 59.49 E-value: 1.02e-11
|
|||||||||
zf-C3HC4_3 | pfam13920 | Zinc finger, C3HC4 type (RING finger); |
421-464 | 8.33e-11 | |||||
Zinc finger, C3HC4 type (RING finger); Pssm-ID: 464042 [Multi-domain] Cd Length: 50 Bit Score: 57.00 E-value: 8.33e-11
|
|||||||||
VWA | smart00327 | von Willebrand factor (vWF) type A domain; VWA domains in extracellular eukaryotic proteins ... |
152-324 | 1.42e-09 | |||||
von Willebrand factor (vWF) type A domain; VWA domains in extracellular eukaryotic proteins mediate adhesion via metal ion-dependent adhesion sites (MIDAS). Intracellular VWA domains and homologues in prokaryotes have recently been identified. The proposed VWA domains in integrin beta subunits have recently been substantiated using sequence-based methods. Pssm-ID: 214621 [Multi-domain] Cd Length: 175 Bit Score: 57.08 E-value: 1.42e-09
|
|||||||||
mRING-HC-C3HC5_NEU1 | cd16647 | Modified RING finger, HC subclass (C3HC5-type), found in neuralized-like protein NEURL1A, ... |
425-468 | 2.27e-09 | |||||
Modified RING finger, HC subclass (C3HC5-type), found in neuralized-like protein NEURL1A, NEURL1B, and similar proteins; This subfamily includes Drosophila neuralized (D-neu) protein, and its two mammalian homologs, NEURL1A and NEURL1B. D-neu is a regulator of the developmentally important Notch signaling pathway. NEURL1A, also known as NEURL1, NEU, neuralized 1, or RING finger protein 67 (RNF67), is a mammalian homolog of D-neu. It functions as an E3 ubiquitin-protein ligase that directly interacts with and monoubiquitinates cytoplasmic polyadenylation element-binding protein 3 (CPEB3), an RNA binding protein and a translational regulator of local protein synthesis, which facilitates hippocampal plasticity and hippocampal-dependent memory storage. It also acts as a potential tumor suppressor that causes apoptosis and downregulates Notch target genes in medulloblastoma. NEURL1B, also known as neuralized-2 (NEUR2) or neuralized-like protein 3, is another mammalian homolog of D-neu protein. It functions as an E3 ubiquitin-protein ligase that interacts with and ubiquitinates Delta. Thus, it plays a role in the endocytic pathways for Notch signaling by working cooperatively with another E3 ligase, Mind bomb-1 (Mib1), in Delta endocytosis to hepatocyte growth factor-regulated tyrosine kinase substrate (Hrs)-positive vesicles. Members of this subfamily contain two neuralized homology regions (NHRs) responsible for Neural-ligand interactions and a modified C3HC5-type RING-HC finger required for ubiquitin ligase activity. The C3HC5-type RING-HC finger is distinguished from typical C3HC4-type RING-HC finger due to the existence of the additional cysteine residue in the middle portion of the RING finger domain. Pssm-ID: 438309 [Multi-domain] Cd Length: 53 Bit Score: 53.07 E-value: 2.27e-09
|
|||||||||
mRING-HC-C2H2C4_MDM2-like | cd16646 | Modified RING finger, HC subclass (C2H2C4-type), found in E3 ubiquitin-protein ligase MDM2, ... |
424-466 | 4.30e-08 | |||||
Modified RING finger, HC subclass (C2H2C4-type), found in E3 ubiquitin-protein ligase MDM2, protein MDM4 and similar proteins; MDM2 (also known as HDM2) and MDM4 (also known as MDMX or HDMX) are the primary p53 tumor suppressor negative regulators. They have non-redundant roles in the regulation of p53. MDM2 mainly functions to control p53 stability, while MDM4 controls p53 transcriptional activity. Both MDM2 and MDM4 contain an N-terminal p53-binding domain, a RanBP2-type zinc finger (zf-RanBP2) domain near the central acidic region, and a C-terminal modified C2H2C4-type RING-HC finger. Mdm2 can form homo-oligomers through its RING domain and displays E3 ubiquitin ligase activity that catalyzes the attachment of ubiquitin to p53 as an essential step in the regulation of its levels in cells. Despite its RING domain and structural similarity with MDM2, MDM4 does not homo-oligomerize and lacks ubiquitin-ligase function, but inhibits the transcriptional activity of p53. In addition, both their RING domains are responsible for the hetero-oligomerization, which is crucial for the suppression of P53 activity during embryonic development and the recruitment of E2 ubiquitin-conjugating enzymes. Moreover, MDM2 and MDM4 can be phosphorylated and destabilized in response to DNA damage stress. In response to ribosomal stress, MDM2-mediated p53 ubiquitination and degradation can be inhibited through the interaction with ribosomal proteins L5, L11, and L23. However, MDM4 is not bound to ribosomal proteins, suggesting its different response to regulation by small basic proteins such as ribosomal proteins and ARF. Pssm-ID: 438308 [Multi-domain] Cd Length: 52 Bit Score: 49.25 E-value: 4.30e-08
|
|||||||||
mRING-HC-C3HC5_MAPL | cd16648 | Modified RING finger, HC subclass (C3HC5-type), found in mitochondrial-anchored protein ligase ... |
425-468 | 4.89e-08 | |||||
Modified RING finger, HC subclass (C3HC5-type), found in mitochondrial-anchored protein ligase (MAPL) and similar proteins; MAPL, also known as MULAN, mitochondrial ubiquitin ligase activator of NFKB 1, E3 SUMO-protein ligase MUL1, E3 ubiquitin-protein ligase MUL1, growth inhibition and death E3 ligase (GIDE), putative NF-kappa-B-activating protein 266, or RING finger protein 218 (RNF218), is a multifunctional mitochondrial outer membrane protein involved in several processes specific to metazoan (multicellular animal) cells, such as NF-kappaB activation, innate immunity and antiviral signaling, suppression of PINK1/parkin defects, mitophagy in skeletal muscle, and caspase-dependent apoptosis. MAPL contains a unique BAM (beside a membrane)/GIDE (growth inhibition death E3 ligase) domain and a C-terminal modified cytosolic C3HC5-type RING-HC finger which is distinguished from typical C3HC4-type RING-HC finger due to the existence of the additional cysteine residue in the middle portion of the RING finger domain. Pssm-ID: 438310 [Multi-domain] Cd Length: 52 Bit Score: 49.39 E-value: 4.89e-08
|
|||||||||
RING-HC_CblA-like | cd16501 | RING finger, HC subclass, found in Dictyostelium discoideum Cbl-like protein A (CblA) and ... |
421-468 | 5.34e-08 | |||||
RING finger, HC subclass, found in Dictyostelium discoideum Cbl-like protein A (CblA) and similar proteins; CblA is a Dictyostelium homolog of the Cbl proteins which are multi-domain proteins acting as key negative regulators of various receptor and non-receptor tyrosine kinase signaling. CblA upregulates STATc tyrosine phosphorylation by downregulating PTP3, the protein tyrosine phosphatase responsible for dephosphorylating STATc. STATc is a signal transducer and activator of transcription protein. Like other Cbl proteins, CblA contains a tyrosine-kinase-binding domain (TKB), a proline-rich domain, a C3HC4-type RING-HC finger, and an ubiquitin-associated (UBA) domain. TKB, also known as a phosphotyrosine binding PTB domain, is composed of a four helix-bundle, a Ca2+ binding EF-hand and a highly variant SH2 domain. This family also includes Drosophila melanogaster defense repressor 1 (Dnr1) that was identified as an inhibitor of Dredd activity in the absence of a microbial insult in Drosophila S2 cells. It inhibits the Drosophila initiator caspases Dredd and Dronc. Moreover, Dnr1 acts as a negative regulator of the Imd (immune deficiency) innate immune-response pathway. Its mutations cause neurodegeneration in Drosophila by activating the innate immune response in the brain. Dnr1 contains a FERM N-terminal domain followed by a region rich in glutamine and serine residues, a central FERM domain, and a C-terminal C3HC4-type RING-HC finger. Pssm-ID: 438164 [Multi-domain] Cd Length: 53 Bit Score: 49.02 E-value: 5.34e-08
|
|||||||||
RING-HC_IAPs | cd16510 | RING finger, HC subclass, found in inhibitor of apoptosis proteins (IAPs); IAPs are frequently ... |
423-459 | 9.62e-08 | |||||
RING finger, HC subclass, found in inhibitor of apoptosis proteins (IAPs); IAPs are frequently overexpressed in cancer and associated with tumor cell survival, chemoresistance, disease progression, and poor prognosis. They function primarily as negative regulators of cell death. They regulate caspases and apoptosis through the inhibition of specific members of the caspase family of cysteine proteases. In addition, IAPs has been implicated in a multitude of other cellular processes, including inflammatory signalling and immunity, mitogenic kinase signalling, proliferation and mitosis, as well as cell invasion and metastasis. IAPs in this family includes cellular inhibitor of apoptosis protein c-IAP1 (BIRC2) and c-IAP2 (BIRC3), XIAP (BIRC4), BIRC7, and BIRC8, all of which contain three N-terminal baculoviral IAP repeat (BIR) domains that enable interactions with proteins, a ubiquitin-association (UBA) domain that is responsible for the binding of polyubiquitin (polyUb), and a C3HC4-type RING-HC finger at the carboxyl terminus that is required for ubiquitin ligase activity. The UBA domain is only absent in mammalian homologs of BIRC7. Moreover, c-IAPs contains an additional caspase activation and recruitment domain (CARD) between the UBA and C3HC4-type RING-HC domains. The CARD domain may serve as a protein interaction surface. Pssm-ID: 438173 [Multi-domain] Cd Length: 40 Bit Score: 48.02 E-value: 9.62e-08
