nucleotide-binding domain (NBD) of D-ribulokinase FGGY and similar proteins; The subfamily ...
6-513
0e+00
nucleotide-binding domain (NBD) of D-ribulokinase FGGY and similar proteins; The subfamily includes vertebrate D-ribulokinase FGGY (also known as FGGY carbohydrate kinase domain-containing protein) and similar proteins, such as Saccharomyces cerevisiae D-ribulokinase YDR109C, Yersinia Pseudotuberculosis uncharacterized carbohydrate kinase that has been named glyerol/xylulose kinase. D-ribulokinase (EC 2.7.1.47) catalyzes ATP-dependent phosphorylation of D-ribulose at C-5 to form D-ribulose 5-phosphate. It is postulated to function in a metabolite repair mechanism by preventing toxic accumulation of free D-ribulose formed by non-specific phosphatase activities. Alternatively, D-ribulokinase may play a role in regulating D-ribulose 5-phosphate recycling in the pentose phosphate pathway.
:
Pssm-ID: 466800 [Multi-domain] Cd Length: 540 Bit Score: 839.11 E-value: 0e+00
RING finger, HC subclass, found in Drosophila melanogaster Bre1 (dBre1) and similar proteins; ...
1369-1437
6.60e-45
RING finger, HC subclass, found in Drosophila melanogaster Bre1 (dBre1) and similar proteins; dBre1 is the functional homolog of yeast Bre1, an E3 ubiquitin ligase required for the monoubiquitination of histone H2B and, indirectly, for H3K4 methylation. dBre1 acts as a nuclear component required for the expression of Notch target genes in Drosophila development. dBre1 contains a C3HC4-type RING-HC finger at its C-terminus.
:
Pssm-ID: 438365 [Multi-domain] Cd Length: 69 Bit Score: 156.28 E-value: 6.60e-45
chromosome segregation protein SMC, common bacterial type; SMC (structural maintenance of ...
710-1381
1.06e-19
chromosome segregation protein SMC, common bacterial type; SMC (structural maintenance of chromosomes) proteins bind DNA and act in organizing and segregating chromosomes for partition. SMC proteins are found in bacteria, archaea, and eukaryotes. This family represents the SMC protein of most bacteria. The smc gene is often associated with scpB (TIGR00281) and scpA genes, where scp stands for segregation and condensation protein. SMC was shown (in Caulobacter crescentus) to be induced early in S phase but present and bound to DNA throughout the cell cycle. [Cellular processes, Cell division, DNA metabolism, Chromosome-associated proteins]
The actual alignment was detected with superfamily member TIGR02168:
Pssm-ID: 274008 [Multi-domain] Cd Length: 1179 Bit Score: 96.28 E-value: 1.06e-19
nucleotide-binding domain (NBD) of D-ribulokinase FGGY and similar proteins; The subfamily ...
6-513
0e+00
nucleotide-binding domain (NBD) of D-ribulokinase FGGY and similar proteins; The subfamily includes vertebrate D-ribulokinase FGGY (also known as FGGY carbohydrate kinase domain-containing protein) and similar proteins, such as Saccharomyces cerevisiae D-ribulokinase YDR109C, Yersinia Pseudotuberculosis uncharacterized carbohydrate kinase that has been named glyerol/xylulose kinase. D-ribulokinase (EC 2.7.1.47) catalyzes ATP-dependent phosphorylation of D-ribulose at C-5 to form D-ribulose 5-phosphate. It is postulated to function in a metabolite repair mechanism by preventing toxic accumulation of free D-ribulose formed by non-specific phosphatase activities. Alternatively, D-ribulokinase may play a role in regulating D-ribulose 5-phosphate recycling in the pentose phosphate pathway.
Pssm-ID: 466800 [Multi-domain] Cd Length: 540 Bit Score: 839.11 E-value: 0e+00
FGGY-family pentulose kinase; This model represents a subfamily of the FGGY family of ...
6-514
0e+00
FGGY-family pentulose kinase; This model represents a subfamily of the FGGY family of carbohydrate kinases. This subfamily is closely related to a set of ribulose kinases, and many members are designated ribitol kinase. However, the member from Klebsiella pneumoniae, from a ribitol catabolism operon, accepts D-ribulose and to a lesser extent D-arabinitol and ribitol (and JW Lengeler, personal communication); its annotation in GenBank as ribitol kinase is imprecise and may have affected public annotation of related proteins.
Pssm-ID: 273552 [Multi-domain] Cd Length: 541 Bit Score: 633.47 E-value: 0e+00
FGGY family of carbohydrate kinases, C-terminal domain; This domain adopts a ribonuclease ...
282-489
6.77e-49
FGGY family of carbohydrate kinases, C-terminal domain; This domain adopts a ribonuclease H-like fold and is structurally related to the N-terminal domain.
Pssm-ID: 426979 [Multi-domain] Cd Length: 197 Bit Score: 172.51 E-value: 6.77e-49
RING finger, HC subclass, found in Drosophila melanogaster Bre1 (dBre1) and similar proteins; ...
1369-1437
6.60e-45
RING finger, HC subclass, found in Drosophila melanogaster Bre1 (dBre1) and similar proteins; dBre1 is the functional homolog of yeast Bre1, an E3 ubiquitin ligase required for the monoubiquitination of histone H2B and, indirectly, for H3K4 methylation. dBre1 acts as a nuclear component required for the expression of Notch target genes in Drosophila development. dBre1 contains a C3HC4-type RING-HC finger at its C-terminus.
Pssm-ID: 438365 [Multi-domain] Cd Length: 69 Bit Score: 156.28 E-value: 6.60e-45
chromosome segregation protein SMC, common bacterial type; SMC (structural maintenance of ...
710-1381
1.06e-19
chromosome segregation protein SMC, common bacterial type; SMC (structural maintenance of chromosomes) proteins bind DNA and act in organizing and segregating chromosomes for partition. SMC proteins are found in bacteria, archaea, and eukaryotes. This family represents the SMC protein of most bacteria. The smc gene is often associated with scpB (TIGR00281) and scpA genes, where scp stands for segregation and condensation protein. SMC was shown (in Caulobacter crescentus) to be induced early in S phase but present and bound to DNA throughout the cell cycle. [Cellular processes, Cell division, DNA metabolism, Chromosome-associated proteins]
Pssm-ID: 274008 [Multi-domain] Cd Length: 1179 Bit Score: 96.28 E-value: 1.06e-19
Ring finger; E3 ubiquitin-protein ligase activity is intrinsic to the RING domain of c-Cbl and ...
1385-1423
2.31e-08
Ring finger; E3 ubiquitin-protein ligase activity is intrinsic to the RING domain of c-Cbl and is likely to be a general function of this domain; Various RING fingers exhibit binding activity towards E2 ubiquitin-conjugating enzymes (Ubc' s)
Pssm-ID: 214546 [Multi-domain] Cd Length: 40 Bit Score: 51.36 E-value: 2.31e-08
Zinc finger, C3HC4 type (RING finger); The C3HC4 type zinc-finger (RING finger) is a ...
1385-1423
1.20e-07
Zinc finger, C3HC4 type (RING finger); The C3HC4 type zinc-finger (RING finger) is a cysteine-rich domain of 40 to 60 residues that coordinates two zinc ions, and has the consensus sequence: C-X2-C-X(9-39)-C-X(1-3)-H-X(2-3)-C-X2-C-X(4-48)-C-X2-C where X is any amino acid. Many proteins containing a RING finger play a key role in the ubiquitination pathway.
Pssm-ID: 395049 [Multi-domain] Cd Length: 40 Bit Score: 49.28 E-value: 1.20e-07
nucleotide-binding domain (NBD) of D-ribulokinase FGGY and similar proteins; The subfamily ...
6-513
0e+00
nucleotide-binding domain (NBD) of D-ribulokinase FGGY and similar proteins; The subfamily includes vertebrate D-ribulokinase FGGY (also known as FGGY carbohydrate kinase domain-containing protein) and similar proteins, such as Saccharomyces cerevisiae D-ribulokinase YDR109C, Yersinia Pseudotuberculosis uncharacterized carbohydrate kinase that has been named glyerol/xylulose kinase. D-ribulokinase (EC 2.7.1.47) catalyzes ATP-dependent phosphorylation of D-ribulose at C-5 to form D-ribulose 5-phosphate. It is postulated to function in a metabolite repair mechanism by preventing toxic accumulation of free D-ribulose formed by non-specific phosphatase activities. Alternatively, D-ribulokinase may play a role in regulating D-ribulose 5-phosphate recycling in the pentose phosphate pathway.
Pssm-ID: 466800 [Multi-domain] Cd Length: 540 Bit Score: 839.11 E-value: 0e+00
FGGY-family pentulose kinase; This model represents a subfamily of the FGGY family of ...
6-514
0e+00
FGGY-family pentulose kinase; This model represents a subfamily of the FGGY family of carbohydrate kinases. This subfamily is closely related to a set of ribulose kinases, and many members are designated ribitol kinase. However, the member from Klebsiella pneumoniae, from a ribitol catabolism operon, accepts D-ribulose and to a lesser extent D-arabinitol and ribitol (and JW Lengeler, personal communication); its annotation in GenBank as ribitol kinase is imprecise and may have affected public annotation of related proteins.
Pssm-ID: 273552 [Multi-domain] Cd Length: 541 Bit Score: 633.47 E-value: 0e+00
nucleotide-binding domain (NBD) of ribulokinase (RBK) and similar proteins; RBK (EC 2.7.1.16; ...
6-514
6.10e-143
nucleotide-binding domain (NBD) of ribulokinase (RBK) and similar proteins; RBK (EC 2.7.1.16; also known as L-ribulokinase) catalyzes the MgATP-dependent phosphorylation of L(or D)-ribulose to produce L(or D)-ribulose 5-phosphate and ADP, which is the second step in arabinose catabolism. It also phosphorylates a variety of other sugar substrates including ribitol and arabitol. Members of this subfamily belong to the FGGY family of carbohydrate kinases, the monomers of which contain two large domains, which are separated by a deep cleft that forms the active site. This model includes both the N-terminal domain, which adopts a ribonuclease H-like fold, and the structurally related C-terminal domain.
Pssm-ID: 466799 [Multi-domain] Cd Length: 504 Bit Score: 446.60 E-value: 6.10e-143
nucleotide-binding domain (NBD) of ribulokinase-like carbohydrate kinases; The RBK family ...
6-516
7.02e-129
nucleotide-binding domain (NBD) of ribulokinase-like carbohydrate kinases; The RBK family includes bacterial RBK, vertebrate D-ribulokinase FGGY (also known as FGGY carbohydrate kinase domain-containing protein), Saccharomyces cerevisiae D-ribulokinase YDR109C, and Yersinia Pseudotuberculosis uncharacterized carbohydrate kinase that has been named glyerol/xylulose kinase. RBK (EC 2.7.1.16; also known as L-ribulokinase) catalyzes the MgATP-dependent phosphorylation of L(or D)-ribulose to produce L(or D)-ribulose 5-phosphate and ADP, which is the second step in arabinose catabolism. It also phosphorylates a variety of other sugar substrates including ribitol and arabitol. D-ribulokinase (EC 2.7.1.47) catalyzes ATP-dependent phosphorylation of D-ribulose at C-5 to form D-ribulose 5-phosphate. It is postulated to function in a metabolite repair mechanism by preventing toxic accumulation of free D-ribulose formed by non-specific phosphatase activities. Alternatively, D-ribulokinase may play a role in regulating D-ribulose 5-phosphate recycling in the pentose phosphate pathway. Members of this subfamily belong to the FGGY family of carbohydrate kinases, the monomers of which contain two large domains, which are separated by a deep cleft that forms the active site. This model includes both the N-terminal domain, which adopts a ribonuclease H-like fold, and the structurally related C-terminal domain.
Pssm-ID: 466788 [Multi-domain] Cd Length: 522 Bit Score: 409.71 E-value: 7.02e-129
Sugar (pentulose or hexulose) kinase [Carbohydrate transport and metabolism]; Sugar (pentulose ...
6-514
6.80e-78
Sugar (pentulose or hexulose) kinase [Carbohydrate transport and metabolism]; Sugar (pentulose or hexulose) kinase is part of the Pathway/BioSystem: Non-phosphorylated Entner-Doudoroff pathway
Pssm-ID: 440688 [Multi-domain] Cd Length: 494 Bit Score: 267.08 E-value: 6.80e-78
nucleotide-binding domain (NBD) of Saccharomyces cerevisiae protein MPA43 and similar proteins; ...
7-527
4.34e-76
nucleotide-binding domain (NBD) of Saccharomyces cerevisiae protein MPA43 and similar proteins; This subfamily contains a group of uncharacterized proteins with similarity to Saccharomyces cerevisiae protein MPA43. They belong to the FGGY family of carbohydrate kinases, the monomers of which contain two large domains, which are separated by a deep cleft that forms the active site. This model includes both the N-terminal domain, which adopts a ribonuclease H-like fold, and the structurally related C-terminal domain.
Pssm-ID: 466797 [Multi-domain] Cd Length: 544 Bit Score: 263.50 E-value: 4.34e-76
nucleotide-binding domain (NBD) of Escherichia coli sugar kinase YgcE and similar proteins; ...
6-514
2.63e-64
nucleotide-binding domain (NBD) of Escherichia coli sugar kinase YgcE and similar proteins; This subfamily contains a group of uncharacterized proteins with similarity to Escherichia coli sugar kinase YgcE. They belong to the FGGY family of carbohydrate kinases, the monomers of which contain two large domains, which are separated by a deep cleft that forms the active site. This model includes both the N-terminal domain, which adopts a ribonuclease H-like fold, and the structurally related C-terminal domain.
Pssm-ID: 466798 [Multi-domain] Cd Length: 433 Bit Score: 225.48 E-value: 2.63e-64
nucleotide-binding domain (NBD) of Escherichia coli xylulose kinase (EcXK) and similar ...
6-514
2.18e-62
nucleotide-binding domain (NBD) of Escherichia coli xylulose kinase (EcXK) and similar proteins; The subfamily contains a group of uncharacterized proteins with similarity to Escherichia coli xylulose kinase (EcXK). XK (EC 2.7.1.17), also called xylulokinase or D-xylulose kinase, catalyze the rate-limiting step in the ATP-dependent phosphorylation of D-xylulose to produce D-xylulose 5-phosphate (X5P), a molecule that may play an important role in the regulation of glucose metabolism and lipogenesis. EcXK, also known as 1-deoxy-D-xylulokinase, can also catalyze the phosphorylation of 1-deoxy-D-xylulose to 1-deoxy-D-xylulose 5-phosphate, with lower efficiency. It can also use D-ribulose, xylitol and D-arabitol, but D-xylulose is preferred over the other substrates. EcXK has a weak substrate-independent Mg-ATP-hydrolyzing activity. Members of this subfamily belong to the FGGY family of carbohydrate kinases, the monomers of which contain two large domains, which are separated by a deep cleft that forms the active site. This model includes both the N-terminal domain, which adopts a ribonuclease H-like fold, and the structurally related C-terminal domain.
Pssm-ID: 466808 [Multi-domain] Cd Length: 482 Bit Score: 221.64 E-value: 2.18e-62
nucleotide-binding domain (NBD) of Chromobacterium violaceum xylulose kinase (CvXK) and ...
6-514
3.83e-61
nucleotide-binding domain (NBD) of Chromobacterium violaceum xylulose kinase (CvXK) and similar proteins; The subfamily contains a group of uncharacterized proteins with similarity to Chromobacterium violaceum xylulose kinase (CvXK). Members of this subfamily belong to the FGGY family of carbohydrate kinases, the monomers of which contain two large domains, which are separated by a deep cleft that forms the active site. This model includes both the N-terminal domain, which adopts a ribonuclease H-like fold, and the structurally related C-terminal domain.
Pssm-ID: 466807 [Multi-domain] Cd Length: 485 Bit Score: 218.16 E-value: 3.83e-61
nucleotide-binding domain (NBD) of Rhodospirillum rubrum xylulose kinase (RrXK) and similar ...
6-472
4.39e-61
nucleotide-binding domain (NBD) of Rhodospirillum rubrum xylulose kinase (RrXK) and similar proteins; The subfamily contains a group of uncharacterized proteins with similarity to Rhodospirillum rubrum xylulose kinase (RrXK). Members of this subfamily belong to the FGGY family of carbohydrate kinases, the monomers of which contain two large domains, which are separated by a deep cleft that forms the active site. This model includes both the N-terminal domain, which adopts a ribonuclease H-like fold, and the structurally related C-terminal domain.
Pssm-ID: 466806 [Multi-domain] Cd Length: 451 Bit Score: 217.01 E-value: 4.39e-61
nucleotide-binding domain (NBD) of the FGGY family of carbohydrate kinases; This family is ...
6-486
3.42e-58
nucleotide-binding domain (NBD) of the FGGY family of carbohydrate kinases; This family is predominantly composed of glycerol kinase (GK) and similar carbohydrate kinases including rhamnulokinase (RhuK), xylulokinase (XK), gluconokinase (GntK), ribulokinase (RBK), and fuculokinase (FK). These enzymes catalyze the transfer of a phosphate group, usually from ATP, to their carbohydrate substrates. The monomer of FGGY proteins contains two large domains, which are separated by a deep cleft that forms the active site. One domain is primarily involved in sugar substrate binding, and the other is mainly responsible for ATP binding. This model includes both the N-terminal domain, which adopts a ribonuclease H-like fold, and the structurally related C-terminal domain. Substrate-induced conformational changes and a divalent cation may be required for the catalytic activity. The FGGY family belongs to the ASKHA (Acetate and Sugar Kinases/Hsc70/Actin) superfamily, all members of which share a common characteristic five-stranded beta sheet occurring in both the N- and C-terminal domains.
Pssm-ID: 466787 [Multi-domain] Cd Length: 392 Bit Score: 206.65 E-value: 3.42e-58
nucleotide-binding domain (NBD) of Synechococcus elongatus putative sugar kinase (SePSK), Arabidopsis thaliana xylulose kinase-1 (AtXK-1) and similar proteins; This subfamily corresponds to a group of uncharacterized bacterial proteins with similarity to Synechococcus elongatus putative sugar kinase (also known as SePSK; D-ribulose kinase; D-ribulokinase) and Arabidopsis thaliana xylulose kinase-1 (also known as AtXK-1; D-ribulose kinase; D-ribulokinase; inactive xylulose kinase 1). Both kinases exhibit ATP hydrolysis without substrate and can phosphorylate D-ribulose. They belong to the ribulokinase-like carbohydrate kinases, a subfamily of FGGY family carbohydrate kinases. Ribulokinase-like carbohydrate kinases are responsible for the phosphorylation of sugars such as L-ribulose and D-ribulose. Their monomers contain two large domains, which are separated by a deep cleft that forms the active site. This model includes both the N-terminal domain, which adopts a ribonuclease H-like fold, and the structurally related C-terminal domain.
Pssm-ID: 466801 [Multi-domain] Cd Length: 429 Bit Score: 200.14 E-value: 1.23e-55
nucleotide-binding domain (NBD) of L-fuculokinase (FK) and similar proteins; FK (EC 2.7.1.51), ...
6-490
2.43e-55
nucleotide-binding domain (NBD) of L-fuculokinase (FK) and similar proteins; FK (EC 2.7.1.51), also called L-fuculose kinase, catalyzes the ATP-dependent phosphorylation of L-fuculose to produce L-fuculose-1-phosphate and ADP. It can also phosphorylate, with lower efficiency, D-ribulose, D-xylulose and D-fructose. The presence of Mg2+ or Mn2+ is required for enzymatic activity. FKs belong to the FGGY family of carbohydrate kinases, the monomers of which contain two large domains, which are separated by a deep cleft that forms the active site. This model includes both the N-terminal domain, which adopts a ribonuclease H-like fold, and the structurally related C-terminal domain.
Pssm-ID: 466793 [Multi-domain] Cd Length: 443 Bit Score: 199.74 E-value: 2.43e-55
nucleotide-binding domain (NBD) of Escherichia coli L-xylulose/3-keto-L-gulonate kinase ...
6-490
6.97e-50
nucleotide-binding domain (NBD) of Escherichia coli L-xylulose/3-keto-L-gulonate kinase (EcLyxK) and similar proteins; The subfamily contains a group of uncharacterized proteins with similarity to Escherichia coli L-xylulose/3-keto-L-gulonate kinase (EcLyxK; EC 2.7.1.-/EC 2.7.1.53), Pasteurella multocida L-xylulose kinase (PmLyX, also known as L-xylulokinase; EC 2.7.1.53), and Brucella abortus erythritol kinase (BaEryA; EC 2.7.1.215). EcLyxK catalyzes the phosphorylation of L-xylulose and 3-keto-L-gulonate. It is involved in L-lyxose utilization via xylulose and may also be involved in the utilization of 2,3-diketo-L-gulonate. PmLyX catalyzes the phosphorylation of L-xylulose only. BaEryA catalyzes the phosphorylation of erythritol to D-erythritol-1-phosphate. Members of this subfamily belong to the FGGY family of carbohydrate kinases, the monomers of which contain two large domains, which are separated by a deep cleft that forms the active site. This model includes both the N-terminal domain, which adopts a ribonuclease H-like fold, and the structurally related C-terminal domain.
Pssm-ID: 466805 [Multi-domain] Cd Length: 444 Bit Score: 183.91 E-value: 6.97e-50
FGGY family of carbohydrate kinases, C-terminal domain; This domain adopts a ribonuclease ...
282-489
6.77e-49
FGGY family of carbohydrate kinases, C-terminal domain; This domain adopts a ribonuclease H-like fold and is structurally related to the N-terminal domain.
Pssm-ID: 426979 [Multi-domain] Cd Length: 197 Bit Score: 172.51 E-value: 6.77e-49
nucleotide-binding domain (NBD) of gluconate kinase (GntK) and similar proteins; GntK (EC 2.7. ...
6-514
2.39e-48
nucleotide-binding domain (NBD) of gluconate kinase (GntK) and similar proteins; GntK (EC 2.7.1.12), also known as gluconokinase, catalyzes the ATP-dependent phosphorylation of D-gluconate and produce 6-phospho-D-gluconate and ADP. The presence of Mg2+ might be required for catalytic activity. The prototypical member of this subfamily is GntK from Lactobacillus acidophilus. Unlike Escherichia coli GntK, which belongs to the superfamily of P-loop containing nucleoside triphosphate hydrolases, Members of this subfamily are homologous to glycerol kinase, xylulose kinase, and rhamnulokinase from Escherichia coli. They have been classified as members of the FGGY family of carbohydrate kinases, which contain two large domains separated by a deep cleft that forms the active site. This model spans both the N-terminal domain, which adopts a ribonuclease H-like fold, and the structurally related C-terminal domain.
Pssm-ID: 466790 [Multi-domain] Cd Length: 478 Bit Score: 180.44 E-value: 2.39e-48
RING finger, HC subclass, found in Drosophila melanogaster Bre1 (dBre1) and similar proteins; ...
1369-1437
6.60e-45
RING finger, HC subclass, found in Drosophila melanogaster Bre1 (dBre1) and similar proteins; dBre1 is the functional homolog of yeast Bre1, an E3 ubiquitin ligase required for the monoubiquitination of histone H2B and, indirectly, for H3K4 methylation. dBre1 acts as a nuclear component required for the expression of Notch target genes in Drosophila development. dBre1 contains a C3HC4-type RING-HC finger at its C-terminus.
Pssm-ID: 438365 [Multi-domain] Cd Length: 69 Bit Score: 156.28 E-value: 6.60e-45
RING finger, HC subclass, found in RING finger protein RNF20, RNF40, and similar proteins; ...
1373-1437
1.93e-36
RING finger, HC subclass, found in RING finger protein RNF20, RNF40, and similar proteins; RNF20, also known as BRE1A, and RNF40, also known as BRE1B, are E3 ubiquitin-protein ligases that work together to form a heterodimeric complex that facilitate the K120 monoubiquitination of histone H2B (H2Bub1), a DNA damage-induced histone modification that is crucial for recruitment of the chromatin remodeler SNF2h to DNA double-strand break (DSB) damage sites. RNF20 regulates the cell cycle and differentiation of neural precursor cells (NPCs) and links histone H2B ubiquitylation with inflammation and inflammation-associated cancer. RNF40, also known as 95 kDa retinoblastoma-associated protein (RBP95), was identified as a novel leucine zipper retinoblastoma protein (pRb)-associated protein that may function as a regulation factor in RNA polymerase II-mediated transcription and/or transcriptional processing. All subfamily members contain a C3HC4-type RING-HC finger at its C-terminus.
Pssm-ID: 438364 [Multi-domain] Cd Length: 65 Bit Score: 131.80 E-value: 1.93e-36
RING finger, HC subclass, found in RING finger protein 20 (RNF20); RNF20, also known as BRE1A ...
1369-1437
7.57e-36
RING finger, HC subclass, found in RING finger protein 20 (RNF20); RNF20, also known as BRE1A or BRE1, is an E3 ubiquitin-protein ligase that forms a heterodimeric complex together with BRE1B, also known as RNF40, to facilitate the K120 monoubiquitination of histone H2B (H2Bub1), a DNA damage-induced histone modification that is crucial for recruitment of the chromatin remodeler SNF2h to DNA double-strand break (DSB) damage sites. It regulates the cell cycle and differentiation of neural precursor cells (NPCs), and links histone H2B ubiquitylation with inflammation and inflammation-associated cancer. Moreover, RNF20 promotes the polyubiquitination and proteasome-dependent degradation of transcription factor activator protein 2alpha (AP-2alpha), a negative regulator of adipogenesis by repressing the transcription of CCAAT/enhancer binding protein (C/EBPalpha) gene. Furthermore, RNF20 functions as an additional chromatin regulator that is necessary for mixed-lineage leukemia (MLL)-fusion-mediated leukemogenesis. It also inhibits TFIIS-facilitated transcriptional elongation to suppress pro-oncogenic gene expression. TFIIS is a factor capable of relieving stalled RNA polymerase II. RNF20 contains a C3HC4-type RING-HC finger at its C-terminus.
Pssm-ID: 438463 [Multi-domain] Cd Length: 75 Bit Score: 130.54 E-value: 7.57e-36
RING finger, HC subclass, found in RING finger protein 40 (RNF40); RNF40, also known as BRE1B ...
1359-1437
1.13e-34
RING finger, HC subclass, found in RING finger protein 40 (RNF40); RNF40, also known as BRE1B or 95 kDa retinoblastoma-associated protein (RBP95), was identified as a novel leucine zipper retinoblastoma protein (pRb)-associated protein that may function as a regulation factor in RNA polymerase II-mediated transcription and/or transcriptional processing. RNF40 also functions as an E3 ubiquitin-protein ligase that forms a heterodimeric complex with BRE1B, also known as RNF40, to facilitate the K120 monoubiquitination of histone H2B (H2Bub1), a DNA damage-induced histone modification that is crucial for recruitment of the chromatin remodeler SNF2h to DNA double-strand break (DSB) damage sites. It cooperates with SUPT16H to induce dynamic changes in chromatin structure during DSB repair. RNF40 contains a C3HC4-type RING-HC finger at the C-terminus.
Pssm-ID: 438464 [Multi-domain] Cd Length: 78 Bit Score: 127.46 E-value: 1.13e-34
nucleotide-binding domain (NBD) of Bifidobacterium adolescentis xylulose kinase (XK) and ...
6-489
7.20e-32
nucleotide-binding domain (NBD) of Bifidobacterium adolescentis xylulose kinase (XK) and similar proteins; The subfamily includes a group of uncharacterized proteins with similarity to xylulose kinases (XKs) from Bifidobacterium adolescentis, Streptomyces coelicolor, Actinoplanes missouriensis and Haemophilus influenzae. Members of this subfamily belong to the FGGY family of carbohydrate kinases, the monomers of which contain two large domains, which are separated by a deep cleft that forms the active site. This model includes both the N-terminal domain, which adopts a ribonuclease H-like fold, and the structurally related C-terminal domain.
Pssm-ID: 466809 [Multi-domain] Cd Length: 443 Bit Score: 130.75 E-value: 7.20e-32
nucleotide-binding domain (NBD) of Bacillus subtilis sugar kinase YoaC and similar proteins; ...
6-487
8.71e-29
nucleotide-binding domain (NBD) of Bacillus subtilis sugar kinase YoaC and similar proteins; The subfamily includes a group of uncharacterized proteins with similarity to Bacillus subtilis sugar kinase YoaC. It is part of the yoaDCB operon and induced by sulfate. Members of this subfamily belong to the FGGY family of carbohydrate kinases, the monomers of which contain two large domains, which are separated by a deep cleft that forms the active site. This model includes both the N-terminal domain, which adopts a ribonuclease H-like fold, and the structurally related C-terminal domain.
Pssm-ID: 466804 [Multi-domain] Cd Length: 448 Bit Score: 121.56 E-value: 8.71e-29
RING finger, HC subclass, found in yeast Bre1 and its homologs from eukaryotes; Bre1 is an E3 ...