|
|||||||||
RING-HC_BIRC2_3_7 | cd16713 | RING finger, HC subclass, found in apoptosis protein c-IAP1, c-IAP2, livin, and similar ... |
425-468 | 1.29e-07 | |||||
RING finger, HC subclass, found in apoptosis protein c-IAP1, c-IAP2, livin, and similar proteins; The cellular inhibitor of apoptosis protein c-IAPs function as ubiquitin E3 ligases that mediate the ubiquitination of substrates involved in apoptosis, nuclear factor-kappaB (NF-kappaB) signaling, and oncogenesis. Unlike other IAPs, such as XIAP, c-IAPs exhibit minimal binding to caspases and may not play an important role in the inhibition of these proteases. c-IAP1, also known as baculoviral IAP repeat-containing protein BIRC2, IAP-2, RING finger protein 48, or TNFR2-TRAF-signaling complex protein 2, is a potent regulator of the tumor necrosis factor (TNF) receptor family and NF-kappaB signaling pathways in the cytoplasm. It can also regulate E2F1 transcription factor-mediated control of cyclin transcription in the nucleus. c-IAP2, also known as BIRC3, IAP-1, apoptosis inhibitor 2 (API2), or IAP homolog C, also influences ubiquitin-dependent pathways that modulate innate immune signalling by activation of NF-kappaB. c-IAPs contain three N-terminal baculoviral IAP repeat (BIR) domains that enable interactions with proteins, a ubiquitin-association (UBA) domain that is responsible for the binding of polyubiquitin (polyUb), a caspase activation and recruitment domain (CARD) that serves as a protein interaction surface, and a C3HC4-type RING-HC finger at the carboxyl terminus that is required for ubiquitin ligase activity. Livin, also known as baculoviral IAP repeat-containing protein 7 (BIRC7), kidney inhibitor of apoptosis protein (KIAP), melanoma inhibitor of apoptosis protein (ML-IAP), or RING finger protein 50, was identified as the melanoma IAP. It plays crucial roles in apoptosis, cell proliferation, and cell cycle control. Its anti-apoptotic activity is regulated by the inhibition of caspase-3, -7, and -9. Its E3 ubiquitin-ligase-like activity promotes degradation of Smac/DIABLO, a critical endogenous regulator of all IAPs. Unlike other family members, mammalian livin contains a single BIR domain and a C3HC4-type RING-HC finger. The UBA domain can be detected in non-mammalian homologs of livin. Pssm-ID: 438373 [Multi-domain] Cd Length: 57 Bit Score: 48.24 E-value: 1.29e-07
|
|||||||||
RING-HC_LRSAM1 | cd16515 | RING finger, HC subclass, found in leucine-rich repeat and sterile alpha motif-containing ... |
425-467 | 2.99e-07 | |||||
RING finger, HC subclass, found in leucine-rich repeat and sterile alpha motif-containing protein 1 (LRSAM1) and similar proteins; LRSAM1, also known as Tsg101-associated ligase (TAL), or RIFLE, is an E3 ubiquitin-protein ligase that physically associates with, and selectively ubiquitylates, Tsg101, an E2-like molecule that regulates vesicular trafficking processes in yeast and mammals. It regulates a Tsg101-associated complex responsible for the sorting of cargo into cytoplasm-containing vesicles that bud at the multivesicular body and at the plasma membrane. LRSAM1 is a multidomain protein containing an N-terminal leucine-rich repeat (LRR), followed by several recognizable motifs, including an ezrin-radixin-moezin (ERM) domain, a coiled-coil (CC) region, a SAM domain, and a C-terminal C3HC4-type RING-HC finger domain. Pssm-ID: 438178 [Multi-domain] Cd Length: 48 Bit Score: 46.90 E-value: 2.99e-07
|
|||||||||
RING-HC_XBAT35-like | cd23129 | RING finger, HC subclass, found in Arabidopsis thaliana protein XB3 homolog 5 (XBAT35) and ... |
425-468 | 4.54e-07 | |||||
RING finger, HC subclass, found in Arabidopsis thaliana protein XB3 homolog 5 (XBAT35) and similar proteins; XBAT35, also known as ankyrin repeat domain and RING finger-containing protein XBAT35, or RING-type E3 ubiquitin transferase XBAT35, has no E3 ubiquitin-protein ligase activity observed when associated with the E2 enzyme UBC8 in vitro. It contains a typical C3HC4-type RING-HC finger. Pssm-ID: 438491 [Multi-domain] Cd Length: 54 Bit Score: 46.49 E-value: 4.54e-07
|
|||||||||
RING-HC_CARP | cd16500 | RING finger, HC subclass, found in caspases-8 and -10-associated RING finger protein CARP-1, ... |
424-458 | 1.01e-06 | |||||
RING finger, HC subclass, found in caspases-8 and -10-associated RING finger protein CARP-1, CARP-2 and similar proteins; The CARP subfamily includes CARP-1 and CARP-2 proteins, both of which are E3 ubiquitin ligases that ubiquitinate apical caspases and target them for proteasome-mediated degradation. As a novel group of caspase regulators with a FYVE-type zinc finger domain, they do not localize to membranes in the cell and are involved in the negative regulation of apoptosis, specifically targeting two initiator caspases, caspase 8, and caspase 10. Moreover, they stabilize MDM2 by inhibiting MDM2 self-ubiquitination, as well as by targeting 14-3-3sigma for degradation. They work together with MDM2 to enhance p53 degradation, thereby inhibiting p53-mediated cell death. CARPs contain an N-terminal FYVE-like domain that can serve as a membrane-targeting or endosome localizing signal and a C-terminal C3HC4-type RING-HC finger domain. Pssm-ID: 438163 [Multi-domain] Cd Length: 48 Bit Score: 45.46 E-value: 1.01e-06
|
|||||||||
vWA-TerF-like | pfam10138 | vWA found in TerF C terminus; vWA domain fused to TerD domain typified by the TerF protein. ... |
168-320 | 2.76e-06 | |||||
vWA found in TerF C terminus; vWA domain fused to TerD domain typified by the TerF protein. Some times found as solos. Pssm-ID: 401947 [Multi-domain] Cd Length: 200 Bit Score: 48.05 E-value: 2.76e-06
|
|||||||||
RING-HC_CARP2 | cd16707 | RING finger, HC subclass, found in caspases-8 and -10-associated RING finger protein 2 (CARP-2) ... |
421-458 | 3.25e-06 | |||||
RING finger, HC subclass, found in caspases-8 and -10-associated RING finger protein 2 (CARP-2) and similar proteins; CARP-2, also known as rififylin, caspase regulator CARP2, FYVE-RING finger protein Sakura (Fring), RING finger and FYVE-like domain-containing protein 1, RING finger protein 189 (RNF189), or RING finger protein 34-like, is an endosome-associated E3 ubiquitin-protein ligase that targets internalized receptor interacting kinase (RIP) for proteasome-mediated degradation. It acts as a negative regulator of tumor necrosis factor (TNF)-induced nuclear factor (NF)-kappaB activation. It also regulates the p53 signaling pathway by degrading 14-3-3sigma and stabilizing MDM2. As a caspase regulator, CARP2 does not localize to membranes in the cell and is involved in the negative regulation of apoptosis, specifically targeting two initiator caspases, caspase 8 and caspase 10. CARP2 contains an N-terminal FYVE-like domain and a C-terminal C3HC4-type RING-HC finger domain. Pssm-ID: 438367 [Multi-domain] Cd Length: 50 Bit Score: 44.20 E-value: 3.25e-06
|
|||||||||
RING-HC_MYLIP | cd16523 | RING finger, HC subclass, found in myosin regulatory light chain interacting protein (MYLIP) ... |
424-462 | 1.03e-05 | |||||
RING finger, HC subclass, found in myosin regulatory light chain interacting protein (MYLIP) and similar proteins; MYLIP, also known as inducible degrader of the low-density lipoprotein (LDL)-receptor (IDOL), or MIR, is an E3 ubiquitin-protein ligase that mediates ubiquitination and subsequent proteasomal degradation of myosin regulatory light chain (MRLC), LDLR, VLDLR, and LRP8. Its activity depends on E2 ubiquitin-conjugating enzymes of the UBE2D family. MYLIP stimulates clathrin-independent endocytosis and acts as a sterol-dependent inhibitor of cellular cholesterol uptake by binding directly to the cytoplasmic tail of the LDLR and promoting its ubiquitination via the UBE2D1/E1 complex. The ubiquitinated LDLR then enters the multivesicular body (MVB) protein-sorting pathway and is shuttled to the lysosome for degradation. Moreover, MYLIP has been identified as a novel ERM-like protein that affects cytoskeleton interactions regulating cell motility, such as neurite outgrowth. The ERM proteins includes ezrin, radixin, and moesin, which are cytoskeletal effector proteins linking actin to membrane-bound proteins at the cell surface. MYLIP contains an ERM-homology domain and a C-terminal C3HC4-type RING-HC finger. Pssm-ID: 438186 [Multi-domain] Cd Length: 52 Bit Score: 42.56 E-value: 1.03e-05
|
|||||||||
RING-HC | cd16449 | HC subclass of RING (RING-HC) finger and its variants; The RING finger is a specialized type ... |
425-457 | 1.22e-05 | |||||