1377-1435
9.70e-27
RING finger, HC subclass, found in yeast Bre1 and its homologs from eukaryotes; Bre1 is an E3 ubiquitin-protein ligase that catalyzes monoubiquitination of histone H2B in concert with the E2 ubiquitin-conjugating enzyme, Rad6. The Rad6-Bre1-mediated histone H2B ubiquitylation modulates the formation of double-strand breaks (DSBs) during meiosis in yeast. it is also required, indirectly, for the methylation of histone 3 on lysine 4 (H3K4) and 79. RNF20, also known as BRE1A and RNF40, also known as BRE1B, are the mammalian homologs of Bre1. They work together to form a heterodimeric Bre1 complex that facilitate the K120 monoubiquitination of histone H2B (H2Bub1), a DNA damage-induced histone modification that is crucial for recruitment of the chromatin remodeler SNF2h to DNA double-strand break (DSB) damage sites. Moreover, the Bre1 complex acts as a tumor suppressor, augmenting expression of select tumor suppressor genes and suppressing select oncogenes. Deficiency in the mammalian histone H2B ubiquitin ligase Bre1 leads to replication stress and chromosomal instability. All subfamily members contain a C3HC4-type RING-HC finger at its C-terminus.
Pssm-ID: 438162 [Multi-domain] Cd Length: 59 Bit Score: 104.17 E-value: 9.70e-27
nucleotide-binding domain (NBD) of Brucella abortus erythritol kinase (BaEryA) and similar ...
6-472
1.92e-25
nucleotide-binding domain (NBD) of Brucella abortus erythritol kinase (BaEryA) and similar proteins; The subfamily contains a group of uncharacterized proteins with similarity to Brucella abortus erythritol kinase (BaEryA; EC 2.7.1.215). It catalyzes the phosphorylation of erythritol to D-erythritol-1-phosphate. Members of this subfamily belong to the FGGY family of carbohydrate kinases, the monomers of which contain two large domains, which are separated by a deep cleft that forms the active site. This model includes both the N-terminal domain, which adopts a ribonuclease H-like fold, and the structurally related C-terminal domain.
Pssm-ID: 466971 [Multi-domain] Cd Length: 452 Bit Score: 111.56 E-value: 1.92e-25
FGGY family of carbohydrate kinases, N-terminal domain; This domain adopts a ribonuclease ...
6-263
5.94e-25
FGGY family of carbohydrate kinases, N-terminal domain; This domain adopts a ribonuclease H-like fold and is structurally related to the C-terminal domain.
Pssm-ID: 395295 [Multi-domain] Cd Length: 245 Bit Score: 105.50 E-value: 5.94e-25
nucleotide-binding domain (NBD) of autoinducer-2 kinase (AI-2 kinase) and similar proteins; ...
6-513
3.54e-23
nucleotide-binding domain (NBD) of autoinducer-2 kinase (AI-2 kinase) and similar proteins; AI-2 kinase (EC 2.7.1.189), also known as LsrK, catalyzes the phosphorylation of autoinducer-2 (AI-2) to phospho-AI-2, which subsequently inactivates the transcriptional regulator LsrR and leads to the transcription of the lsr operon. It phosphorylates the ring-open form of (S)-4,5-dihydroxypentane-2,3-dione (DPD), which is the precursor to all AI-2 signaling molecules, at the C5 position. It is required for the regulation of the lsr operon and many other genes. Members of this subfamily belong to the FGGY family of carbohydrate kinases, the monomers of which contain two large domains, which are separated by a deep cleft that forms the active site. This model includes both the N-terminal domain, which adopts a ribonuclease H-like fold, and the structurally related C-terminal domain.
Pssm-ID: 466794 [Multi-domain] Cd Length: 492 Bit Score: 105.11 E-value: 3.54e-23
nucleotide-binding domain (NBD) of metazoan glycerol kinase 5 (GK5) and similar proteins; The ...
6-513
2.98e-20
nucleotide-binding domain (NBD) of metazoan glycerol kinase 5 (GK5) and similar proteins; The subfamily corresponds to a group of metazoan putative glycerol kinases (GK), which may be coded by the GK-like gene, GK5. Sequence comparison shows members of this group are homologs of bacterial GKs, and they retain all functionally important residues. However, GK-like proteins in this family do not have detectable GK activity. The reason remains unclear. It has been suggested that the conserved catalytic residues might facilitate them performing a distinct function. GK5 is a skin-specific kinase expressed predominantly in sebaceous glands. It can form a complex with the sterol regulatory element-binding proteins (SREBPs) through their C-terminal regulatory domains, inhibiting SREBP processing and activation. GK5 also promotes gefitinib resistance by inhibiting apoptosis and cell cycle arrest. Members of this subfamily belong to the FGGY family of carbohydrate kinases, the monomers of which contain two large domains, which are separated by a deep cleft that forms the active site. This model includes both the N-terminal domain, which adopts a ribonuclease H-like fold, and the structurally related C-terminal domain.
Pssm-ID: 466803 [Multi-domain] Cd Length: 501 Bit Score: 96.09 E-value: 2.98e-20
chromosome segregation protein SMC, common bacterial type; SMC (structural maintenance of ...
710-1381
1.06e-19
chromosome segregation protein SMC, common bacterial type; SMC (structural maintenance of chromosomes) proteins bind DNA and act in organizing and segregating chromosomes for partition. SMC proteins are found in bacteria, archaea, and eukaryotes. This family represents the SMC protein of most bacteria. The smc gene is often associated with scpB (TIGR00281) and scpA genes, where scp stands for segregation and condensation protein. SMC was shown (in Caulobacter crescentus) to be induced early in S phase but present and bound to DNA throughout the cell cycle. [Cellular processes, Cell division, DNA metabolism, Chromosome-associated proteins]
Pssm-ID: 274008 [Multi-domain] Cd Length: 1179 Bit Score: 96.28 E-value: 1.06e-19
nucleotide-binding domain (NBD) of glycerol kinase (GK) and similar proteins; GK (EC 2.7.1.30), ...
6-502
4.79e-16
nucleotide-binding domain (NBD) of glycerol kinase (GK) and similar proteins; GK (EC 2.7.1.30), also called ATP:glycerol 3-phosphotransferase, or glycerokinase, is a key enzyme in the regulation of glycerol uptake and metabolism. It catalyzes the Mg-ATP-dependent phosphorylation of glycerol to yield sn-glycerol 3-phosphate. It also catalyzes the phosphorylation of dihydroxyacetone, L-glyceraldehyde and D-glyceraldehyde. The subfamily includes GKs and GK-like proteins from all three kingdoms of living organisms. Metazoan GKs, coded by X chromosome-linked GK genes, and GK-like proteins, coded by autosomal testis-specific GK-like genes GK2, GK3 and Gykl1 (in mouse) are closely related to the bacterial GKs. The metazoan GKs do have GK enzymatic activity. However, the GK-like metazoan proteins do not exhibit GK activity and their biological functions are not yet clear. Some of them lack important functional residues involved in the binding of ADP and Mg2+, which may result in the loss of GK catalytic function. Others that have conserved catalytic residues have lost their GK activity as well; the reason remains unclear. It has been suggested the conserved catalytic residues might facilitate them performing a distinct function. Under different conditions, GKs from different species may exist in different oligomeric states. Members of this subfamily belong to the FGGY family of carbohydrate kinases, the monomers of which contain two large domains, which are separated by a deep cleft that forms the active site. This model includes both the N-terminal domain, which adopts a ribonuclease H-like fold, and the structurally related C-terminal domain.
Pssm-ID: 466789 [Multi-domain] Cd Length: 486 Bit Score: 82.90 E-value: 4.79e-16
chromosome segregation protein SMC, primarily archaeal type; SMC (structural maintenance of ...
555-1383
8.80e-16
chromosome segregation protein SMC, primarily archaeal type; SMC (structural maintenance of chromosomes) proteins bind DNA and act in organizing and segregating chromosomes for partition. SMC proteins are found in bacteria, archaea, and eukaryotes. It is found in a single copy and is homodimeric in prokaryotes, but six paralogs (excluded from this family) are found in eukarotes, where SMC proteins are heterodimeric. This family represents the SMC protein of archaea and a few bacteria (Aquifex, Synechocystis, etc); the SMC of other bacteria is described by TIGR02168. The N- and C-terminal domains of this protein are well conserved, but the central hinge region is skewed in composition and highly divergent. [Cellular processes, Cell division, DNA metabolism, Chromosome-associated proteins]
Pssm-ID: 274009 [Multi-domain] Cd Length: 1164 Bit Score: 83.19 E-value: 8.80e-16
nucleotide-binding domain (NBD) of sedoheptulokinase (SHK) and similar proteins; SHK (EC 2.7.1. ...
6-481
1.25e-15
nucleotide-binding domain (NBD) of sedoheptulokinase (SHK) and similar proteins; SHK (EC 2.7.1.14), also called heptulokinase, or carbohydrate kinase-like protein (CARKL), is encoded by the carbohydrate kinase-like (CARKL/SHPK) gene. It acts as a modulator of macrophage activation through control of glucose metabolism. SHK catalyzes the ATP-dependent phosphorylation of sedoheptulose to produce sedoheptulose 7-phosphate and ADP. The presence of Mg2+ or Mn2+ might be required for catalytic activity. Members of this subfamily belong to the FGGY family of carbohydrate kinases, the monomers of which contain two large domains, which are separated by a deep cleft that forms the active site. This model includes both the N-terminal domain, which adopts a ribonuclease H-like fold, and the structurally related C-terminal domain.
Pssm-ID: 466796 [Multi-domain] Cd Length: 436 Bit Score: 81.11 E-value: 1.25e-15
nucleotide-binding domain (NBD) of metazoan glycerol kinase 1-3 (GK1-3) and similar proteins; ...
382-513
1.44e-11
nucleotide-binding domain (NBD) of metazoan glycerol kinase 1-3 (GK1-3) and similar proteins; This subfamily contains metazoan glycerol kinases (GKs), coded by X chromosome-linked GK genes, and glycerol kinase (GK)-like proteins, coded by autosomal testis-specific GK-like genes (GK-like genes, GK2 and GK3). Sequence comparison shows that metazoan GKs and GK-like proteins in this family are closely related to the bacterial GKs (EC 2.7.1.30), which catalyze the Mg-ATP dependent phosphorylation of glycerol to yield glycerol 3-phosphate (G3P). The metazoan GKs do have GK enzymatic activity. However, the GK-like metazoan proteins do not exhibit GK activity and their biological functions are not yet clear. Some of them lack important functional residues involved in the binding of ADP and Mg2+, which may result in the loss of GK catalytic function. Others that have conserved catalytic residues have lost their GK activity as well; the reason remains unclear. It has been suggested the conserved catalytic residues might facilitate them performing a distinct function. Members of this subfamily belong to the FGGY family of carbohydrate kinases, the monomers of which contain two large domains, which are separated by a deep cleft that forms the active site. This model includes both the N-terminal domain, which adopts a ribonuclease H-like fold, and the structurally related C-terminal domain.
Pssm-ID: 466802 [Multi-domain] Cd Length: 499 Bit Score: 68.70 E-value: 1.44e-11
HC subclass of RING (RING-HC) finger and its variants; The RING finger is a specialized type ...
1383-1423
3.75e-10
HC subclass of RING (RING-HC) finger and its variants; The RING finger is a specialized type of Zn-finger of 40 to 60 residues that binds two atoms of zinc. It is defined by the "cross-brace" motif that chelates zinc atoms by eight amino acid residues, typically Cys or His, arranged in a characteristic spacing. Canonical RING motifs have been categorized into two major subclasses, RING-HC (C3HC4-type) and RING-H2 (C3H2C3-type), according to their Cys/His content. There are also many variants of RING fingers. Some have a different Cys/His pattern. Some lack a single Cys or His residue at typical Zn ligand positions, especially, the fourth or eighth zinc ligand is prevalently exchanged for an Asp, which can chelate Zn in a RING finger as well. This family corresponds to the HC subclass of RING (RING-HC) fingers that are characterized by containing C3HC4-type canonical RING-HC fingers or noncanonical RING-HC finger variants, including C4C4-, C3HC3D-, C2H2C4-, and C3HC5-type modified RING-HC fingers. The canonical RING-HC finger has been defined as C-X2-C-X(9-39)-C-X(1-3)-H-X(2-3)-C-X2-C-X(4-48)-C-X2-C. It binds two Zn ions in a unique "cross-brace" arrangement, which distinguishes it from tandem zinc fingers and other similar motifs. RING-HC fingers can be found in a group of diverse proteins with a variety of cellular functions, including oncogenesis, development, viral replication, signal transduction, the cell cycle, and apoptosis. Many of them are ubiquitin-protein ligases (E3s) that serve as scaffolds for binding to ubiquitin-conjugating enzymes (E2s, also referred to as ubiquitin carrier proteins or UBCs) in close proximity to substrate proteins, which enables efficient transfer of ubiquitin from E2 to the substrates.
Pssm-ID: 438113 [Multi-domain] Cd Length: 41 Bit Score: 56.34 E-value: 3.75e-10
chromosome segregation protein SMC, common bacterial type; SMC (structural maintenance of ...
564-1381
6.66e-10
chromosome segregation protein SMC, common bacterial type; SMC (structural maintenance of chromosomes) proteins bind DNA and act in organizing and segregating chromosomes for partition. SMC proteins are found in bacteria, archaea, and eukaryotes. This family represents the SMC protein of most bacteria. The smc gene is often associated with scpB (TIGR00281) and scpA genes, where scp stands for segregation and condensation protein. SMC was shown (in Caulobacter crescentus) to be induced early in S phase but present and bound to DNA throughout the cell cycle. [Cellular processes, Cell division, DNA metabolism, Chromosome-associated proteins]
Pssm-ID: 274008 [Multi-domain] Cd Length: 1179 Bit Score: 63.92 E-value: 6.66e-10
Escherichia coli glycerol kinase-like proteins; belongs to the FGGY family of carbohydrate ...
6-499
1.60e-09
Escherichia coli glycerol kinase-like proteins; belongs to the FGGY family of carbohydrate kinases; This subgroup is composed of mostly bacterial and archaeal glycerol kinases (GK), including the well characterized proteins from Escherichia coli (EcGK), Thermococcus kodakaraensis (TkGK), and Enterococcus casseliflavus (EnGK). GKs contain two large domains separated by a deep cleft that forms the active site. This model includes both the N-terminal domain, which adopts a ribonuclease H-like fold, and the structurally related C-terminal domain. The high affinity ATP binding site of EcGK is created only by a substrate-induced conformational change, which is initiated by protein-protein interactions through complex formation with enzyme IIAGlc (also known as IIIGlc), the glucose-specific phosphocarrier protein of the phosphotransferase system (PTS). EcGK exists in a dimer-tetramer equilibrium. IIAGlc binds to both EcGK dimer and tetramer, and inhibits the uptake and subsequent metabolism of glycerol and maltose. Another well-known allosteric regulator of EcGK is fructose 1,6-bisphosphate (FBP), which binds to the EcGK tetramer and plays an essential role in the stabilization of the inactive tetrameric form. EcGK requires Mg2+ for its enzymatic activity. Members in this subgroup belong to the FGGY family of carbohydrate kinases
Pssm-ID: 198361 [Multi-domain] Cd Length: 486 Bit Score: 62.12 E-value: 1.60e-09
exonuclease SbcC; All proteins in this family for which functions are known are part of an ...
825-1381
5.45e-09
exonuclease SbcC; All proteins in this family for which functions are known are part of an exonuclease complex with sbcD homologs. This complex is involved in the initiation of recombination to regulate the levels of palindromic sequences in DNA. This family is based on the phylogenomic analysis of JA Eisen (1999, Ph.D. Thesis, Stanford University). [DNA metabolism, DNA replication, recombination, and repair]
Pssm-ID: 129705 [Multi-domain] Cd Length: 1042 Bit Score: 61.14 E-value: 5.45e-09
Protein of unknown function (DUF3584); This protein is found in bacteria and eukaryotes. ...
885-1419
6.63e-09
Protein of unknown function (DUF3584); This protein is found in bacteria and eukaryotes. Proteins in this family are typically between 943 to 1234 amino acids in length. This family contains a P-loop motif suggesting it is a nucleotide binding protein. It may be involved in replication.
Pssm-ID: 432349 [Multi-domain] Cd Length: 1191 Bit Score: 60.62 E-value: 6.63e-09
chromosome segregation protein SMC, common bacterial type; SMC (structural maintenance of ...
933-1357
2.17e-08
chromosome segregation protein SMC, common bacterial type; SMC (structural maintenance of chromosomes) proteins bind DNA and act in organizing and segregating chromosomes for partition. SMC proteins are found in bacteria, archaea, and eukaryotes. This family represents the SMC protein of most bacteria. The smc gene is often associated with scpB (TIGR00281) and scpA genes, where scp stands for segregation and condensation protein. SMC was shown (in Caulobacter crescentus) to be induced early in S phase but present and bound to DNA throughout the cell cycle. [Cellular processes, Cell division, DNA metabolism, Chromosome-associated proteins]
Pssm-ID: 274008 [Multi-domain] Cd Length: 1179 Bit Score: 58.91 E-value: 2.17e-08
Ring finger; E3 ubiquitin-protein ligase activity is intrinsic to the RING domain of c-Cbl and ...
1385-1423
2.31e-08
Ring finger; E3 ubiquitin-protein ligase activity is intrinsic to the RING domain of c-Cbl and is likely to be a general function of this domain; Various RING fingers exhibit binding activity towards E2 ubiquitin-conjugating enzymes (Ubc' s)
Pssm-ID: 214546 [Multi-domain] Cd Length: 40 Bit Score: 51.36 E-value: 2.31e-08
chromosome segregation protein SMC, common bacterial type; SMC (structural maintenance of ...
566-1346
3.29e-08
chromosome segregation protein SMC, common bacterial type; SMC (structural maintenance of chromosomes) proteins bind DNA and act in organizing and segregating chromosomes for partition. SMC proteins are found in bacteria, archaea, and eukaryotes. This family represents the SMC protein of most bacteria. The smc gene is often associated with scpB (TIGR00281) and scpA genes, where scp stands for segregation and condensation protein. SMC was shown (in Caulobacter crescentus) to be induced early in S phase but present and bound to DNA throughout the cell cycle. [Cellular processes, Cell division, DNA metabolism, Chromosome-associated proteins]
Pssm-ID: 274008 [Multi-domain] Cd Length: 1179 Bit Score: 58.53 E-value: 3.29e-08
Zinc finger, C3HC4 type (RING finger); The C3HC4 type zinc-finger (RING finger) is a ...
1385-1423
1.20e-07
Zinc finger, C3HC4 type (RING finger); The C3HC4 type zinc-finger (RING finger) is a cysteine-rich domain of 40 to 60 residues that coordinates two zinc ions, and has the consensus sequence: C-X2-C-X(9-39)-C-X(1-3)-H-X(2-3)-C-X2-C-X(4-48)-C-X2-C where X is any amino acid. Many proteins containing a RING finger play a key role in the ubiquitination pathway.
Pssm-ID: 395049 [Multi-domain] Cd Length: 40 Bit Score: 49.28 E-value: 1.20e-07
RING finger, HC subclass, found in constitutive photomorphogenesis protein 1 (COP1) and ...
1383-1424
1.25e-07
RING finger, HC subclass, found in constitutive photomorphogenesis protein 1 (COP1) and similar proteins; COP1, also known as RING finger and WD repeat domain protein 2 (RFWD2) or RING finger protein 200 (RNF200), is a central regulator of photomorphogenic development in plants, which targets key transcription factors for proteasome-dependent degradation. It is localized predominantly in the nucleus, but may also be present in the cytosol. Mammalian COP1 functions as an E3 ubiquitin-protein ligase that interacts with Jun transcription factors and modulates their transcriptional activity. It also interacts with and negatively regulates the tumor-suppressor protein p53. Moreover, COP1 associates with COP9 signalosome subunit 6 (CSN6), and is involved in 14-3-3sigma ubiquitin-mediated degradation. The CSN6-COP1 link enhances ubiquitin-mediated degradation of p27(Kip1), a critical CDK inhibitor involved in cell cycle regulation, to promote cancer cell growth. Furthermore, COP1 functions as the negative regulator of ETV1 and influences prognosis in triple-negative breast cancer. COP1 contains an N-terminal extension, a C3HC4-type RING-HC finger, a coiled coil domain, and seven WD40 repeats. In human COP1, a classic leucine-rich NES, and a novel bipartite NLS is bridged by the RING-HC finger.
Pssm-ID: 438167 [Multi-domain] Cd Length: 47 Bit Score: 49.16 E-value: 1.25e-07
RING finger, HC subclass, found in RING finger protein 10 (RNF10) and similar proteins; RNF10 ...
1384-1431
2.64e-07
RING finger, HC subclass, found in RING finger protein 10 (RNF10) and similar proteins; RNF10 is an E3 ubiquitin-protein ligase that interacts with mesenchyme Homeobox 2 (MEOX2) transcription factor, a regulator of the proliferation, differentiation and migration of vascular smooth muscle cells and cardiomyocytes; it enhances Meox2 activation of the p21 promoter. It also regulates the expression of myelin-associated glycoprotein (MAG) genes and is required for myelin production in Schwann cells of the peripheral nervous system. Moreover, RNF10 regulates retinoic acid-induced neuronal differentiation and the cell cycle exit of P19 embryonic carcinoma cells. RNF10 contains a C3HC4-type RING-HC finger and three putative nuclear localization signals.
Pssm-ID: 438198 [Multi-domain] Cd Length: 54 Bit Score: 48.77 E-value: 2.64e-07
helix-rich Mycoplasma protein; Members of this family occur strictly within a subset of ...
755-1360
4.68e-07
helix-rich Mycoplasma protein; Members of this family occur strictly within a subset of Mycoplasma species. Members average 750 amino acids in length, including signal peptide. Sequences are predicted (Jpred 3) to be almost entirely alpha-helical. These sequences show strong periodicity (consistent with long alpha helical structures) and low complexity rich in D,E,N,Q, and K. Genes encoding these proteins are often found in tandem. The function is unknown.
Pssm-ID: 275316 [Multi-domain] Cd Length: 745 Bit Score: 54.64 E-value: 4.68e-07
RING finger, HC subclass, found in RING finger protein 185 (RNF185) and similar proteins; ...
1385-1436
5.30e-07
RING finger, HC subclass, found in RING finger protein 185 (RNF185) and similar proteins; RNF185 is an E3 ubiquitin-protein ligase of endoplasmic reticulum-associated degradation (ERAD) that targets cystic fibrosis transmembrane conductance regulator (CFTR). It controls the degradation of CFTR and CFTR F508del allele in a RING- and proteasome-dependent manner, but does not control that of other classical ERAD model substrates. It also negatively regulates osteogenic differentiation by targeting dishevelled2 (Dvl2), a key mediator of the Wnt signaling pathway, for degradation. Moreover, RNF185 regulates selective mitochondrial autophagy through interaction with the Bcl-2 family protein BNIP1. It also plays an important role in cell adhesion and migration through the modulation of cell migration by ubiquitinating paxillin. RNF185 contains a C3HC4-type RING-HC finger.
Pssm-ID: 438402 [Multi-domain] Cd Length: 57 Bit Score: 48.00 E-value: 5.30e-07
chromosome segregation protein SMC, common bacterial type; SMC (structural maintenance of ...
821-1168
6.28e-07
chromosome segregation protein SMC, common bacterial type; SMC (structural maintenance of chromosomes) proteins bind DNA and act in organizing and segregating chromosomes for partition. SMC proteins are found in bacteria, archaea, and eukaryotes. This family represents the SMC protein of most bacteria. The smc gene is often associated with scpB (TIGR00281) and scpA genes, where scp stands for segregation and condensation protein. SMC was shown (in Caulobacter crescentus) to be induced early in S phase but present and bound to DNA throughout the cell cycle. [Cellular processes, Cell division, DNA metabolism, Chromosome-associated proteins]
Pssm-ID: 274008 [Multi-domain] Cd Length: 1179 Bit Score: 54.29 E-value: 6.28e-07
chromosome segregation protein SMC, primarily archaeal type; SMC (structural maintenance of ...
1062-1384
7.81e-07
chromosome segregation protein SMC, primarily archaeal type; SMC (structural maintenance of chromosomes) proteins bind DNA and act in organizing and segregating chromosomes for partition. SMC proteins are found in bacteria, archaea, and eukaryotes. It is found in a single copy and is homodimeric in prokaryotes, but six paralogs (excluded from this family) are found in eukarotes, where SMC proteins are heterodimeric. This family represents the SMC protein of archaea and a few bacteria (Aquifex, Synechocystis, etc); the SMC of other bacteria is described by TIGR02168. The N- and C-terminal domains of this protein are well conserved, but the central hinge region is skewed in composition and highly divergent. [Cellular processes, Cell division, DNA metabolism, Chromosome-associated proteins]
Pssm-ID: 274009 [Multi-domain] Cd Length: 1164 Bit Score: 53.92 E-value: 7.81e-07
chromosome segregation protein SMC, common bacterial type; SMC (structural maintenance of ...
829-1384
1.10e-06
chromosome segregation protein SMC, common bacterial type; SMC (structural maintenance of chromosomes) proteins bind DNA and act in organizing and segregating chromosomes for partition. SMC proteins are found in bacteria, archaea, and eukaryotes. This family represents the SMC protein of most bacteria. The smc gene is often associated with scpB (TIGR00281) and scpA genes, where scp stands for segregation and condensation protein. SMC was shown (in Caulobacter crescentus) to be induced early in S phase but present and bound to DNA throughout the cell cycle. [Cellular processes, Cell division, DNA metabolism, Chromosome-associated proteins]
Pssm-ID: 274008 [Multi-domain] Cd Length: 1179 Bit Score: 53.52 E-value: 1.10e-06
RING finger, HC subclass, found in RING finger protein 138 (RNF138) and similar proteins; ...
1381-1425
1.15e-06
RING finger, HC subclass, found in RING finger protein 138 (RNF138) and similar proteins; RNF138, also known as Nemo-like kinase-associated RING finger protein (NARF) or NLK-associated RING finger protein, is an E3 ubiquitin-protein ligase that plays an important role in glioma cell proliferation, apoptosis, and cell cycle. It specifically cooperates with the E2 conjugating enzyme E2-25K (Hip-2/UbcH1), regulates the ubiquitylation and degradation of T cell factor/lymphoid enhancer factor (TCF/LEF), and further suppresses Wnt-beta-catenin signaling. RNF138, together with three closely related proteins: RNF114, RNF125 and RNF166, forms a novel family of ubiquitin ligases with a C3HC4-type RING-HC finger, a C2HC-, and two C2H2-type zinc fingers, as well as a ubiquitin interacting motif (UIM).
Pssm-ID: 438206 [Multi-domain] Cd Length: 53 Bit Score: 46.63 E-value: 1.15e-06
exonuclease SbcC; All proteins in this family for which functions are known are part of an ...
717-1364
1.97e-06
exonuclease SbcC; All proteins in this family for which functions are known are part of an exonuclease complex with sbcD homologs. This complex is involved in the initiation of recombination to regulate the levels of palindromic sequences in DNA. This family is based on the phylogenomic analysis of JA Eisen (1999, Ph.D. Thesis, Stanford University). [DNA metabolism, DNA replication, recombination, and repair]
Pssm-ID: 129705 [Multi-domain] Cd Length: 1042 Bit Score: 52.66 E-value: 1.97e-06
RING finger, HC subclass, found in helicase-like transcription factor (HLTF) and similar ...
1385-1431
2.08e-06
RING finger, HC subclass, found in helicase-like transcription factor (HLTF) and similar proteins; HLTF, also known as DNA-binding protein/plasminogen activator inhibitor 1 regulator, HIP116, RING finger protein 80, SWI/SNF-related matrix-associated actin-dependent regulator of chromatin subfamily A member 3, or sucrose nonfermenting protein 2-like 3, is a yeast RAD5 homolog found in mammals. It has both E3 ubiquitin ligase and DNA helicase activities, and plays a pivotal role in the template-switching pathway of DNA damage tolerance. It is involved in Lys-63-linked poly-ubiquitination of proliferating cell nuclear antigen (PCNA) at Lys-164 and in the regulation of DNA damage tolerance. It shows double-stranded DNA translocase activity with 3'-5' polarity, thereby facilitating regression of the replication fork. HLTF contains an N-terminal HIRAN (HIP116 and RAD5 N-terminal) domain, a SWI/SNF helicase domain that is divided into N- and C-terminal parts by an insertion of a C3HC4-type RING-HC finger involved in the poly-ubiquitination of PCNA.
Pssm-ID: 438172 [Multi-domain] Cd Length: 53 Bit Score: 46.14 E-value: 2.08e-06
Variant RING finger, HC subclass (C4C4-type), found in retinoblastoma-binding protein 6 (RBBP6) ...