HC subclass of RING (RING-HC) finger and its variants; The RING finger is a specialized type of Zn-finger of 40 to 60 residues that binds two atoms of zinc. It is defined by the "cross-brace" motif that chelates zinc atoms by eight amino acid residues, typically Cys or His, arranged in a characteristic spacing. Canonical RING motifs have been categorized into two major subclasses, RING-HC (C3HC4-type) and RING-H2 (C3H2C3-type), according to their Cys/His content. There are also many variants of RING fingers. Some have a different Cys/His pattern. Some lack a single Cys or His residue at typical Zn ligand positions, especially, the fourth or eighth zinc ligand is prevalently exchanged for an Asp, which can chelate Zn in a RING finger as well. This family corresponds to the HC subclass of RING (RING-HC) fingers that are characterized by containing C3HC4-type canonical RING-HC fingers or noncanonical RING-HC finger variants, including C4C4-, C3HC3D-, C2H2C4-, and C3HC5-type modified RING-HC fingers. The canonical RING-HC finger has been defined as C-X2-C-X(9-39)-C-X(1-3)-H-X(2-3)-C-X2-C-X(4-48)-C-X2-C. It binds two Zn ions in a unique "cross-brace" arrangement, which distinguishes it from tandem zinc fingers and other similar motifs. RING-HC fingers can be found in a group of diverse proteins with a variety of cellular functions, including oncogenesis, development, viral replication, signal transduction, the cell cycle, and apoptosis. Many of them are ubiquitin-protein ligases (E3s) that serve as scaffolds for binding to ubiquitin-conjugating enzymes (E2s, also referred to as ubiquitin carrier proteins or UBCs) in close proximity to substrate proteins, which enables efficient transfer of ubiquitin from E2 to the substrates. Pssm-ID: 438113 [Multi-domain] Cd Length: 41 Bit Score: 42.09 E-value: 1.22e-05
|
|||||||||
mRING-HC-C3HC5_MGRN1-like | cd16789 | Modified RING finger, HC subclass (C3HC5-type), found in mahogunin RING finger protein 1 ... |
424-458 | 4.39e-05 | |||||
Modified RING finger, HC subclass (C3HC5-type), found in mahogunin RING finger protein 1 (MGRN1), RING finger protein 157 (RNF157) and similar proteins; MGRN1, also known as RING finger protein 156 (RNF156), is a cytosolic E3 ubiquitin-protein ligase that inhibits signaling through the G protein-coupled melanocortin receptors-1 (MC1R), -2 (MC2R) and -4 (MC4R) via ubiquitylation-dependent and -independent processes. It suppresses chaperone-associated misfolded protein aggregation and toxicity. MGRN1 interacts with cytosolic prion proteins (PrPs) that are linked with neurodegeneration. It also interacts with expanded polyglutamine proteins, and suppresses misfolded polyglutamine aggregation and cytotoxicity. Moreover, MGRN1 inhibits melanocortin receptor signaling by competition with Galphas, suggesting a novel pathway for melanocortin signaling from the cell surface to the nucleus. MGRN1 also interacts with and ubiquitylates TSG101, a key component of the endosomal sorting complex required for transport (ESCRT)-I, and regulates endosomal trafficking. A null mutation in the gene encoding MGRN1 causes spongiform neurodegeneration, suggesting a link between dysregulation of endosomal trafficking and spongiform neurodegeneration. RNF157 is a cytoplasmic E3 ubiquitin ligase predominantly expressed in the brain. It is a homolog of the E3 ligase mahogunin ring finger-1 (MGRN1). In cultured neurons, it promotes neuronal survival in an E3 ligase-dependent manner. In contrast, it supports growth and maintenance of dendrites independent of its E3 ligase activity. RNF157 interacts with and ubiquitinates the adaptor protein APBB1 (amyloid beta precursor protein-binding, family B, member 1 or Fe65), which regulates neuronal survival, but not dendritic growth downstream of RNF157. The nuclear localization of APBB1 together with its interaction partner RNA-binding protein SART3 (squamous cell carcinoma antigen recognized by T cells 3 or Tip110) is crucial to trigger apoptosis. Both MGRN1 and RNF157 contain a modified C3HC5-type RING-HC finger, and a functionally uncharacterized region, known as domain associated with RING2 (DAR2), N-terminal to the RING finger. The C3HC5-type RING-HC finger is distinguished from typical C3HC4 RING-HC finger due to the existence of the additional cysteine residue in the middle portion of the RING finger domain. Pssm-ID: 438443 [Multi-domain] Cd Length: 42 Bit Score: 40.75 E-value: 4.39e-05
|
|||||||||
mRING-HC-C3HC5_NEU1A | cd16785 | Modified RING finger, HC subclass (C3HC5-type), found in neuralized-like protein 1A (NEURL1A) ... |
425-468 | 5.45e-05 | |||||
Modified RING finger, HC subclass (C3HC5-type), found in neuralized-like protein 1A (NEURL1A) and similar proteins; NEURL1A, also known as NEURL1, NEU, neuralized 1, or RING finger protein 67 (RNF67), is a mammalian homolog of the Drosophila neuralized (D-neu) protein. It functions as an E3 ubiquitin-protein ligase that directly interacts with and monoubiquitinates cytoplasmic polyadenylation element-binding protein 3 (CPEB3), an RNA binding protein and a translational regulator of local protein synthesis, which facilitates hippocampal plasticity and hippocampal-dependent memory storage. It also acts as a potential tumor suppressor that causes apoptosis and downregulates Notch target genes in the medulloblastoma. NEURL1A contains two neuralized homology regions (NHRs) responsible for Neural-ligand interactions and a modified C3HC5-type RING-HC finger required for ubiquitin ligase activity. The C3HC5-type RING-HC finger is distinguished from typical C3HC4-type RING-HC finger due to the existence of the additional cysteine residue in the middle portion of the RING finger domain. Pssm-ID: 438439 [Multi-domain] Cd Length: 59 Bit Score: 40.73 E-value: 5.45e-05
|
|||||||||
mRING-HC-C3HC5_NEU1B | cd16786 | Modified RING finger, HC subclass (C3HC5-type), found in neuralized-like protein 1B (NEURL1B); ... |
422-468 | 5.92e-05 | |||||
Modified RING finger, HC subclass (C3HC5-type), found in neuralized-like protein 1B (NEURL1B); NEURL1B, also known as neuralized-2 (NEUR2) or neuralized-like protein 3, is a mammalian homolog of the Drosophila neuralized (D-neu) protein. It functions as an E3 ubiquitin-protein ligase that interacts with and ubiquitinates Delta. Thus, it plays a role in the endocytic pathways for Notch signaling through working cooperatively with another E3 ligase, Mind bomb-1 (Mib1), in Delta endocytosis to hepatocyte growth factor-regulated tyrosine kinase substrate (Hrs)-positive vesicles. NEURL1B contains two neuralized homology regions (NHRs) responsible for Neural-ligand interactions and a modified C3HC5-type RING-HC finger required for ubiquitin ligase activity. The C3HC5-type RING-HC finger is distinguished from typical C3HC4-type RING-HC finger due to the existence of the additional cysteine residue in the middle portion of the RING finger domain. Pssm-ID: 438440 [Multi-domain] Cd Length: 57 Bit Score: 40.70 E-value: 5.92e-05
|
|||||||||
RING-HC_BIRC4_8 | cd16714 | RING finger, HC subclass, found in E3 ubiquitin-protein ligase XIAP, baculoviral IAP ... |
423-468 | 5.92e-05 | |||||
RING finger, HC subclass, found in E3 ubiquitin-protein ligase XIAP, baculoviral IAP repeat-containing protein 8 (BIRC8) and similar proteins; XIAP, also known as baculoviral IAP repeat-containing protein 4 (BIRC4), IAP-like protein (ILP), inhibitor of apoptosis protein 3 (IAP-3), or X-linked inhibitor of apoptosis protein (X-linked IAP), is a potent suppressor of apoptosis that directly inhibits specific members of the caspase family of cysteine proteases, including caspase-3, -7, and -9. It promotes proteasomal degradation of caspase-3 and enhances its anti-apoptotic effect in Fas-induced cell death. The ubiquitin-protein ligase (E3) activity of XIAP also exhibits in the ubiquitination of second mitochondria-derived activator of caspases (Smac). The mitochondrial proteins, Smac/DIABLO and Omi/HtrA2, can inhibit the antiapoptotic activity of XIAP. XIAP has also been implicated in several intracellular signaling cascades involved in the cellular response to stress, such as the c-Jun N-terminal kinase (JNK), the nuclear factor-kappaB (NF-kappaB), and the transforming growth factor-beta (TGF-beta) pathways. Moreover, XIAP can regulate copper homeostasis by interacting with MURR1. BIRC8, also known as inhibitor of apoptosis-like protein 2, IAP-like protein 2, ILP-2, or testis-specific inhibitor of apoptosis, is a tissue-specific homolog of E3 ubiquitin-protein ligase XIAP. It has been implicated in the control of apoptosis in the testis by direct inhibition of caspase 9. Both XIAP and BIRC8 contain three N-terminal baculoviral IAP repeat (BIR) domains, a ubiquitin-association (UBA) domain and a C3HC4-type RING-HC finger at the carboxyl terminus. Pssm-ID: 438374 [Multi-domain] Cd Length: 64 Bit Score: 40.89 E-value: 5.92e-05
|
|||||||||
RING-HC_Cbl-like | cd16502 | RING finger, HC subclass, found in Casitas B-lineage lymphoma (Cbl) proteins; The Cbl adaptor ... |
423-458 | 6.77e-05 | |||||