1381-1423
2.80e-06
Variant RING finger, HC subclass (C4C4-type), found in retinoblastoma-binding protein 6 (RBBP6) and similar proteins; RBBP6, also known as proliferation potential-related protein, protein P2P-R, retinoblastoma-binding Q protein 1 (RBQ-1), or p53-associated cellular protein of testis (PACT), is a nuclear E3 ubiquitin-protein ligase involved in multiple processes, such as the control of gene expression, mitosis, cell differentiation, and cell apoptosis. It plays a role in both promoting and inhibiting apoptosis in many human cancers, including esophageal, lung, hepatocellular, and colon cancers, familial myeloproliferative neoplasms, as well as in human immunodeficiency virus-associated nephropathy (HIVAN). It functions as an Rb- and p53-binding protein that plays an important role in chaperone-mediated ubiquitination and possibly in protein quality control. It acts as a scaffold protein to promote the assembly of the p53/TP53-MDM2 complex, resulting in an increase of MDM2-mediated ubiquitination and degradation of p53/TP53, and leading to both apoptosis and cell growth. It is also a double-stranded RNA-binding protein that plays a role in mRNA processing by regulating the human polyadenylation machinery and modulating expression of mRNAs with AU-rich 3' untranslated regions (UTRs). Moreover, RBBP6 ubiquitinates and destabilizes the transcriptional repressor ZBTB38 that negatively regulates transcription and levels of the MCM10 replication factor on chromatin. Furthermore, RBBP6 is involved in tunicamycin-induced apoptosis by mediating protein kinase (PKR) activation. RBBP6 contains an N-terminal ubiquitin-like domain and a C4C4-type RING finger, whose overall folding is similar to that of the typical C3HC4-type RING-HC finger. RBBP6 interacts with chaperones Hsp70 and Hsp40 through its N-terminal ubiquitin-like domain. It promotes the ubiquitination of p53 by Hdm2 in an E4-like manner through its RING finger. It also interacts directly with the pro-proliferative transcription factor Y-box-binding protein-1 (YB-1) via its RING finger.
Pssm-ID: 438282 [Multi-domain] Cd Length: 55 Bit Score: 45.86 E-value: 2.80e-06
chromosome segregation protein SMC, primarily archaeal type; SMC (structural maintenance of ...
927-1343
5.50e-06
chromosome segregation protein SMC, primarily archaeal type; SMC (structural maintenance of chromosomes) proteins bind DNA and act in organizing and segregating chromosomes for partition. SMC proteins are found in bacteria, archaea, and eukaryotes. It is found in a single copy and is homodimeric in prokaryotes, but six paralogs (excluded from this family) are found in eukarotes, where SMC proteins are heterodimeric. This family represents the SMC protein of archaea and a few bacteria (Aquifex, Synechocystis, etc); the SMC of other bacteria is described by TIGR02168. The N- and C-terminal domains of this protein are well conserved, but the central hinge region is skewed in composition and highly divergent. [Cellular processes, Cell division, DNA metabolism, Chromosome-associated proteins]
Pssm-ID: 274009 [Multi-domain] Cd Length: 1164 Bit Score: 51.22 E-value: 5.50e-06
RING finger, HC subclass, found in topoisomerase I-binding arginine/serine-rich protein ...
1384-1427
7.86e-06
RING finger, HC subclass, found in topoisomerase I-binding arginine/serine-rich protein (Topors) and similar proteins; Topors, also known as topoisomerase I-binding RING finger protein, tumor suppressor p53- binding protein 3, or p53-binding protein 3 (p53BP3), is a ubiquitously expressed nuclear E3 ubiquitin-protein ligase that can ligate both ubiquitin and small ubiquitin-like modifier (SUMO) to substrate proteins in the nucleus. It contains an N-terminal C3HC4-type RING-HC finger which ligates ubiquitin to its target proteins including DNA topoisomerase I, p53, NKX3.1, H2AX, and the AAV-2 Rep78/68 proteins. As a RING-dependent E3 ubiquitin ligase, Topors works with the E2 enzymes UbcH5a, UbcH5c, and UbcH6, but not with UbcH7, CDC34, or UbcH2b. Topors acts as a tumor suppressor in various malignancies. It regulates p53 modification, suggesting it may be responsible for astrocyte elevated gene-1 (AEG-1, also known as metadherin, or LYRIC) ubiquitin modification. Plk1-mediated phosphorylation of Topors inhibits Topors-mediated sumoylation of p53, whereas p53 ubiquitination is enhanced, leading to p53 degradation. It also functions as a negative regulator of the prostate tumor suppressor NKX3.1. Moreover, Topors is associated with promyelocytic leukemia nuclear bodies, and may be involved in the cellular response to camptothecin. It also plays a key role in the turnover of H2AX protein, discriminating the type of DNA damaging stress. Furthermore, Topors is a cilia-centrosomal protein associated with autosomal dominant retinal degeneration. Mutations in TOPORS cause autosomal dominant retinitis pigmentosa (adRP).
Pssm-ID: 438236 [Multi-domain] Cd Length: 47 Bit Score: 44.20 E-value: 7.86e-06
RING finger, HC subclass, found in RING finger protein 5 (RNF5) and similar proteins; RNF5, ...
1385-1428
9.48e-06
RING finger, HC subclass, found in RING finger protein 5 (RNF5) and similar proteins; RNF5, also known as protein G16 or Ram1, is an E3 ubiquitin-protein ligase anchored to the outer membrane of the endoplasmic reticulum (ER). It acts at early stages of cystic fibrosis (CF) transmembrane conductance regulator (CFTR) biosynthesis and functions as a target for therapeutic modalities to antagonize mutant CFTR proteins in CF patients carrying the F508del allele. It also regulates the turnover of specific G protein-coupled receptors by ubiquitinating JNK-associated membrane protein (JAMP) and preventing proteasome recruitment. RNF5 limits basal levels of autophagy and influences susceptibility to bacterial infection through the regulation of ATG4B stability. It is also involved in the degradation of Pendrin, a transmembrane chloride/anion exchanger highly expressed in thyroid, kidney, and inner ear. RNF5 plays an important role in cell adhesion and migration. It can modulate cell migration by ubiquitinating paxillin. Furthermore, RNF5 interacts with virus-induced signaling adaptor (VISA) at mitochondria in a viral infection-dependent manner, and further targets VISA at K362 and K461 for K48-linked ubiquitination and degradation after viral infection. It also negatively regulates virus-triggered signaling by targeting MITA, also known as STING, for ubiquitination and degradation at the mitochondria. In addition, RNF5 determines breast cancer response to ER stress-inducing chemotherapies through the regulation of the L-glutamine carrier proteins SLC1A5 and SLC38A2 (SLC1A5/38A2). It also has been implicated in muscle organization and in recognition and processing of misfolded proteins. RNF5 contains a C3HC4-type RING-HC finger.
Pssm-ID: 438401 [Multi-domain] Cd Length: 54 Bit Score: 44.11 E-value: 9.48e-06
Synaptonemal complex protein 1 (SCP-1); Synaptonemal complex protein 1 (SCP-1) is the major ...
823-1360
1.53e-05
Synaptonemal complex protein 1 (SCP-1); Synaptonemal complex protein 1 (SCP-1) is the major component of the transverse filaments of the synaptonemal complex. Synaptonemal complexes are structures that are formed between homologous chromosomes during meiotic prophase.
Pssm-ID: 114219 [Multi-domain] Cd Length: 787 Bit Score: 49.72 E-value: 1.53e-05
RING finger, HC subclass, found in RING finger protein 39 (RNF39) and similar proteins; RNF39, ...
1381-1427
1.60e-05
RING finger, HC subclass, found in RING finger protein 39 (RNF39) and similar proteins; RNF39, also called protein HZFw, may play a role in prolonged long term-potentiation (LTP) maintenance. It is involved in the etiology of Behcet's disease (BD). It may also be involved in HIV-1 replication. RNF39 acts as an E3 ubiquitin ligase that inhibits retinoic acid-inducible gene-I (RIG-I)-like receptor (RLR) pathways by mediating K48-linked ubiquitination and proteasomal degradation of DDX3X (DEAD-box RNA helicase 3, X-linked). RNF39 contains a typical C3HC4-type RING-HC finger.
Pssm-ID: 438254 [Multi-domain] Cd Length: 58 Bit Score: 43.59 E-value: 1.60e-05
Myosin tail; The myosin molecule is a multi-subunit complex made up of two heavy chains and ...
758-1383
2.28e-05
Myosin tail; The myosin molecule is a multi-subunit complex made up of two heavy chains and four light chains it is a fundamental contractile protein found in all eukaryote cell types. This family consists of the coiled-coil myosin heavy chain tail region. The coiled-coil is composed of the tail from two molecules of myosin. These can then assemble into the macromolecular thick filament. The coiled-coil region provides the structural backbone the thick filament.
Pssm-ID: 460256 [Multi-domain] Cd Length: 1081 Bit Score: 49.02 E-value: 2.28e-05
RING finger, HC subclass, found in RING finger protein 207 (RNF207) and similar proteins; ...
1383-1423
2.43e-05
RING finger, HC subclass, found in RING finger protein 207 (RNF207) and similar proteins; RNF207 is a cardiac-specific E3 ubiquitin-protein ligase that plays an important role in the regulation of cardiac repolarization. It regulates action potential duration, likely via effects on human ether-a-go-go-related gene (HERG) trafficking and localization in a heat shock protein-dependent manner. RNF207 contains a C3HC4-type RING-HC finger, Bbox 1 and Bbox C-terminal (BBC) domain, as well as a C-terminal non-homologous region (CNHR).
Pssm-ID: 438220 [Multi-domain] Cd Length: 43 Bit Score: 42.73 E-value: 2.43e-05
RING finger, HC subclass, found in Arabidopsis thaliana RING membrane-anchor proteins (AtRMAs) ...
1385-1423
2.48e-05
RING finger, HC subclass, found in Arabidopsis thaliana RING membrane-anchor proteins (AtRMAs) and similar proteins; AtRMAs, including AtRma1, AtRma2, and AtRma3, are endoplasmic reticulum (ER)-localized Arabidopsis homologs of human outer membrane of the ER-anchor E3 ubiquitin-protein ligase, RING finger protein 5 (RNF5). AtRMAs possess E3 ubiquitin ligase activity, and may play a role in the growth and development of Arabidopsis. The AtRMA1 and AtRMA3 genes are predominantly expressed in major tissues, such as cotyledons, leaves, shoot-root junction, roots, and anthers, while AtRMA2 expression is restricted to the root tips and leaf hydathodes. AtRma1 probably functions with the Ubc4/5 subfamily of E2. AtRma2 is likely involved in the cellular regulation of ABP1 expression levels through interacting with auxin binding protein 1 (ABP1). AtRMA proteins contain an N-terminal C3HC4-type RING-HC finger and a trans-membrane-anchoring domain in their extreme C-terminal region.
Pssm-ID: 438403 [Multi-domain] Cd Length: 45 Bit Score: 42.86 E-value: 2.48e-05
RING finger, HC subclass, found in breast cancer type 1 susceptibility protein (BRCA1) and ...
1367-1424
2.68e-05
RING finger, HC subclass, found in breast cancer type 1 susceptibility protein (BRCA1) and similar proteins; BRCA1, also known as RING finger protein 53 (RNF53), is a RING finger protein encoded by the tumor suppressor gene BRCA1 that regulates all DNA double-strand break (DSB) repair pathways. BRCA1 is frequently mutated in patients with hereditary breast and ovarian cancer (HBOC). Its mutation is also associated with an increased risk of pancreatic, stomach, laryngeal, fallopian tube, and prostate cancer. It plays an important role in the DNA damage response signaling and has been implicated in various cellular processes such as cell cycle regulation, transcriptional regulation, chromatin remodeling, DNA DSBs, and apoptosis. BRCA1 contains an N-terminal C3HC4-type RING-HC finger, and two BRCT (BRCA1 C-terminus domain) repeats at the C-terminus.
Pssm-ID: 438161 [Multi-domain] Cd Length: 94 Bit Score: 44.21 E-value: 2.68e-05
chromosome segregation protein SMC, common bacterial type; SMC (structural maintenance of ...
560-868
3.23e-05
chromosome segregation protein SMC, common bacterial type; SMC (structural maintenance of chromosomes) proteins bind DNA and act in organizing and segregating chromosomes for partition. SMC proteins are found in bacteria, archaea, and eukaryotes. This family represents the SMC protein of most bacteria. The smc gene is often associated with scpB (TIGR00281) and scpA genes, where scp stands for segregation and condensation protein. SMC was shown (in Caulobacter crescentus) to be induced early in S phase but present and bound to DNA throughout the cell cycle. [Cellular processes, Cell division, DNA metabolism, Chromosome-associated proteins]
Pssm-ID: 274008 [Multi-domain] Cd Length: 1179 Bit Score: 48.51 E-value: 3.23e-05
RING finger, HC subclass, found in RING finger protein RNF5, RNF185 and similar proteins; RNF5 ...
1393-1424
3.34e-05
RING finger, HC subclass, found in RING finger protein RNF5, RNF185 and similar proteins; RNF5 and RNF185 are E3 ubiquitin-protein ligases that are anchored to the outer membrane of the endoplasmic reticulum (ER). RNF5 acts at early stages of cystic fibrosis (CF) transmembrane conductance regulator (CFTR) biosynthesis, and functions as a target for therapeutic modalities to antagonize mutant CFTR proteins in CF patients carrying the F508del allele. RNF185 controls the degradation of CFTR and CFTR F508del allele in a RING- and proteasome-dependent manner, but does not control that of other classical endoplasmic reticulum-associated degradation (ERAD) model substrates. Moreover, both RNF5 and RNF185 play important roles in cell adhesion and migration through the modulation of cell migration by ubiquitinating paxillin. Arabidopsis thaliana RING membrane-anchor proteins (AtRMAs) are also included in this family. They possess E3 ubiquitin-protein ligase activity and may play a role in the growth and development of Arabidopsis. All members of this family contain a C3HC4-type RING-HC finger.
Pssm-ID: 438196 [Multi-domain] Cd Length: 44 Bit Score: 42.29 E-value: 3.34e-05
RING finger, HC subclass, found in RING finger and transmembrane domain-containing protein ...
1384-1423
3.40e-05
RING finger, HC subclass, found in RING finger and transmembrane domain-containing protein RNFT1, RNFT2, and similar proteins; Both RNFT1 and RNFT2 are multi-pass membrane proteins containing a C3HC4-type RING-HC finger. Their biological roles remain unclear.
Pssm-ID: 438194 [Multi-domain] Cd Length: 41 Bit Score: 42.29 E-value: 3.40e-05
RIM-binding protein of the cytomatrix active zone; This is a family of proteins that form part ...
720-1155
3.53e-05
RIM-binding protein of the cytomatrix active zone; This is a family of proteins that form part of the CAZ (cytomatrix at the active zone) complex which is involved in determining the site of synaptic vesicle fusion. The C-terminus is a PDZ-binding motif that binds directly to RIM (a small G protein Rab-3A effector). The family also contains four coiled-coil domains.
Pssm-ID: 431111 [Multi-domain] Cd Length: 766 Bit Score: 48.28 E-value: 3.53e-05
Mitotic checkpoint protein; This family consists of several eukaryotic mitotic checkpoint ...