RING finger, HC subclass, found in Casitas B-lineage lymphoma (Cbl) proteins; The Cbl adaptor protein family contains a small class of RING-type E3 ubiquitin ligases with oncogenic activity, which is represented by three mammalian members, c-Cbl, Cbl-b and Cbl-c, as well as two invertebrate Cbl-family proteins, D-Cbl in Drosophila and Sli-1 in C. elegans. Cbl proteins function as potent negative regulators of various signaling cascades in a wide range of cell types. They play roles in ubiquitinating activated tyrosine kinases and targeting them for degradation. D-Cbl associates with the Drosophila epidermal growth factor receptor (EGFR) and overexpression of D-Cbl in the eye of Drosophila embryos inhibits EGFR-dependent photoreceptor cell development. Sli-1 is a negative regulator of the Let-23 receptor tyrosine kinase, an EGFR homolog, in vulva development. Cbl proteins in this subfamily consist of a highly conserved N-terminal half that includes a tyrosine-kinase-binding domain (TKB, also known as the phosphotyrosine binding PTB domain, composed of a four helix-bundle, a Ca2+ binding EF-hand and a highly variant SH2 domain) and a C3HC4-type RING-HC finger, both of which are required for Cbl-mediated downregulation of RTKs, and a divergent C-terminal region. Pssm-ID: 438165 [Multi-domain] Cd Length: 43 Bit Score: 40.02 E-value: 6.77e-05
|
|||||||||
RING-HC_Topors | cd16574 | RING finger, HC subclass, found in topoisomerase I-binding arginine/serine-rich protein ... |
423-461 | 8.99e-05 | |||||
RING finger, HC subclass, found in topoisomerase I-binding arginine/serine-rich protein (Topors) and similar proteins; Topors, also known as topoisomerase I-binding RING finger protein, tumor suppressor p53- binding protein 3, or p53-binding protein 3 (p53BP3), is a ubiquitously expressed nuclear E3 ubiquitin-protein ligase that can ligate both ubiquitin and small ubiquitin-like modifier (SUMO) to substrate proteins in the nucleus. It contains an N-terminal C3HC4-type RING-HC finger which ligates ubiquitin to its target proteins including DNA topoisomerase I, p53, NKX3.1, H2AX, and the AAV-2 Rep78/68 proteins. As a RING-dependent E3 ubiquitin ligase, Topors works with the E2 enzymes UbcH5a, UbcH5c, and UbcH6, but not with UbcH7, CDC34, or UbcH2b. Topors acts as a tumor suppressor in various malignancies. It regulates p53 modification, suggesting it may be responsible for astrocyte elevated gene-1 (AEG-1, also known as metadherin, or LYRIC) ubiquitin modification. Plk1-mediated phosphorylation of Topors inhibits Topors-mediated sumoylation of p53, whereas p53 ubiquitination is enhanced, leading to p53 degradation. It also functions as a negative regulator of the prostate tumor suppressor NKX3.1. Moreover, Topors is associated with promyelocytic leukemia nuclear bodies, and may be involved in the cellular response to camptothecin. It also plays a key role in the turnover of H2AX protein, discriminating the type of DNA damaging stress. Furthermore, Topors is a cilia-centrosomal protein associated with autosomal dominant retinal degeneration. Mutations in TOPORS cause autosomal dominant retinitis pigmentosa (adRP). Pssm-ID: 438236 [Multi-domain] Cd Length: 47 Bit Score: 39.96 E-value: 8.99e-05
|
|||||||||
RING-HC_SIAH1 | cd16751 | RING finger, HC subclass, found in seven in absentia homolog 1 (SIAH1) and similar proteins; ... |
425-460 | 9.76e-05 | |||||
RING finger, HC subclass, found in seven in absentia homolog 1 (SIAH1) and similar proteins; SIAH1, also known as Siah-1a, is an inducible E3 ubiquitin-protein ligase that contributes to proteasome-mediated degradation of multiple targets in numerous cellular processes including apoptosis, tumor suppression, cell cycle, axon guidance, transcription regulation, and tumor necrosis factor signaling. SIAH1 functions as a scaffolding protein and interacts with a variety of different substrates for ubiquitination and subsequent degradation. It regulates the oncoprotein p34SEI-1 polyubiquitination and its subsequent degradation in a p53-dependent manner, which mediates p53 preferential vitamin C cytotoxicity. It targets the nonreceptor tyrosine kinase activated Cdc42-associated kinase 1 (ACK1), a valid target in cancer therapy, for ubiquitinylation and proteasomal degradation. It also interacts with KLF10 and targets it for degradation. The CDK2 phosphorylation-mediated KLF10 dissociation from SIAH1 is linked to cell cycle progression. Moreover, SIAH1 is downregulated and associated with apoptosis and invasion in human breast cancer. It targets TAp73, a homolog of the tumor suppressor p53, for degradation. It is suppressed by hypoxia-inducible factor 1-alpha (HIF-1alpha) under hypoxic conditions to regulate TAp73 levels. It also promotes the migration and invasion of human glioma cells by regulating HIF-1alpha signaling under hypoxia. Furthermore, SIAH1 forms a protein complex with glyceraldehyde-3-phosphate dehydrogenase (GAPDH). The apoptosis signal-regulating kinase 1 (ASK1) functions as an activator of the GAPDH-Siah1 stress-signaling cascade. It also plays an important role in ethanol-induced apoptosis in neural crest cells (NCCs). SIAH1 contains an N-terminal C3HC4-type RING-HC finger, two zinc-finger subdomains, and a C-terminal tumor necrosis factor (TNF) receptor associated factor (TRAF)-like substrate-binding domain (SBD) responsible for dimer formation. Pssm-ID: 438409 [Multi-domain] Cd Length: 45 Bit Score: 39.89 E-value: 9.76e-05
|
|||||||||
RING-HC_CARP1 | cd16706 | RING finger, HC subclass, found in caspases-8 and -10-associated RING finger protein 1 (CARP1) ... |
421-458 | 1.09e-04 | |||||
RING finger, HC subclass, found in caspases-8 and -10-associated RING finger protein 1 (CARP1) and similar proteins; CARP1, also known as caspase regulator CARP1, FYVE-RING finger protein Momo, RING finger homologous to inhibitor of apoptosis protein (RFI), RING finger protein 34 (RNF34), or RING finger protein RIFF, is a nuclear protein that functions as a specific E3 ubiquitin ligase for the transcriptional coactivator PGC-1alpha, a master regulator of energy metabolism and adaptive thermogenesis in the brown fat cell which negatively regulates brown fat cell metabolism. It is preferentially expressed in esophageal, gastric, and colorectal cancers, suggesting a possible association with the development of digestive tract cancers. It regulates the p53 signaling pathway by degrading 14-3-3 sigma and stabilizing MDM2. CARP1 does not localize to membranes in the cell and is involved in the negative regulation of apoptosis, specifically targeting two initiator caspases, caspase 8 and caspase 10. CARP1 contains an N-terminal FYVE-like domain and a C-terminal C3HC4-type RING-HC finger domain. Pssm-ID: 438366 [Multi-domain] Cd Length: 54 Bit Score: 40.01 E-value: 1.09e-04
|
|||||||||
RING-HC_MIP1-like | cd23128 | RING finger, HC subclass, found in Arabidopsis thaliana MND1-interacting protein 1 (MIP1) and ... |
425-466 | 1.12e-04 | |||||
RING finger, HC subclass, found in Arabidopsis thaliana MND1-interacting protein 1 (MIP1) and similar proteins; This subfamily includes Arabidopsis thaliana MIP1, RING finger protein 4 (RF4) and RING finger protein 298 (RF298). MIP1 interacts with MND1, HOP2 and XRI1. RF4 and RF298 are putative E3 ubiquitin-protein ligase that may mediate E2-dependent protein ubiquitination. Members of this subfamily contain a typical C3HC4-type RING-HC finger. Pssm-ID: 438490 [Multi-domain] Cd Length: 55 Bit Score: 39.80 E-value: 1.12e-04
|
|||||||||
RING-HC_EHV1-like | cd23130 | RING finger, HC subclass, found in Equid alphaherpesvirus 1 (Equine herpesvirus 1/EHV-1) ... |
425-461 | 1.38e-04 | |||||
RING finger, HC subclass, found in Equid alphaherpesvirus 1 (Equine herpesvirus 1/EHV-1) regulatory protein and similar proteins; EHV-1 regulatory protein belongs to the Vmw110 (IPC0) protein family. It contains a typical C3HC4-type RING-HC finger and binds zinc stably. Pssm-ID: 438492 [Multi-domain] Cd Length: 51 Bit Score: 39.64 E-value: 1.38e-04
|
|||||||||
RING-HC_SPL2-like | cd23145 | RING finger, HC subclass, found in Arabidopsis thaliana SP1-like protein 2 (SPL2) and similar ... |
421-458 | 1.45e-04 | |||||
RING finger, HC subclass, found in Arabidopsis thaliana SP1-like protein 2 (SPL2) and similar proteins; SPL2, also known as RING-type E3 ubiquitin transferase SPL2, acts as an E3 ubiquitin-protein ligase that mediates E2-dependent protein ubiquitination. SPL2 contains a typical C3HC4-type RING-HC finger. Pssm-ID: 438507 [Multi-domain] Cd Length: 47 Bit Score: 39.49 E-value: 1.45e-04
|
|||||||||
RING-HC_RNF213 | cd16561 | RING finger, HC subclass, found in RING finger protein 213 (RNF213) and similar proteins; ... |
421-459 | 2.73e-04 | |||||
RING finger, HC subclass, found in RING finger protein 213 (RNF213) and similar proteins; RNF213, also known as ALK lymphoma oligomerization partner on chromosome 17 or Moyamoya steno-occlusive disease-associated AAA+ and RING finger protein (mysterin), is an intracellular soluble protein that functions as an E3 ubiquitin-protein ligase and AAA+ ATPase, which possibly contributes to vascular development through mechanical processes in the cell. It plays a unique role in endothelial cells for proper gene expression in response to inflammatory signals from the environment. Mutations in RNF213 may be associated with Moyamoya disease (MMD), an idiopathic cerebrovascular occlusive disorder prevalent in East Asia. It also acts as a nuclear marker for acanthomorph phylogeny. RNF213 contains two tandem enzymatically active AAA+ ATPase modules and a C3HC4-type RING-HC finger. It can form a huge ring-shaped oligomeric complex. Pssm-ID: 438223 [Multi-domain] Cd Length: 50 Bit Score: 38.41 E-value: 2.73e-04
|
|||||||||
RING-HC_Cbl-c | cd16710 | RING finger, HC subclass, found in E3 ubiquitin-protein ligase Cbl-c and similar proteins; ... |
423-464 | 3.06e-04 | |||||
RING finger, HC subclass, found in E3 ubiquitin-protein ligase Cbl-c and similar proteins; Cbl-c, also known as RING finger protein 57 (RNF57), SH3-binding protein Cbl-3, SH3-binding protein Cbl-c, or signal transduction protein Cbl-c, is an E3 ubiquitin-protein ligase expressed exclusively in epithelial cells. It contains a tyrosine-kinase-binding domain (TKB, also known as the phosphotyrosine binding PTB domain, composed of a four helix-bundle, a Ca2+ binding EF-hand and a highly variant SH2 domain), a C3HC4-type RING-HC finger, and a short proline-rich region, but lacks the ubiquitin-associated (UBA) leucine zipper motif that are present in Cbl and Cbl-b. Cbl-c acts as a regulator of epidermal growth factor receptor (EGFR)-mediated signal transduction. It also suppresses v-Src-induced transformation through ubiquitin-dependent protein degradation. Moreover, Cbl-c ubiquitinates and downregulates RETMEN2A and implicates Enigma (PDLIM7) as a positive regulator of RETMEN2A by blocking Cbl-mediated ubiquitination and degradation. The ubiquitin ligase activity of Cbl-c is increased via the interaction of its RING-HC finger domain with a LIM domain of the paxillin homolog, hydrogen peroxide induced construct 5 (Hic-5). Pssm-ID: 438370 [Multi-domain] Cd Length: 65 Bit Score: 38.91 E-value: 3.06e-04
|
|||||||||
RING-HC_TRIM62_C-IV | cd16608 | RING finger, HC subclass, found in tripartite motif-containing protein 62 (TRIM62) and similar ... |
421-460 | 3.07e-04 | |||||
RING finger, HC subclass, found in tripartite motif-containing protein 62 (TRIM62) and similar proteins; TRIM62, also known as Ductal Epithelium Associated Ring Chromosome 1 (DEAR1), is a cytoplasmic E3 ubiquitin-protein ligase that was identified as a dominant regulator of acinar morphogenesis in the mammary gland. It is implicated in the inflammatory response of immune cells by regulating the Toll-like receptor 4 (TLR4) signaling pathway, leading to increased activity of the activator protein 1 (AP-1) transcription factor in primary macrophages. It is also involved in muscular protein homeostasis, especially during inflammation-induced atrophy, and may play a role in the pathogenesis of ICU-acquired weakness (ICUAW) by activating and maintaining inflammation in myocytes. Moreover, TRIM62 facilitates K27-linked poly-ubiquitination of CARD9 and also regulates CARD9-mediated anti-fungal immunity and intestinal inflammation. It also functions as a chromosome 1p35 tumor suppressor and negatively regulates transforming growth factor beta (TGFbeta)-driven epithelial-mesenchymal transition (EMT) by binding to and promoting the ubiquitination of SMAD3, a major effector of TGFbeta-mediated EMT. TRIM62 belongs to the C-IV subclass of the TRIM (tripartite motif) family of proteins that are defined by their N-terminal RBCC (RING, Bbox, and coiled coil) domains, including three consecutive zinc-binding domains, a C3HC4-type RING-HC finger, Bbox1 and Bbox2, and a coiled coil region, as well as a B30.2/SPRY (SplA and ryanodine receptor) domain positioned C-terminal to the RBCC domain. Pssm-ID: 438270 [Multi-domain] Cd Length: 52 Bit Score: 38.64 E-value: 3.07e-04
|
|||||||||
RING-HC_MIB1_rpt1 | cd16724 | first RING finger, HC subclass, found in mind bomb 1 (MIB1) and similar proteins; MIB1, also ... |
425-458 | 3.34e-04 | |||||
first RING finger, HC subclass, found in mind bomb 1 (MIB1) and similar proteins; MIB1, also known as DAPK-interacting protein 1 (DIP-1) or zinc finger ZZ type with ankyrin repeat domain protein 2, is a large, multi-domain E3 ubiquitin-protein ligase that promotes ubiquitination of the cytoplasmic tails of Notch ligands, and thus plays an essential role in controlling metazoan development by Notch signaling. It is also involved in Wnt/beta-catenin signaling and nuclear factor (NF)-kappaB signaling, and has been implicated in innate immunity, neuronal function, genomic stability, and cell death. MIB1 contains an MZM region with two Mib-Herc2 domains flanking a ZZ zinc finger, a REP region including two tandem Mib repeats, an ANK region that spans ankyrin repeats, and a RNG region consisting of three C3HC4-type RING-HC fingers. This model corresponds to the first RING-HC finger. Pssm-ID: 438384 Cd Length: 38 Bit Score: 38.24 E-value: 3.34e-04
|
|||||||||
mRING-HC-C3HC5_CGRF1 | cd16787 | Modified RING finger, HC subclass (C3HC5-type), found in cell growth regulator with RING ... |
423-458 | 3.42e-04 | |||||
Modified RING finger, HC subclass (C3HC5-type), found in cell growth regulator with RING finger domain protein 1 (CGRRF1) and similar proteins; CGRRF1, also known as cell growth regulatory gene 19 protein (CGR19) or RING finger protein 197 (RNF197), functions as a novel biomarker to monitor endometrial sensitivity and response to insulin-sensitizing drugs, such as metformin, in the context of obesity. CGRRF1 contains a C-terminal modified C3HC5-type RING-HC finger, which is distinguished from typical C3HC4 RING-HC finger due to the existence of the additional cysteine residue in the middle portion of the RING finger domain. Pssm-ID: 438441 [Multi-domain] Cd Length: 38 Bit Score: 38.12 E-value: 3.42e-04
|
|||||||||
Prok-RING_4 | pfam14447 | Prokaryotic RING finger family 4; RING finger family domain found sporadically in bacteria. ... |
425-458 | 4.77e-04 | |||||
Prokaryotic RING finger family 4; RING finger family domain found sporadically in bacteria. The finger is fused to an N-terminal alpha-helical domain, ROT/Trove-like repeats and a C-terminal TerD domain. The architecture suggests a possible role in an RNA-processing complex. Pssm-ID: 433959 [Multi-domain] Cd Length: 46 Bit Score: 37.79 E-value: 4.77e-04
|
|||||||||
RING-HC_RNF185 | cd16744 | RING finger, HC subclass, found in RING finger protein 185 (RNF185) and similar proteins; ... |
425-461 | 7.91e-04 | |||||
RING finger, HC subclass, found in RING finger protein 185 (RNF185) and similar proteins; RNF185 is an E3 ubiquitin-protein ligase of endoplasmic reticulum-associated degradation (ERAD) that targets cystic fibrosis transmembrane conductance regulator (CFTR). It controls the degradation of CFTR and CFTR F508del allele in a RING- and proteasome-dependent manner, but does not control that of other classical ERAD model substrates. It also negatively regulates osteogenic differentiation by targeting dishevelled2 (Dvl2), a key mediator of the Wnt signaling pathway, for degradation. Moreover, RNF185 regulates selective mitochondrial autophagy through interaction with the Bcl-2 family protein BNIP1. It also plays an important role in cell adhesion and migration through the modulation of cell migration by ubiquitinating paxillin. RNF185 contains a C3HC4-type RING-HC finger. Pssm-ID: 438402 [Multi-domain] Cd Length: 57 Bit Score: 37.60 E-value: 7.91e-04
|
|||||||||
RING-HC_RNF5 | cd16743 | RING finger, HC subclass, found in RING finger protein 5 (RNF5) and similar proteins; RNF5, ... |
425-461 | 8.34e-04 | |||||
RING finger, HC subclass, found in RING finger protein 5 (RNF5) and similar proteins; RNF5, also known as protein G16 or Ram1, is an E3 ubiquitin-protein ligase anchored to the outer membrane of the endoplasmic reticulum (ER). It acts at early stages of cystic fibrosis (CF) transmembrane conductance regulator (CFTR) biosynthesis and functions as a target for therapeutic modalities to antagonize mutant CFTR proteins in CF patients carrying the F508del allele. It also regulates the turnover of specific G protein-coupled receptors by ubiquitinating JNK-associated membrane protein (JAMP) and preventing proteasome recruitment. RNF5 limits basal levels of autophagy and influences susceptibility to bacterial infection through the regulation of ATG4B stability. It is also involved in the degradation of Pendrin, a transmembrane chloride/anion exchanger highly expressed in thyroid, kidney, and inner ear. RNF5 plays an important role in cell adhesion and migration. It can modulate cell migration by ubiquitinating paxillin. Furthermore, RNF5 interacts with virus-induced signaling adaptor (VISA) at mitochondria in a viral infection-dependent manner, and further targets VISA at K362 and K461 for K48-linked ubiquitination and degradation after viral infection. It also negatively regulates virus-triggered signaling by targeting MITA, also known as STING, for ubiquitination and degradation at the mitochondria. In addition, RNF5 determines breast cancer response to ER stress-inducing chemotherapies through the regulation of the L-glutamine carrier proteins SLC1A5 and SLC38A2 (SLC1A5/38A2). It also has been implicated in muscle organization and in recognition and processing of misfolded proteins. RNF5 contains a C3HC4-type RING-HC finger. Pssm-ID: 438401 [Multi-domain] Cd Length: 54 Bit Score: 37.56 E-value: 8.34e-04