927-1383
4.38e-05
Mitotic checkpoint protein; This family consists of several eukaryotic mitotic checkpoint (Mitotic arrest deficient or MAD) proteins. The mitotic spindle checkpoint monitors proper attachment of the bipolar spindle to the kinetochores of aligned sister chromatids and causes a cell cycle arrest in prometaphase when failures occur. Multiple components of the mitotic spindle checkpoint have been identified in yeast and higher eukaryotes. In S.cerevisiae, the existence of a Mad1-dependent complex containing Mad2, Mad3, Bub3 and Cdc20 has been demonstrated.
Pssm-ID: 461677 [Multi-domain] Cd Length: 660 Bit Score: 48.20 E-value: 4.38e-05
RING finger, HC subclass, found in Polycomb Group RING finger homologs (PCGF1, 2, 3, 4, 5 and ...
1383-1424
6.43e-05
RING finger, HC subclass, found in Polycomb Group RING finger homologs (PCGF1, 2, 3, 4, 5 and 6), and similar proteins; This subfamily includes six Polycomb Group (PcG) RING finger homologs (PCGF1/NSPc1, PCGF2/Mel-18, PCGF3, PCGF4/BMI1, PCGF5, and PCGF6/MBLR) that use epigenetic mechanisms to maintain or repress expression of their target genes. They were first discovered in fruit flies and are well known for silencing Hox genes through modulation of chromatin structure during embryonic development. PCGF homologs play important roles in cell proliferation, differentiation, and tumorigenesis. They all have been found to associate with ring finger protein 2 (RNF2). The RNF2-PCGF heterodimer is catalytically competent as an E3 ubiquitin transferase and is the scaffold for the assembly of additional components. Moreover, PCGF homologs are critical components in the assembly of distinct Polycomb Repression Complex 1 (PRC1) related complexes which is involved in the maintenance of gene repression and which target different genes through distinct mechanisms. The Drosophila PRC1 core complex is formed by the Polycomb (Pc), Polyhomeotic (Ph), Posterior sex combs (Psc), and Sex combs extra (Sce, also known as Ring) subunits. In mammals, the composition of PRC1 is much more diverse and varies depending on the cellular context. All PRC1 complexes contain homologs of the Drosophila Ring protein. Ring1A/RNF1 and Ring1B/RNF2 are E3 ubiquitin ligases that mark lysine 119 of histone H2A with a single ubiquitin group (H2AK119ub). Mammalian homologs of the Drosophila Psc protein, such as PCGF2/Mel-18 or PCGF4/BMI1, regulate PRC1 enzymatic activity. PRC1 complexes can be divided into at least two classes according to the presence or absence of CBX proteins, which are homologs of Drosophila Pc. Canonical PRC1 complexes contain CBX proteins that recognize and bind H3K27me3, the mark deposited by PRC2. Therefore, canonical PRC1 complexes and PRC2 can act together to repress gene transcription and maintain this repression through cell division. Non-canonical PRC1 complexes, containing RYBP (together with additional proteins, such as L3mbtl2 or Kdm2b) rather than the CBX proteins have recently been described in mammals. PCGF homologs contain a C3HC4-type RING-HC finger.
Pssm-ID: 438188 [Multi-domain] Cd Length: 42 Bit Score: 41.44 E-value: 6.43e-05
rad50; All proteins in this family for which functions are known are involvedin recombination, ...
687-1384
7.53e-05
rad50; All proteins in this family for which functions are known are involvedin recombination, recombinational repair, and/or non-homologous end joining.They are components of an exonuclease complex with MRE11 homologs. This family is distantly related to the SbcC family of bacterial proteins.This family is based on the phylogenomic analysis of JA Eisen (1999, Ph.D. Thesis, Stanford University).
Pssm-ID: 129694 [Multi-domain] Cd Length: 1311 Bit Score: 47.35 E-value: 7.53e-05
Myosin tail; The myosin molecule is a multi-subunit complex made up of two heavy chains and ...
728-1348
7.66e-05
Myosin tail; The myosin molecule is a multi-subunit complex made up of two heavy chains and four light chains it is a fundamental contractile protein found in all eukaryote cell types. This family consists of the coiled-coil myosin heavy chain tail region. The coiled-coil is composed of the tail from two molecules of myosin. These can then assemble into the macromolecular thick filament. The coiled-coil region provides the structural backbone the thick filament.
Pssm-ID: 460256 [Multi-domain] Cd Length: 1081 Bit Score: 47.48 E-value: 7.66e-05
RING finger, HC subclass, found in tripartite motif-containing protein 69 (TRIM69) and similar ...
1381-1431
8.16e-05
RING finger, HC subclass, found in tripartite motif-containing protein 69 (TRIM69) and similar proteins; TRIM69, also known as RFP-like domain-containing protein trimless or RING finger protein 36 (RNF36), is a testis E3 ubiquitin-protein ligase that plays a specific role in apoptosis and may also play an important role in germ cell homeostasis during spermatogenesis. TRIM69 belongs to the C-IV subclass of the TRIM (tripartite motif) family of proteins that are defined by their N-terminal RBCC (RING, Bbox, and coiled coil) domains, including three consecutive zinc-binding domains, a C3HC4-type RING-HC finger, Bbox1 and Bbox2, and a coiled coil region, as well as a B30.2/SPRY (SplA and ryanodine receptor) domain positioned C-terminal to the RBCC domain.
Pssm-ID: 438273 [Multi-domain] Cd Length: 59 Bit Score: 41.67 E-value: 8.16e-05
RING finger, HC subclass, found in tripartite motif-containing proteins, TRIM7, TRIM11 and ...
1380-1431
8.81e-05
RING finger, HC subclass, found in tripartite motif-containing proteins, TRIM7, TRIM11 and TRIM27, and similar proteins; TRIM7, TRIM11 and TRIM27, closely related tripartite motif-containing proteins, belong to the C-IV subclass of the TRIM (tripartite motif) family of proteins that are defined by their N-terminal RBCC (RING, Bbox, and coiled coil) domains, including three consecutive zinc-binding domains, a C3HC4-type RING-HC finger, Bbox2, and a coiled coil region, as well as a SPRY/B30.2 domain positioned C-terminal to the RBCC domain. TRIM7, also known as glycogenin-interacting protein (GNIP) or RING finger protein 90 (RNF90), is an E3 ubiquitin-protein ligase that mediates c-Jun/AP-1 activation by Ras signalling. Its phosphorylation and activation by MSK1 in response to direct activation by the Ras-Raf-MEK-ERK pathway can stimulate TRIM7 E3 ubiquitin ligase activity in mediating Lys63-linked ubiquitination of the AP-1 coactivator RACO-1, leading to RACO-1 protein stabilization. Moreover, TRIM7 binds and activates glycogenin, the self-glucosylating initiator of glycogen biosynthesis. TRIM11, also known as protein BIA1, or RING finger protein 92 (RNF92), is an E3 ubiquitin-protein ligase involved in the development of the central nervous system. It is overexpressed in high-grade gliomas and promotes proliferation, invasion, migration and glial tumor growth. TRIM11 acts as a potential therapeutic target for congenital central hypoventilation syndrome (CCHS) by mediating the degradation of CCHS-associated polyalanine-expanded Phox2b. TRIM11 modulates the function of neurogenic transcription factor Pax6 through the ubiquitin-proteosome system, and thus plays an essential role for Pax6-dependent neurogenesis. It also binds to and destabilizes a key component of the activator-mediated cofactor complex (ARC105), humanin, a neuroprotective peptide against Alzheimer's disease-relevant insults, and further regulates ARC105 function in transforming growth factor beta (TGFbeta) signaling. Moreover, TRIM11 negatively regulates retinoic acid-inducible gene-I (RIG-I)-mediated interferon-beta (IFNbeta) production and antiviral activity by targeting TANK-binding kinase-1 (TBK1). It may contribute to the endogenous restriction of retroviruses in cells. It enhances N-tropic murine leukemia virus (N-MLV) entry by interfering with Ref1 restriction. It also suppresses the early steps of human immunodeficiency virus HIV-1 transduction, resulting in decreased reverse transcripts. TRIM27, also known as RING finger protein 76 (RNF76), RET finger protein (RFP), or zinc finger protein RFP, is a nuclear E3 ubiquitin-protein ligase that is highly expressed in testis and in various tumor cell lines. Expression of TRIM27 is associated with prognosis of colon and endometrial cancers. TRIM27 was first identified as a fusion partner of the RET receptor tyrosine kinase. It functions as a transcriptional repressor and associates with several proteins involved in transcriptional activity, such as enhancer of polycomb 1 (Epc1), a member of the Polycomb group proteins, and Mi-2beta, a main component of the nucleosome remodeling and deacetylase (NuRD) complex, and the cell cycle regulator retinoblastoma protein (RB1). It also interacts with HDAC1, leading to downregulation of thioredoxin binding protein 2 (TBP-2), which inhibits the function of thioredoxin. Moreover, TRIM27 mediates Pax7-induced ubiquitination of MyoD in skeletal muscle atrophy. In addition, it inhibits muscle differentiation by modulating serum response factor (SRF) and Epc1. TRIM27 promotes a non-canonical polyubiquitination of PTEN, a lipid phosphatase that catalyzes PtdIns(3,4,5)P3 (PIP3) to PtdIns(4,5)P2 (PIP2). It is an IKKepsilon-interacting protein that regulates IkappaB kinase (IKK) function and negatively regulates signaling involved in the antiviral response and inflammation. TRIM27 also forms a protein complex with MBD4 or MBD2 or MBD3, and thus plays an important role in the enhancement of transcriptional repression through MBD proteins in tumorigenesis, spermatogenesis, and embryogenesis. It is a component of an estrogen receptor 1 (ESR1) regulatory complex that is involved in estrogen receptor-mediated transcription in MCF-7 cells.
Pssm-ID: 438256 [Multi-domain] Cd Length: 61 Bit Score: 41.90 E-value: 8.81e-05
Myosin-like coiled-coil protein; Taxilin contains an extraordinarily long coiled-coil domain ...
1072-1360
1.37e-04
Myosin-like coiled-coil protein; Taxilin contains an extraordinarily long coiled-coil domain in its C-terminal half and is ubiquitously expressed. It is a novel binding partner of several syntaxin family members and is possibly involved in Ca2+-dependent exocytosis in neuroendocrine cells. Gamma-taxilin, described as leucine zipper protein Factor Inhibiting ATF4-mediated Transcription (FIAT), localizes to the nucleus in osteoblasts and dimerizes with ATF4 to form inactive dimers, thus inhibiting ATF4-mediated transcription.
Pssm-ID: 462861 [Multi-domain] Cd Length: 302 Bit Score: 45.71 E-value: 1.37e-04
RING finger, HC subclass, found in peroxin-10 (PEX10) and similar proteins; PEX10, also known ...
1385-1423
1.70e-04
RING finger, HC subclass, found in peroxin-10 (PEX10) and similar proteins; PEX10, also known as peroxisome biogenesis factor 10, peroxisomal biogenesis factor 10, peroxisome assembly protein 10, or RING finger protein 69 (RNF69), is an integral peroxisomal membrane protein with two transmembrane regions and a C3HC4-type RING-HC finger within its cytoplasmically exposed C-terminus. It plays an essential role in peroxisome assembly, import of target substrates, and recycling or degradation of protein complexes and amino acids. It is an essential component of the spinal locomotor circuit, and thus its mutations may be involved in peroxisomal biogenesis disorders (PBD). Mutations in human PEX10 also result in autosomal recessive ataxia. Moreover, PEX10 functions as an E3-ubiquitin ligase with an E2, UBCH5C. It mono- or poly-ubiquitinates PEX5, a key player in peroxisomal matrix protein import, in a UBC4-dependent manner, to control PEX5 receptor recycling or degradation. It also links the E2 ubiquitin conjugating enzyme PEX4 to the protein import machinery of the peroxisome.
Pssm-ID: 438190 [Multi-domain] Cd Length: 52 Bit Score: 40.67 E-value: 1.70e-04
RING finger, HC subclass, found in Arabidopsis thaliana protein CHROMATIN REMODELING 27 (CHR27) ...
1385-1431
1.71e-04
RING finger, HC subclass, found in Arabidopsis thaliana protein CHROMATIN REMODELING 27 (CHR27) and similar proteins; CHR27, also called protein SNF2-RING-HELICASE-LIKE 1, is a probable helicase-like transcription factor involved in transcriptional gene silencing. It associates with SUVR2 and contributes to transcriptional gene silencing at RNA-directed DNA methylation (RdDM) target loci but also at RdDM-independent target loci. It may be involved in nucleosome positioning to form ordered nucleosome arrays on chromatin. It associates with SUVR2 and functions redundantly with FRG2. It is required for the efficient methylation of a broad range of RdDM target loci. CHR27 contains a typical C3HC4-type RING-HC finger.
Pssm-ID: 438504 [Multi-domain] Cd Length: 55 Bit Score: 40.63 E-value: 1.71e-04
RING finger, HC subclass, found in RING finger proteins RNF113A, RNF113B, and similar proteins; ...
1384-1427
2.29e-04
RING finger, HC subclass, found in RING finger proteins RNF113A, RNF113B, and similar proteins; RNF113A, also known as zinc finger protein 183 (ZNF183), is an E3 ubiquitin-protein ligase that physically interacts with the E2 protein, UBE2U. A nonsense mutation in RNF113A is associated with an X-linked trichothiodystrophy (TTD). Its yeast ortholog Cwc24p is predicted to have a spliceosome function and acts in a complex with Cef1p to participate in pre-U3 snoRNA splicing, indirectly affecting pre-rRNA processing. It is also important for the U2 snRNP binding to primary transcripts and co-migrates with spliceosomes. Moreover, the ortholog of RNF113A in fruit flies may also act as a spliceosome and is hypothesized to be involved in splicing, namely within the central nervous system. The ortholog in Caenorhabditis elegans is involved in DNA repair of inter-strand crosslinks. RNF113B, also known as zinc finger protein 183-like 1, shows high sequence similarity with RNF113A. Both RNF113A and RNF113B contain a CCCH-type zinc finger, which is commonly found in RNA-binding proteins involved in splicing, and a C3HC4-type RING-HC finger, which is frequently found in E3 ubiquitin ligases.
Pssm-ID: 438201 [Multi-domain] Cd Length: 54 Bit Score: 40.27 E-value: 2.29e-04
Myosin tail; The myosin molecule is a multi-subunit complex made up of two heavy chains and ...
1076-1374
2.68e-04
Myosin tail; The myosin molecule is a multi-subunit complex made up of two heavy chains and four light chains it is a fundamental contractile protein found in all eukaryote cell types. This family consists of the coiled-coil myosin heavy chain tail region. The coiled-coil is composed of the tail from two molecules of myosin. These can then assemble into the macromolecular thick filament. The coiled-coil region provides the structural backbone the thick filament.