|
|||||||||
RING-HC_TRIM26_C-IV | cd16598 | RING finger, HC subclass, found in tripartite motif-containing protein 26 (TRIM26) and similar ... |
425-462 | 8.61e-04 | |||||
RING finger, HC subclass, found in tripartite motif-containing protein 26 (TRIM26) and similar proteins; TRIM26, also known as acid finger protein (AFP), RING finger protein 95 (RNF95), or zinc finger protein 173 (ZNF173), is an E3 ubiquitin-protein ligase that negatively regulates interferon-beta production and antiviral response through polyubiquitination and degradation of nuclear transcription factor IRF3. It functions as an important regulator for RNA virus-triggered innate immune response by bridging TBK1 to NEMO (NF-kappaB essential modulator, also known as IKKgamma) and mediating TBK1 activation. It also acts as a novel tumor suppressor of hepatocellular carcinoma by regulating cancer cell proliferation, colony forming ability, migration, and invasion. TRIM26 belongs the C-IV subclass of the TRIM (tripartite motif) family of proteins that are defined by their N-terminal RBCC (RING, Bbox, and coiled coil) domains, including three consecutive zinc-binding domains, a C3HC4-type RING-HC finger, a B-box, and two coiled coil domains, as well as a B30.2/SPRY (SplA and ryanodine receptor) domain positioned C-terminal to the RBCC domain. Pssm-ID: 438260 [Multi-domain] Cd Length: 64 Bit Score: 37.45 E-value: 8.61e-04
|
|||||||||
RING | smart00184 | Ring finger; E3 ubiquitin-protein ligase activity is intrinsic to the RING domain of c-Cbl and ... |
425-457 | 8.73e-04 | |||||
Ring finger; E3 ubiquitin-protein ligase activity is intrinsic to the RING domain of c-Cbl and is likely to be a general function of this domain; Various RING fingers exhibit binding activity towards E2 ubiquitin-conjugating enzymes (Ubc' s) Pssm-ID: 214546 [Multi-domain] Cd Length: 40 Bit Score: 37.10 E-value: 8.73e-04
|
|||||||||
RING-HC_Cbl-b | cd16709 | RING finger, HC subclass, found in E3 ubiquitin-protein ligase Cbl-b and similar proteins; ... |
423-462 | 9.53e-04 | |||||
RING finger, HC subclass, found in E3 ubiquitin-protein ligase Cbl-b and similar proteins; Cbl-b, also known as Casitas B-lineage lymphoma proto-oncogene b, RING finger protein 56 (RNF56), SH3-binding protein Cbl-b, or signal transduction protein Cbl-b, has been identified as a regulator of antigen-specific, T cell-intrinsic, peripheral immune tolerance, a state also known as clonal anergy. It may inhibit activation of the p85 subunit of phosphoinositide 3-kinase (PI3K), protein kinase C-theta (PKC-theta), and phospholipase C-gamma1 (PLC-gamma1) and negatively regulates T-cell receptor-induced transcription factor nuclear factor kappaB (NF-kappaB) activation. In addition, Cbl-b may target multiple signaling molecules involved in transforming growth factor (TGF)-beta-mediated transactivation pathways. Cbl-b contains a tyrosine-kinase-binding domain (TKB, also known as the phosphotyrosine binding PTB domain, is composed of a four helix-bundle, a Ca2+ binding EF-hand and a highly variant SH2 domain), a proline rich domain, a nuclear localization signal, a C3HC4-type RING-HC finger and an ubiquitin-associated (UBA) domain. Pssm-ID: 438369 [Multi-domain] Cd Length: 76 Bit Score: 37.74 E-value: 9.53e-04
|
|||||||||
RING-HC_RSPRY1 | cd16566 | RING finger, HC subclass, found in RING finger and SPRY domain-containing protein 1 (RSPRY1) ... |
425-461 | 1.41e-03 | |||||
RING finger, HC subclass, found in RING finger and SPRY domain-containing protein 1 (RSPRY1) and similar proteins; RSPRY1 is a hypothetical RING and SPRY domain-containing protein of unknown physiological function. Mutations in its corresponding gene RSPRY1 may associate with a distinct skeletal dysplasia syndrome. RSPRY1 contains a B30.2/SPRY domain and a C3HC4-type RING-HC finger. Pssm-ID: 438228 [Multi-domain] Cd Length: 43 Bit Score: 36.57 E-value: 1.41e-03
|
|||||||||
RING-HC_RNF166 | cd16549 | RING finger, HC subclass, found in RING finger protein 166 (RNF166) and similar proteins; ... |
425-460 | 1.70e-03 | |||||
RING finger, HC subclass, found in RING finger protein 166 (RNF166) and similar proteins; RNF166 is encoded by the gene RNF166 targeted by thyroid hormone receptor alpha1 (TRalpha1), which is important in brain development. It plays an important role in RNA virus-induced interferon-beta production by enhancing the ubiquitination of TRAF3 and TRAF6. RNF166, together with three closely related proteins: RNF114, RNF125 and RNF138, forms a novel family of ubiquitin ligases with a C3HC4-type RING-HC finger, a C2HC-, and two C2H2-type zinc fingers, as well as a ubiquitin interacting motif (UIM). Pssm-ID: 438211 [Multi-domain] Cd Length: 47 Bit Score: 36.33 E-value: 1.70e-03
|
|||||||||
RING-HC_ZNF598 | cd16615 | RING finger, HC subclass, found in zinc finger protein 598 (ZNF598) and similar proteins; ... |
424-462 | 1.95e-03 | |||||
RING finger, HC subclass, found in zinc finger protein 598 (ZNF598) and similar proteins; ZNF598 associates with eukaryotic initiation factor 4E (eIF4E) homologous protein from mammals (m4EHP) by binding to Grb10-interacting GYF protein 2 (GIGYF2). The m4EHP-GIGYF2 complex functions as a translational repressor and is essential for normal embryonic development of mammalian. ZNF598 harbors a C3HC4-type RING-HC finger at its N-terminus. Pssm-ID: 438277 [Multi-domain] Cd Length: 51 Bit Score: 36.05 E-value: 1.95e-03
|
|||||||||
RING-HC_PEX10 | cd16527 | RING finger, HC subclass, found in peroxin-10 (PEX10) and similar proteins; PEX10, also known ... |
425-462 | 2.06e-03 | |||||
RING finger, HC subclass, found in peroxin-10 (PEX10) and similar proteins; PEX10, also known as peroxisome biogenesis factor 10, peroxisomal biogenesis factor 10, peroxisome assembly protein 10, or RING finger protein 69 (RNF69), is an integral peroxisomal membrane protein with two transmembrane regions and a C3HC4-type RING-HC finger within its cytoplasmically exposed C-terminus. It plays an essential role in peroxisome assembly, import of target substrates, and recycling or degradation of protein complexes and amino acids. It is an essential component of the spinal locomotor circuit, and thus its mutations may be involved in peroxisomal biogenesis disorders (PBD). Mutations in human PEX10 also result in autosomal recessive ataxia. Moreover, PEX10 functions as an E3-ubiquitin ligase with an E2, UBCH5C. It mono- or poly-ubiquitinates PEX5, a key player in peroxisomal matrix protein import, in a UBC4-dependent manner, to control PEX5 receptor recycling or degradation. It also links the E2 ubiquitin conjugating enzyme PEX4 to the protein import machinery of the peroxisome. Pssm-ID: 438190 [Multi-domain] Cd Length: 52 Bit Score: 36.05 E-value: 2.06e-03
|
|||||||||
RING-HC_TRIM38_C-IV | cd16600 | RING finger, HC subclass, found in tripartite motif-containing protein 38 (TRIM38) and similar ... |
425-460 | 2.30e-03 | |||||
RING finger, HC subclass, found in tripartite motif-containing protein 38 (TRIM38) and similar proteins; TRIM38, also known as RING finger protein 15 (RNF15) or zinc finger protein RoRet, is an E3 ubiquitin-protein ligase that promotes K63- and K48-linked ubiquitination of cellular proteins and also catalyzes self-ubiquitination. It negatively regulates Tumor necrosis factor alpha (TNF-alpha)- and interleukin-1beta-triggered Nuclear factor-kappaB (NF-kappaB) activation by mediating lysosomal-dependent degradation of transforming growth factor beta (TGFbeta)-activated kinase 1 (TAK1)-binding protein (TAB)2/3, two critical components of the TAK1 kinase complex. It also inhibits TLR3/4-mediated activation of NF-kappaB and interferon regulatory factor 3 (IRF3) by mediating ubiquitin-proteasomal degradation of TNF receptor-associated factor 6 (Traf6) and NAK-associated protein 1 (Nap1), respectively. Moreover, TRIM38 negatively regulates TLR3-mediated interferon beta (IFN-beta) signaling by targeting ubiquitin-proteasomal degradation of TIR domain-containing adaptor inducing IFN-beta (TRIF). It functions as a valid target for autoantibodies in primary Sjogren's Syndrome. TRIM38 belongs the C-IV subclass of the TRIM (tripartite motif) family of proteins that are defined by their N-terminal RBCC (RING, Bbox, and coiled coil) domains, including three consecutive zinc-binding domains, a C3HC4-type RING-HC finger, a B-box, and two coiled coil domains, as well as a B30.2/SPRY (SplA and ryanodine receptor) domain positioned C-terminal to the RBCC domain. Pssm-ID: 438262 [Multi-domain] Cd Length: 58 Bit Score: 36.29 E-value: 2.30e-03
|
|||||||||
RING-HC_TRIM7-like_C-IV | cd16594 | RING finger, HC subclass, found in tripartite motif-containing proteins, TRIM7, TRIM11 and ... |
425-464 | 2.34e-03 | |||||
RING finger, HC subclass, found in tripartite motif-containing proteins, TRIM7, TRIM11 and TRIM27, and similar proteins; TRIM7, TRIM11 and TRIM27, closely related tripartite motif-containing proteins, belong to the C-IV subclass of the TRIM (tripartite motif) family of proteins that are defined by their N-terminal RBCC (RING, Bbox, and coiled coil) domains, including three consecutive zinc-binding domains, a C3HC4-type RING-HC finger, Bbox2, and a coiled coil region, as well as a SPRY/B30.2 domain positioned C-terminal to the RBCC domain. TRIM7, also known as glycogenin-interacting protein (GNIP) or RING finger protein 90 (RNF90), is an E3 ubiquitin-protein ligase that mediates c-Jun/AP-1 activation by Ras signalling. Its phosphorylation and activation by MSK1 in response to direct activation by the Ras-Raf-MEK-ERK pathway can stimulate TRIM7 E3 ubiquitin ligase activity in mediating Lys63-linked ubiquitination of the AP-1 coactivator RACO-1, leading to RACO-1 protein stabilization. Moreover, TRIM7 binds and activates glycogenin, the self-glucosylating initiator of glycogen biosynthesis. TRIM11, also known as protein BIA1, or RING finger protein 92 (RNF92), is an E3 ubiquitin-protein ligase involved in the development of the central nervous system. It is overexpressed in high-grade gliomas and promotes proliferation, invasion, migration and glial tumor growth. TRIM11 acts as a potential therapeutic target for congenital central hypoventilation syndrome (CCHS) by mediating the degradation of CCHS-associated polyalanine-expanded Phox2b. TRIM11 modulates the function of neurogenic transcription factor Pax6 through the ubiquitin-proteosome system, and thus plays an essential role for Pax6-dependent neurogenesis. It also binds to and destabilizes a key component of the activator-mediated cofactor complex (ARC105), humanin, a neuroprotective peptide against Alzheimer's disease-relevant insults, and further regulates ARC105 function in transforming growth factor beta (TGFbeta) signaling. Moreover, TRIM11 negatively regulates retinoic acid-inducible gene-I (RIG-I)-mediated interferon-beta (IFNbeta) production and antiviral activity by targeting TANK-binding kinase-1 (TBK1). It may contribute to the endogenous restriction of retroviruses in cells. It enhances N-tropic murine leukemia virus (N-MLV) entry by interfering with Ref1 restriction. It also suppresses the early steps of human immunodeficiency virus HIV-1 transduction, resulting in decreased reverse transcripts. TRIM27, also known as RING finger protein 76 (RNF76), RET finger protein (RFP), or zinc finger protein RFP, is a nuclear E3 ubiquitin-protein ligase that is highly expressed in testis and in various tumor cell lines. Expression of TRIM27 is associated with prognosis of colon and endometrial cancers. TRIM27 was first identified as a fusion partner of the RET receptor tyrosine kinase. It functions as a transcriptional repressor and associates with several proteins involved in transcriptional activity, such as enhancer of polycomb 1 (Epc1), a member of the Polycomb group proteins, and Mi-2beta, a main component of the nucleosome remodeling and deacetylase (NuRD) complex, and the cell cycle regulator retinoblastoma protein (RB1). It also interacts with HDAC1, leading to downregulation of thioredoxin binding protein 2 (TBP-2), which inhibits the function of thioredoxin. Moreover, TRIM27 mediates Pax7-induced ubiquitination of MyoD in skeletal muscle atrophy. In addition, it inhibits muscle differentiation by modulating serum response factor (SRF) and Epc1. TRIM27 promotes a non-canonical polyubiquitination of PTEN, a lipid phosphatase that catalyzes PtdIns(3,4,5)P3 (PIP3) to PtdIns(4,5)P2 (PIP2). It is an IKKepsilon-interacting protein that regulates IkappaB kinase (IKK) function and negatively regulates signaling involved in the antiviral response and inflammation. TRIM27 also forms a protein complex with MBD4 or MBD2 or MBD3, and thus plays an important role in the enhancement of transcriptional repression through MBD proteins in tumorigenesis, spermatogenesis, and embryogenesis. It is a component of an estrogen receptor 1 (ESR1) regulatory complex that is involved in estrogen receptor-mediated transcription in MCF-7 cells. Pssm-ID: 438256 [Multi-domain] Cd Length: 61 Bit Score: 36.13 E-value: 2.34e-03
|
|||||||||
RING-HC_SIAH2 | cd16752 | RING finger, HC subclass, found in seven in absentia homolog 2 (SIAH2) and similar proteins; ... |
425-467 | 2.40e-03 | |||||
RING finger, HC subclass, found in seven in absentia homolog 2 (SIAH2) and similar proteins; SIAH2 is an E3 ubiquitin-protein ligase that contributes to proteasome-mediated degradation of multiple targets in numerous cellular processes. It targets the ubiquitylation and degradation of tumor necrosis factor receptor-associated factor 2 (TRAF2) under stress conditions, which is required for the cell to commit to undergoing apoptosis. It is, therefore, a key regulator of TRAF2-dependent signaling in response to tumor necrosis factor-alpha (TNF-alpha) treatment and UV irradiation. SIAH2 modulates the polyubiquitination of G protein pathway suppressor 2 (GPS2), and targets it for proteasomal degradation. It is also a regulator of NF-E2-related factor 2 (Nrf2), a key regulator of cellular oxidative response, and contributes to the degradation of Nrf2 irrespective of its phosphorylation status. Moreover, SIAH2 contributes to castration-resistant prostate cancer (CRPC) by regulation of androgen receptor (AR) transcriptional activity. It enhances AR transcriptional activity and prostate cancer cell growth. Its stability can be regulated by AKR1C3. SIAH2 also inhibits tyrosine kinase-2 (TYK2)-STAT3 signaling in lung carcinoma cells. Furthermore, SIAH2 regulates obesity-induced adipose tissue inflammation by altering peroxisome proliferator-activated receptor gamma (PPAR gamma) protein levels and selectively regulating PPAR gamma activity. It also functions as a regulator of the nuclear hormone receptor RevErbalpha (Nr1d1) stability and rhythmicity, and overall circadian oscillator function. In addition, SIAH2 is an essential component of the hypoxia response Hippo signaling pathway and has been implicated in normal development and tumorigenesis. It modulates the hypoxia pathway upstream of hypoxia-induced transcription factor subunit HIF-1alpha, and therefore may play an important role in angiogenesis in response to hypoxic stress in endothelial cells. It also stimulates transcriptional coactivator YAP1 by destabilizing serine/threonine-protein kinase LATS2, a critical component of the Hippo pathway, in response to hypoxia. Meanwhile, SIAH2 is involved in regulation of tight junction integrity and cell polarity under hypoxia, through its regulation of apoptosis-stimulating proteins of p53 subunit 2 (ASPP2) stability. SIAH2 contains an N-terminal C3HC4-type RING-HC finger, two zinc-finger subdomains, and a C-terminal tumor necrosis factor (TNF) receptor associated factor (TRAF)-like substrate-binding domain (SBD) responsible for dimer formation. Pssm-ID: 438410 [Multi-domain] Cd Length: 51 Bit Score: 36.12 E-value: 2.40e-03
|
|||||||||
RING-HC_RBR_TRIAD1 | cd16773 | RING finger, HC subclass, found in two RING fingers and DRIL [double RING finger linked] 1 ... |
425-447 | 2.66e-03 | |||||
RING finger, HC subclass, found in two RING fingers and DRIL [double RING finger linked] 1 (TRIAD1); TRIAD1, also known as ariadne-2 (ARI-2), protein ariadne-2 homolog, Ariadne RBR E3 ubiquitin protein ligase 2 (ARIH2), or UbcM4-interacting protein 48, is an RBR-type E3 ubiquitin-protein ligase that catalyzes the formation of polyubiquitin chains linked via lysine-48, as well as lysine-63 residues. Its auto-ubiquitylation can be catalyzed by the E2 conjugating enzyme UBCH7. TRIAD1 has been implicated in hematopoiesis, specifically in myelopoiesis, as well as in embryogenesis. It functions as a regulator of endosomal transport and is required for the proper function of multivesicular bodies. It also acts as a novel ubiquitination target for proteasome-dependent degradation by murine double minute 2 (MDM2). As a proapoptotic protein, TRIAD1 promotes p53 activation, and inhibits MDM2-mediated p53 ubiquitination and degradation. Furthermore, TRIAD1 can inhibit the ubiquitination and proteasomal degradation of growth factor independence 1 (Gfi1), a transcriptional repressor essential for the function and development of many different hematopoietic lineages. TRIAD1 contains an RBR domain that was previously known as RING-BetweenRING-RING domain or TRIAD [two RING fingers and a DRIL (double RING finger linked)] domain. Based on current understanding of the structural biology of RBR ligases, the nomenclature of RBR has been corrected as RING-BRcat (benign-catalytic)-Rcat (required-for-catalysis) recently. The RBR (RING1-BRcat-Rcat) domain uses an auto-inhibitory mechanism to modulate ubiquitination activity, as well as a hybrid mechanism that combines aspects from both RING and HECT E3 ligase function to facilitate the ubiquitination reaction. This model corresponds to the RING domain, a C3HC4-type RING-HC finger required for RBR-mediated ubiquitination. Pssm-ID: 438429 [Multi-domain] Cd Length: 54 Bit Score: 35.79 E-value: 2.66e-03