Pssm-ID: 460256 [Multi-domain] Cd Length: 1081 Bit Score: 45.55 E-value: 2.68e-04
RING finger, HC subclass, found in tripartite motif-containing proteins TRIM9, TRIM67, and ...
1381-1424
3.29e-04
RING finger, HC subclass, found in tripartite motif-containing proteins TRIM9, TRIM67, and similar proteins; Tripartite motif-containing proteins TRIM9 and TRIM67 belong to the C-I subclass of the TRIM (tripartite motif) family of proteins that are defined by their N-terminal RBCC (RING, Bbox, and coiled coil) domains, consisting of three consecutive zinc-binding domains, a C3HC4-type RING-HC finger, Bbox1 and Bbox2, and a coiled coil region, as well as a COS (carboxyl-terminal subgroup one signature) box, a fibronectin type III (FN3) domain, and a B30.2/SPRY (SplA and ryanodine receptor) domain positioned C-terminal to the RBCC domain. TRIM9 (the human ortholog of rat Spring), also known as RING finger protein 91 (RNF91), is a brain-specific E3 ubiquitin-protein ligase collaborating with an E2 ubiquitin conjugating enzyme UBCH5b. TRIM9 plays an important role in the regulation of neuronal functions and participates in neurodegenerative disorders through its ligase activity. TRIM67, also known as TRIM9-like protein (TNL), is a protein selectively expressed in the cerebellum. It interacts with PRG-1, an important molecule in the control of hippocampal excitability dependent on presynaptic LPA2 receptor signaling, and 80K-H, also known as glucosidase II beta, a protein kinase C substrate.
Pssm-ID: 438238 [Multi-domain] Cd Length: 42 Bit Score: 39.70 E-value: 3.29e-04
RING finger, HC subclass, found in RING finger protein 166 (RNF166) and similar proteins; ...
1383-1427
3.31e-04
RING finger, HC subclass, found in RING finger protein 166 (RNF166) and similar proteins; RNF166 is encoded by the gene RNF166 targeted by thyroid hormone receptor alpha1 (TRalpha1), which is important in brain development. It plays an important role in RNA virus-induced interferon-beta production by enhancing the ubiquitination of TRAF3 and TRAF6. RNF166, together with three closely related proteins: RNF114, RNF125 and RNF138, forms a novel family of ubiquitin ligases with a C3HC4-type RING-HC finger, a C2HC-, and two C2H2-type zinc fingers, as well as a ubiquitin interacting motif (UIM).
Pssm-ID: 438211 [Multi-domain] Cd Length: 47 Bit Score: 39.79 E-value: 3.31e-04
RING finger, HC subclass, found in RING finger and transmembrane domain-containing protein 2 ...
1385-1423
3.48e-04
RING finger, HC subclass, found in RING finger and transmembrane domain-containing protein 2(RNFT2); RNFT2, also known as transmembrane protein 118 (TMEM118), is a multi-pass membrane protein containing a C3HC4-type RING-HC finger. Its biological role remains unclear.
Pssm-ID: 438400 [Multi-domain] Cd Length: 67 Bit Score: 40.25 E-value: 3.48e-04
Trichohyalin-plectin-homology domain; This family is a mixtrue of two different families of ...
1062-1363
3.68e-04
Trichohyalin-plectin-homology domain; This family is a mixtrue of two different families of eukaryotic proteins. Trichoplein or mitostatin, was first defined as a meiosis-specific nuclear structural protein. It has since been linked with mitochondrial movement. It is associated with the mitochondrial outer membrane, and over-expression leads to reduction in mitochondrial motility whereas lack of it enhances mitochondrial movement. The activity appears to be mediated through binding the mitochondria to the actin intermediate filaments (IFs). The family is in the trichohyalin-plectin-homology domain.
Pssm-ID: 464007 [Multi-domain] Cd Length: 341 Bit Score: 44.52 E-value: 3.68e-04
nucleotide-binding domain (NBD) of rhamnulokinase (RhaB) and similar proteins; Rhamnulokinase ...
6-252
3.71e-04
nucleotide-binding domain (NBD) of rhamnulokinase (RhaB) and similar proteins; Rhamnulokinase (EC 2.7.1.5), also known as L-rhamnulose kinase, ATP:L-rhamnulose phosphotransferase, L-rhamnulose 1-kinase, or rhamnulose kinase, is an enzyme involved in the second step in rhamnose catabolism. It catalyzes the ATP-dependent phosphorylation of L-rhamnulose to produce L-rhamnulose-1-phosphate and ADP. Rhamnulokinase exists as a monomer composed of two large domains. The ATP binding site is located in the cleft between the two domains. This model includes both the N-terminal domain, which adopts a ribonuclease H-like fold, and the structurally related C-terminal domain. The presence of divalent Mg2+ or Mn2+ is required for catalysis. The subfamily also includes Streptococcus pneumoniae L-fuculose k fuculose Kinase inase (FcsK) that uses ATP to phosphorylate fuculose creating fuculose-1-phosphate, and Alkalihalobacillus clausii bifunctional enzyme RhaA/RhaB. Members of this subfamily belong to the FGGY family of carbohydrate kinases.
Pssm-ID: 466791 [Multi-domain] Cd Length: 460 Bit Score: 44.83 E-value: 3.71e-04
Trichohyalin-plectin-homology domain; This family is a mixtrue of two different families of ...
1065-1382
3.85e-04
Trichohyalin-plectin-homology domain; This family is a mixtrue of two different families of eukaryotic proteins. Trichoplein or mitostatin, was first defined as a meiosis-specific nuclear structural protein. It has since been linked with mitochondrial movement. It is associated with the mitochondrial outer membrane, and over-expression leads to reduction in mitochondrial motility whereas lack of it enhances mitochondrial movement. The activity appears to be mediated through binding the mitochondria to the actin intermediate filaments (IFs). The family is in the trichohyalin-plectin-homology domain.
Pssm-ID: 464007 [Multi-domain] Cd Length: 341 Bit Score: 44.52 E-value: 3.85e-04
helix-rich Mycoplasma protein; Members of this family occur strictly within a subset of ...
749-1165
4.05e-04
helix-rich Mycoplasma protein; Members of this family occur strictly within a subset of Mycoplasma species. Members average 750 amino acids in length, including signal peptide. Sequences are predicted (Jpred 3) to be almost entirely alpha-helical. These sequences show strong periodicity (consistent with long alpha helical structures) and low complexity rich in D,E,N,Q, and K. Genes encoding these proteins are often found in tandem. The function is unknown.
Pssm-ID: 275316 [Multi-domain] Cd Length: 745 Bit Score: 45.01 E-value: 4.05e-04
Zinc-finger domain of monoamine-oxidase A repressor R1; R1 is a transcription factor repressor ...
1384-1425
4.27e-04
Zinc-finger domain of monoamine-oxidase A repressor R1; R1 is a transcription factor repressor that inhibits monoamine oxidase A gene expression. This domain is a four-CXXC zinc finger putative DNA-binding domain found at the C-terminal end of R1. The domain carries 12 cysteines of which four pairs are of the CXXC type.
Pssm-ID: 463117 Cd Length: 99 Bit Score: 41.09 E-value: 4.27e-04
Modified RING finger found in peroxin-12 (PEX12) and similar proteins; PEX12, also known as ...
1384-1421
4.83e-04
Modified RING finger found in peroxin-12 (PEX12) and similar proteins; PEX12, also known as peroxisome assembly protein 12 or peroxisome assembly factor 3 (PAF-3), is a RING finger domain-containing integral membrane peroxin required for protein import into peroxisomes. Mutations in human PEX12 result in the peroxisome deficiency Zellweger syndrome of complementation group III (CG-III), a lethal neurological disorder. PEX12 also functions as an E3-ubiquitin ligase that facilitates the PEX4-dependent monoubiquitination of PEX5, a key player in peroxisomal matrix protein import, to control PEX5 receptor recycling or degradation. PEX12 contains a modified RING finger that lacks the third, fourth, and eighth zinc-binding residues of the consensus RING finger motif, suggesting PEX12 may only bind one zinc ion.
Pssm-ID: 438115 [Multi-domain] Cd Length: 54 Bit Score: 39.53 E-value: 4.83e-04
RING finger, HC subclass, found in tripartite motif-containing protein 77 (TRIM77) and similar ...
1381-1427
5.09e-04
RING finger, HC subclass, found in tripartite motif-containing protein 77 (TRIM77) and similar proteins; TRIM77 belongs to the C-IV subclass of the TRIM (tripartite motif) family of proteins that are defined by their N-terminal RBCC (RING, Bbox, and coiled coil) domains, including two consecutive zinc-binding domains, a C3HC4-type RING-HC finger and Bbox2, as well as a SPRY/B30.2 domain positioned C-terminal to the RBCC domain.
Pssm-ID: 438205 [Multi-domain] Cd Length: 54 Bit Score: 39.30 E-value: 5.09e-04
RING finger, HC subclass, found in Saccharomyces cerevisiae radiation sensitivity protein 18 ...
1383-1427
5.18e-04
RING finger, HC subclass, found in Saccharomyces cerevisiae radiation sensitivity protein 18 (RAD18) and similar proteins; RAD18, also called RING-type E3 ubiquitin transferase RAD18, acts as a postreplication repair E3 ubiquitin-protein ligase that associates with the E2 ubiquitin conjugating enzyme UBC2/RAD6 to form the UBC2-RAD18 ubiquitin ligase complex involved in postreplicative repair (PRR) of damaged DNA. The UBC2-RAD18 complex cooperates with RAD5 and the UBC13-MMS2 dimer to attach mono-ubiquitin chains on 'Lys-164' of POL30, which is necessary for PRR. The UBC2-RAD18 complex is also involved in prevention of spontaneous mutations caused by 7,8-dihydro-8-oxoguanine. RAD18 is an E3 RING-finger protein belonging to the UBC2/RAD6 epistasis group. It contains a typical C3HC4-type RING-HC finger.
Pssm-ID: 438510 [Multi-domain] Cd Length: 52 Bit Score: 39.44 E-value: 5.18e-04
RING finger, HC subclass, found in tripartite motif-containing protein TRIM25 and similar ...
1380-1427
5.25e-04
RING finger, HC subclass, found in tripartite motif-containing protein TRIM25 and similar proteins; TRIM25, also known as estrogen-responsive finger protein (EFP), RING finger protein 147 (RNF147), or RING-type E3 ubiquitin transferase, is an E3 ubiquitin/ISG15 ligase that is induced by estrogen and is therefore particularly abundant in placenta and uterus. TRIM25 regulates various cellular processes through E3 ubiquitin ligase activity, transferring ubiquitin and ISG15 to target proteins. It mediates K63-linked polyubiquitination of retinoic acid inducible gene I (RIG-I) that is crucial for downstream antiviral interferon signaling. It is also required for melanoma differentiation-associated gene 5 (MDA5) and mitochondrial antiviral signaling (MAVS, also known as IPS-1, VISA, Cardiff) mediated activation of nuclear factor-kappaB (NF-kappaB) and interferon production. Upon UV irradiation, TRIM25 interacts with mono-ubiquitinated PCNA and promotes its ISG15 modification (ISGylation), suggesting a crucial role in termination of error-prone translesion DNA synthesis. TRIM25 also functions as a novel regulator of p53 and Mdm2. It enhances p53 and Mdm2 abundance by inhibiting their ubiquitination and degradation in 26S proteasomes. Meanwhile, it inhibits p53's transcriptional activity and dampens the response to DNA damage, and is essential for medaka development and this dependence is rescued by silencing of p53. Moreover, TRIM25 is involved in the host cellular innate immune response against retroviral infection. It interferes with the late stage of feline leukemia virus (FeLV) replication. Furthermore, TRIM25 acts as an oncogene in gastric cancer. Its blockade by RNA interference inhibits migration and invasion of gastric cancer cells through transforming growth factor-beta (TGF-beta) signaling, suggesting it presents a novel target for the detection and treatment of gastric cancer. In addition, TRIM25 acts as an RNA-specific activator for Lin28a/TuT4-mediated uridylation. TRIM25 belongs to the C-IV subclass of TRIM (tripartite motif) family of proteins that are defined by their N-terminal RBCC (RING, Bbox, and coiled coil) domains, including three consecutive zinc-binding domains, a C3HC4-type RING-HC finger, Bbox1 and Bbox2, and a coiled coil region, as well as a B30.2/SPRY (SplA and ryanodine receptor) domain positioned C-terminal to the RBCC domain.
Pssm-ID: 438259 [Multi-domain] Cd Length: 71 Bit Score: 39.99 E-value: 5.25e-04
RING finger, HC subclass, found in Saccharomyces cerevisiae POB3/SPT16 histone-associated ...
1379-1423
5.27e-04
RING finger, HC subclass, found in Saccharomyces cerevisiae POB3/SPT16 histone-associated protein 1 (ScPSH1) and similar proteins; ScPSH1 is a Cse4-specific E3 ubiquitin ligase that interacts with the kinetochore protein Pat1 and targets the degradation of budding yeast centromeric histone H3 variant, CENP-ACse4, which is essential for faithful chromosome segregation. ScPSH1 contains a C3HC4-type RING-HC finger and a DNA directed RNA polymerase domain.
Pssm-ID: 438230 [Multi-domain] Cd Length: 54 Bit Score: 39.27 E-value: 5.27e-04
RING finger, HC subclass, found in really interesting new gene 1 protein (RING1) and similar ...
1383-1423
5.45e-04
RING finger, HC subclass, found in really interesting new gene 1 protein (RING1) and similar proteins; RING1, also known as polycomb complex protein RING1, RING finger protein 1 (RNF1), or RING finger protein 1A (RING1A), was identified as a transcriptional repressor that is associated with the Polycomb group (PcG) protein complex involved in stable repression of gene activity. It is a core component of polycomb repressive complex 1 (PRC1) that functions as an E3-ubuiquitin ligase that transferring the mono-ubuiquitin mark to the C-terminal tail of Histone H2A at K118/K119. PRC1 is also capable of chromatin compaction, a function not requiring histone tails, and this activity appears important in gene silencing. RING1 interacts with multiple PcG proteins and displays tumorigenic activity. It also shows zinc-dependent DNA binding activity. Moreover, RING1 inhibits transactivation of the DNA-binding protein recombination signal binding protein-Jkappa (RBP-J) by Notch through interaction with the LIM domains of KyoT2. RING1 contains a C3HC4-type RING-HC finger.
Pssm-ID: 438397 [Multi-domain] Cd Length: 70 Bit Score: 39.68 E-value: 5.45e-04
RING finger, HC subclass, found in tripartite motif-containing protein TRIM65 and similar ...