|
|||||||||
zf-C3HC4 | pfam00097 | Zinc finger, C3HC4 type (RING finger); The C3HC4 type zinc-finger (RING finger) is a ... |
425-457 | 2.87e-03 | |||||
Zinc finger, C3HC4 type (RING finger); The C3HC4 type zinc-finger (RING finger) is a cysteine-rich domain of 40 to 60 residues that coordinates two zinc ions, and has the consensus sequence: C-X2-C-X(9-39)-C-X(1-3)-H-X(2-3)-C-X2-C-X(4-48)-C-X2-C where X is any amino acid. Many proteins containing a RING finger play a key role in the ubiquitination pathway. Pssm-ID: 395049 [Multi-domain] Cd Length: 40 Bit Score: 35.41 E-value: 2.87e-03
|
|||||||||
RING-HC_Cbl | cd16708 | RING finger, HC subclass, found in E3 ubiquitin-protein ligase Cbl and similar proteins; Cbl, ... |
423-462 | 3.12e-03 | |||||
RING finger, HC subclass, found in E3 ubiquitin-protein ligase Cbl and similar proteins; Cbl, also known as Casitas B-lineage lymphoma proto-oncogene, proto-oncogene c-Cbl, RING finger protein 55 (RNF55), or signal transduction protein Cbl, is a multi-domain protein that acts as a key negative regulator of various receptor and non-receptor tyrosine kinase signaling. It contains a tyrosine kinase-binding domain (TKB, also known as the phosphotyrosine binding PTB domain, composed of a four helix-bundle, a Ca2+ binding EF-hand and a highly variant SH2 domain), a proline-rich domain, a C3HC4-type RING-HC finger, and an ubiquitin-associated (UBA) domain. TKB is responsible for the interactions with many tyrosine kinases, such as the colony-stimulating factor-1 (CSF-1) receptor, Syk/ZAP-70, and Src-family of protein tyrosine kinases. The proline-rich domain can recruit proteins with a SH3 domain. Moreover, Cbl functions as an E3 ubiquitin ligase that can bind ubiquitin-conjugating enzymes (E2s) through the RING-HC finger. Pssm-ID: 438368 [Multi-domain] Cd Length: 77 Bit Score: 36.60 E-value: 3.12e-03
|
|||||||||
mRING-HC-C3HC5_CGRF1-like | cd16649 | Modified RING finger, HC subclass (C3HC5-type), found in RING finger proteins, RNF26, RNF197 ... |
423-458 | 3.37e-03 | |||||
Modified RING finger, HC subclass (C3HC5-type), found in RING finger proteins, RNF26, RNF197 (CGRRF1), RNF156 (MGRN1), RNF157 and similar proteins; This subfamily corresponds to a group of RING finger proteins containing a modified C3HC5-type RING-HC finger, which is distinguished from typical C3HC4 RING-HC finger due to the existence of the additional cysteine residue in the middle portion of the RING finger domain. Cell growth regulator with RING finger domain protein 1 (CGRRF1), also known as cell growth regulatory gene 19 protein (CGR19) or RING finger protein 197 (RNF197), functions as a novel biomarker to monitor endometrial sensitivity and response to insulin-sensitizing drugs, such as metformin, in the context of obesity. RNF26 is an E3 ubiquitin ligase that temporally regulates virus-triggered type I interferon induction by increasing the stability of Mediator of IRF3 activation, MITA, also known as STING, through K11-linked polyubiquitination after viral infection and promoting degradation of IRF3, another important component required for virus-triggered interferon induction. Mahogunin ring finger-1 (MGRN1), also known as RING finger protein 156 (RNF156), is a cytosolic E3 ubiquitin-protein ligase that inhibits signaling through the G protein-coupled melanocortin receptors-1 (MC1R), -2 (MC2R) and -4 (MC4R) via ubiquitylation-dependent and -independent processes. It suppresses chaperone-associated misfolded protein aggregation and toxicity. RNF157 is a cytoplasmic E3 ubiquitin ligase predominantly expressed in the brain. It is a homolog of the E3 ligase MGRN1. In cultured neurons, it promotes neuronal survival in an E3 ligase-dependent manner. In contrast, it supports growth and maintenance of dendrites independent of its E3 ligase activity. RNF157 interacts with and ubiquitinates the adaptor protein APBB1 (amyloid beta precursor protein-binding, family B, member 1 or Fe65), which regulates neuronal survival, but not dendritic growth downstream of RNF157. The nuclear localization of APBB1 together with its interaction partner RNA-binding protein SART3 (squamous cell carcinoma antigen recognized by T cells 3 or Tip110) is crucial to trigger apoptosis. Pssm-ID: 438311 [Multi-domain] Cd Length: 40 Bit Score: 35.38 E-value: 3.37e-03
|
|||||||||
RING-HC_HLTF | cd16509 | RING finger, HC subclass, found in helicase-like transcription factor (HLTF) and similar ... |
421-464 | 3.44e-03 | |||||
RING finger, HC subclass, found in helicase-like transcription factor (HLTF) and similar proteins; HLTF, also known as DNA-binding protein/plasminogen activator inhibitor 1 regulator, HIP116, RING finger protein 80, SWI/SNF-related matrix-associated actin-dependent regulator of chromatin subfamily A member 3, or sucrose nonfermenting protein 2-like 3, is a yeast RAD5 homolog found in mammals. It has both E3 ubiquitin ligase and DNA helicase activities, and plays a pivotal role in the template-switching pathway of DNA damage tolerance. It is involved in Lys-63-linked poly-ubiquitination of proliferating cell nuclear antigen (PCNA) at Lys-164 and in the regulation of DNA damage tolerance. It shows double-stranded DNA translocase activity with 3'-5' polarity, thereby facilitating regression of the replication fork. HLTF contains an N-terminal HIRAN (HIP116 and RAD5 N-terminal) domain, a SWI/SNF helicase domain that is divided into N- and C-terminal parts by an insertion of a C3HC4-type RING-HC finger involved in the poly-ubiquitination of PCNA. Pssm-ID: 438172 [Multi-domain] Cd Length: 53 Bit Score: 35.74 E-value: 3.44e-03
|
|||||||||
RING-HC_RNF123 | cd16541 | RING finger, HC subclass, found in RING finger protein 123 (RNF123) and similar proteins; ... |
423-447 | 3.46e-03 | |||||
RING finger, HC subclass, found in RING finger protein 123 (RNF123) and similar proteins; RNF123, also known as Kip1 ubiquitination-promoting complex protein 1 (KPC1), is an E3 ubiquitin-protein ligase that mediates ubiquitination and proteasomal processing of the nuclear factor-kappaB 1 (NF-kappaB1) precursor p105 to the p50 active subunit that restricts tumor growth. It also regulates degradation of heterochromatin protein 1alpha (HP1alpha) and 1beta (HP1beta) in lamin A/C knock-down cells. Moreover, RNF123, together with Kip1 ubiquitylation-promoting complex 2 (KPC2), forms the Kip1 ubiquitination-promoting complex (KPC), acting as a cytoplasmic ubiquitin ligase that regulates degradation of the cyclin-dependent kinase inhibitor p27 (Kip1) at the G1 phase of the cell cycle. RNF123 may also function as a clinically relevant, peripheral state marker of depression. RNF123 contains a C3HC4-type RING-HC finger at the C-terminus. Pssm-ID: 438203 [Multi-domain] Cd Length: 44 Bit Score: 35.35 E-value: 3.46e-03
|
|||||||||
RING-HC_CeBARD1-like | cd23143 | RING finger, HC subclass, found in Caenorhabditis elegans BRCA1-associated RING domain protein ... |
425-461 | 4.17e-03 | |||||
RING finger, HC subclass, found in Caenorhabditis elegans BRCA1-associated RING domain protein 1 (CeBARD1) and similar proteins; CeBARD1, also called Ce-BRD-1, Cebrd-1, or RING-type E3 ubiquitin transferase BARD1, is a constituent of the CeBCD complex that possesses E3 ubiquitin-protein ligase activity. It plays a role in triggering cellular responses at damage sites in response to DNA damage that may be induced by ionizing radiation. It protects against chromosome non-disjunction and nuclear fragmentation during meiotic double-strand break repair to ensure sister chromatid recombination and aid chromosome stability. CeBARD1 contains a typical C3HC4-type RING-HC finger. Pssm-ID: 438505 [Multi-domain] Cd Length: 47 Bit Score: 35.21 E-value: 4.17e-03
|
|||||||||
RING-HC_PRT1-like | cd23132 | RING finger, HC subclass, found in Arabidopsis thaliana proteolysis 1 protein (PRT1) and ... |
424-460 | 7.53e-03 | |||||
RING finger, HC subclass, found in Arabidopsis thaliana proteolysis 1 protein (PRT1) and similar proteins; PRT1, also called RING-type E3 ubiquitin transferase PRT1, is an E3 ubiquitin-protein ligase that mediates ubiquitination and subsequent proteasomal degradation of target proteins. It functions in the N-end rule pathway of protein degradation, where it specifically recognizes and ubiquitinates proteins with an N-terminal bulky aromatic amino acid (Phe). It does not act on aliphatic hydrophobic and basic N-terminal residues (Arg or Leu) containing proteins. PRT1 contains a typical C3HC4-type RING-HC finger. Pssm-ID: 438494 [Multi-domain] Cd Length: 52 Bit Score: 34.70 E-value: 7.53e-03
|
|||||||||
Blast search parameters | ||||
|