1381-1427
7.17e-04
RING finger, HC subclass, found in tripartite motif-containing protein TRIM65 and similar proteins; TRIM65 is an E3 ubiquitin-protein ligase that interacts with the innate immune receptor MDA5, enhancing its ability to stimulate interferon-beta signaling. It functions as a potential oncogenic protein that negatively regulates p53 through ubiquitination, providing insight into the development of novel approaches targeting TRIM65 for non-small cell lung carcinoma (NSCLC) treatment, and also overcoming chemotherapy resistance. Moreover, TRIM65 negatively regulates microRNA-driven suppression of mRNA translation by targeting TNRC6 proteins for ubiquitination and degradation. TRIM65 belongs to the C-IV subclass of the TRIM (tripartite motif) family of proteins that are defined by their N-terminal RBCC (RING, Bbox, and coiled coil) domains, including three consecutive zinc-binding domains, a C3HC4-type RING-HC finger, Bbox1 and Bbox2, and a coiled coil region, as well as a B30.2/SPRY (SplA and ryanodine receptor) domain positioned C-terminal to the RBCC domain.
Pssm-ID: 438271 [Multi-domain] Cd Length: 58 Bit Score: 38.89 E-value: 7.17e-04
RING finger, HC subclass, found in really interesting new gene 2 protein (RING2) and similar ...
1377-1423
7.21e-04
RING finger, HC subclass, found in really interesting new gene 2 protein (RING2) and similar proteins; RING2, also known as huntingtin-interacting protein 2-interacting protein 3, HIP2-interacting protein 3, protein DinG, RING finger protein 1B (RING1B), RING finger protein 2 (RNF2), or RING finger protein BAP-1, is an E3 ubiquitin-protein ligase that interacts with both nucleosomal DNA and an acidic patch on histone H4 to achieve the specific monoubiquitination of K119 on histone H2A (H2AK119ub), thereby playing a central role in histone code and gene regulation. RING2 is a core component of polycomb repressive complex 1 (PRC1) that functions as an E3-ubuiquitin ligase transferring the mono-ubuiquitin mark to the C-terminal tail of Histone H2A at K118/K119. PRC1 is also capable of chromatin compaction, a function not requiring histone tails, and this activity appears important in gene silencing. The enzymatic activity of RING2 is enhanced by the interaction with BMI1/PCGF4, and it is dispensable for early embryonic development and much of the gene repression activity of PRC1. Moreover, RING2 plays a key role in terminating neural precursor cell (NPC)-mediated production of subcerebral projection neurons (SCPNs) during neocortical development. It also plays a critical role in nonhomologous end-joining (NHEJ)-mediated end-to-end chromosome fusions. Furthermore, RING2 is essential for expansion of hepatic stem/progenitor cells. It promotes hepatic stem/progenitor cell expansion through simultaneous suppression of cyclin-dependent kinase inhibitors (CDKIs) Cdkn1a and Cdkn2a, known negative regulators of cell proliferation. RING2 also negatively regulates p53 expression through directly binding with both p53 and MDM2 and promoting MDM2-mediated p53 ubiquitination in selective cancer cell types to stimulate tumor development. RING2 contains a C3HC4-type RING-HC finger.
Pssm-ID: 438398 [Multi-domain] Cd Length: 77 Bit Score: 39.69 E-value: 7.21e-04
RING finger found in polycomb group RING finger protein 6 (PCGF6) and similar proteins; PCGF6, ...
1376-1424
8.46e-04
RING finger found in polycomb group RING finger protein 6 (PCGF6) and similar proteins; PCGF6, also known as Mel18 and Bmi1-like RING finger (MBLR), or RING finger protein 134 (RNF134), is one of six PcG RING finger (PCGF) homologs (PCGF1/NSPc1, PCGF2/Mel-18, PCGF3, PCGF4/BMI1, PCGF5, and PCGF6/MBLR). It serves as the core component of a noncanonical Polycomb repressive complex 1 (PRC1)-like L3MBTL2 complex, which is composed of some canonical components, such as RNF2, CBX3, CXB4, CXB6, CXB7, and CXB8, as well as some noncanonical components, such as L3MBTL2, E2F6, WDR5, HDAC1, and RYBP, and plays a critical role in epigenetic transcriptional silencing in higher eukaryotes. Like other PCGF homologs, PCGF6 possesses the transcriptional repression activity, and also associates with ring finger protein 2 (RNF2) to form a RNF2-PCGF heterodimer, which is catalytically competent as an E3 ubiquitin transferase and is the scaffold for the assembly of additional components. Moreover, PCGF6 can regulate the enzymatic activity of JARID1d/KDM5D, a trimethyl H3K4 demethylase, through direct interaction. Furthermore, PCGF6 is expressed predominantly in meiotic and post-meiotic male germ cells and may play important roles in mammalian male germ cell development. It also regulates mesodermal lineage differentiation in mammalian embryonic stem cells (ESCs) and functions in induced pluripotent stem (iPS) reprogramming. The activity of PCGF6 is found to be regulated by cell cycle dependent phosphorylation. PCGF6 contains a C3HC4-type RING-HC finger.
Pssm-ID: 438396 [Multi-domain] Cd Length: 59 Bit Score: 38.74 E-value: 8.46e-04
Calcium binding and coiled-coil domain (CALCOCO1) like; Proteins found in this family are ...
666-1035
8.74e-04
Calcium binding and coiled-coil domain (CALCOCO1) like; Proteins found in this family are similar to the coiled-coil transcriptional coactivator protein coexpressed by Mus musculus (CoCoA/CALCOCO1). This protein binds to a highly conserved N-terminal domain of p160 coactivators, such as GRIP1, and thus enhances transcriptional activation by a number of nuclear receptors. CALCOCO1 has a central coiled-coil region with three leucine zipper motifs, which is required for its interaction with GRIP1 and may regulate the autonomous transcriptional activation activity of the C-terminal region.
Pssm-ID: 462303 [Multi-domain] Cd Length: 488 Bit Score: 43.73 E-value: 8.74e-04
RING finger, HC subclass, found in tripartite motif-containing protein 62 (TRIM62) and similar ...
1380-1427
8.76e-04
RING finger, HC subclass, found in tripartite motif-containing protein 62 (TRIM62) and similar proteins; TRIM62, also known as Ductal Epithelium Associated Ring Chromosome 1 (DEAR1), is a cytoplasmic E3 ubiquitin-protein ligase that was identified as a dominant regulator of acinar morphogenesis in the mammary gland. It is implicated in the inflammatory response of immune cells by regulating the Toll-like receptor 4 (TLR4) signaling pathway, leading to increased activity of the activator protein 1 (AP-1) transcription factor in primary macrophages. It is also involved in muscular protein homeostasis, especially during inflammation-induced atrophy, and may play a role in the pathogenesis of ICU-acquired weakness (ICUAW) by activating and maintaining inflammation in myocytes. Moreover, TRIM62 facilitates K27-linked poly-ubiquitination of CARD9 and also regulates CARD9-mediated anti-fungal immunity and intestinal inflammation. It also functions as a chromosome 1p35 tumor suppressor and negatively regulates transforming growth factor beta (TGFbeta)-driven epithelial-mesenchymal transition (EMT) by binding to and promoting the ubiquitination of SMAD3, a major effector of TGFbeta-mediated EMT. TRIM62 belongs to the C-IV subclass of the TRIM (tripartite motif) family of proteins that are defined by their N-terminal RBCC (RING, Bbox, and coiled coil) domains, including three consecutive zinc-binding domains, a C3HC4-type RING-HC finger, Bbox1 and Bbox2, and a coiled coil region, as well as a B30.2/SPRY (SplA and ryanodine receptor) domain positioned C-terminal to the RBCC domain.
Pssm-ID: 438270 [Multi-domain] Cd Length: 52 Bit Score: 38.64 E-value: 8.76e-04
RecF/RecN/SMC N terminal domain; This domain is found at the N terminus of SMC proteins. The ...
1186-1381
9.64e-04
RecF/RecN/SMC N terminal domain; This domain is found at the N terminus of SMC proteins. The SMC (structural maintenance of chromosomes) superfamily proteins have ATP-binding domains at the N- and C-termini, and two extended coiled-coil domains separated by a hinge in the middle. The eukaryotic SMC proteins form two kind of heterodimers: the SMC1/SMC3 and the SMC2/SMC4 types. These heterodimers constitute an essential part of higher order complexes, which are involved in chromatin and DNA dynamics. This family also includes the RecF and RecN proteins that are involved in DNA metabolism and recombination.
Pssm-ID: 426784 [Multi-domain] Cd Length: 1161 Bit Score: 43.81 E-value: 9.64e-04
ATPase-like domain of the ROK (Repressor, ORF, Kinase) domain family; The ROK family ...
8-77
1.11e-03
ATPase-like domain of the ROK (Repressor, ORF, Kinase) domain family; The ROK family corresponds to a group of proteins including sugar kinases, transcriptional repressors, and yet uncharacterized open reading frames. ROK family sugar kinases phosphorylate a range of structurally distinct hexoses including the key carbon source D-glucose, various glucose epimers, and several acetylated hexosamines. The sugar kinases include N-acetyl-D-glucosamine kinase (NAGK; EC 2.7.1.59), polyphosphate glucokinase (PPGK; EC 2.7.1.63/EC 2.7.1.2), glucokinase (GLK; EC 2.7.1.2), fructokinase (FRK; EC 2.7.1.4), hexokinase (HK; EC 2.7.1.1), D-allose kinase (AlsK; EC 2.7.1.55), bifunctional UDP-N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase (GNE; EC 3.2.1.183/EC 2.7.1.60), N-acetylmannosamine kinase (NanK; EC 2.7.1.60), beta-glucoside kinase (BglK; EC 2.7.1.85), and N-acetylglucosamine kinase (EC 2.7.1.59). The family also contains the repressor proteins, such as N-acetylglucosamine repressor (NagC), xylose repressor (XylR), cyclobis-(1-6)-alpha-nigerosyl repressor (CYANR) and protein Mlc. ROK kinases harbor a conserved N-terminal ATP binding motif of sequence DxGxT, while ROK repressors possess a N-terminal extension that contains a canonical helix-turn-helix DNA binding motif. The ROK family proteins belong to the ASKHA (Acetate and Sugar Kinases/Hsc70/Actin) superfamily of phosphotransferases, all members of which share a common characteristic five-stranded beta sheet occurring in both the N- and C-terminal domains.
Pssm-ID: 466849 [Multi-domain] Cd Length: 239 Bit Score: 42.45 E-value: 1.11e-03
RING finger, HC subclass, found in RING finger protein 213 (RNF213) and similar proteins; ...
1385-1423
1.14e-03
RING finger, HC subclass, found in RING finger protein 213 (RNF213) and similar proteins; RNF213, also known as ALK lymphoma oligomerization partner on chromosome 17 or Moyamoya steno-occlusive disease-associated AAA+ and RING finger protein (mysterin), is an intracellular soluble protein that functions as an E3 ubiquitin-protein ligase and AAA+ ATPase, which possibly contributes to vascular development through mechanical processes in the cell. It plays a unique role in endothelial cells for proper gene expression in response to inflammatory signals from the environment. Mutations in RNF213 may be associated with Moyamoya disease (MMD), an idiopathic cerebrovascular occlusive disorder prevalent in East Asia. It also acts as a nuclear marker for acanthomorph phylogeny. RNF213 contains two tandem enzymatically active AAA+ ATPase modules and a C3HC4-type RING-HC finger. It can form a huge ring-shaped oligomeric complex.
Pssm-ID: 438223 [Multi-domain] Cd Length: 50 Bit Score: 38.41 E-value: 1.14e-03
Protein of unknown function (DUF3584); This protein is found in bacteria and eukaryotes. ...
576-1156
1.18e-03
Protein of unknown function (DUF3584); This protein is found in bacteria and eukaryotes. Proteins in this family are typically between 943 to 1234 amino acids in length. This family contains a P-loop motif suggesting it is a nucleotide binding protein. It may be involved in replication.
Pssm-ID: 432349 [Multi-domain] Cd Length: 1191 Bit Score: 43.67 E-value: 1.18e-03
HOOK protein coiled-coil region; This family consists of several HOOK1, 2 and 3 proteins from ...
1074-1363
1.29e-03
HOOK protein coiled-coil region; This family consists of several HOOK1, 2 and 3 proteins from different eukaryotic organizms. The different members of the human gene family are HOOK1, HOOK2 and HOOK3. Different domains have been identified in the three human HOOK proteins, and it was demonstrated that the highly conserved NH2-domain mediates attachment to microtubules, whereas this central coiled-coil motif mediates homodimerization and the more divergent C-terminal domains are involved in binding to specific organelles (organelle-binding domains). It has been demonstrated that endogenous HOOK3 binds to Golgi membranes, whereas both HOOK1 and HOOK2 are localized to discrete but unidentified cellular structures. In mice the Hook1 gene is predominantly expressed in the testis. Hook1 function is necessary for the correct positioning of microtubular structures within the haploid germ cell. Disruption of Hook1 function in mice causes abnormal sperm head shape and fragile attachment of the flagellum to the sperm head. This entry includes the central coiled-coiled domain and the divergent C-terminal domain.
Pssm-ID: 461694 [Multi-domain] Cd Length: 528 Bit Score: 43.14 E-value: 1.29e-03
RING finger, HC subclass, found in tripartite motif-containing proteins TRIM13, TRIM59 and ...
1381-1424
1.31e-03
RING finger, HC subclass, found in tripartite motif-containing proteins TRIM13, TRIM59 and similar proteins; TRIM13 and TRIM59, two closely related tripartite motif-containing proteins, belong to the C-V subclass of the TRIM (tripartite motif) family of proteins that are defined by an N-terminal RBCC (RING, Bbox, and coiled coil) domain, including three consecutive zinc-binding domains, a C3HC4-type RING-HC finger, Bbox1 and Bbox2, and a coiled coil region, followed by a C-terminal transmembrane domain. TRIM13, also known as B-cell chronic lymphocytic leukemia tumor suppressor Leu5, leukemia-associated protein 5, putative tumor suppressor RFP2, RING finger protein 77 (RNF77), or Ret finger protein 2, is an endoplasmic reticulum (ER) membrane anchored E3 ubiquitin-protein ligase that interacts with proteins localized to the ER, including valosin-containing protein (VCP), a protein indispensable for ER-associated degradation (ERAD). TRIM59, also known as RING finger protein 104 (RNF104) or tumor suppressor TSBF-1, is a putative E3 ubiquitin-protein ligase that functions as a novel multiple cancer biomarker for immunohistochemical detection of early tumorigenesis.
Pssm-ID: 438243 [Multi-domain] Cd Length: 50 Bit Score: 38.26 E-value: 1.31e-03
RING finger, HC subclass, found in tripartite motif-containing protein 35 (TRIM35) and similar ...
1379-1423
1.38e-03
RING finger, HC subclass, found in tripartite motif-containing protein 35 (TRIM35) and similar proteins; TRIM35, also known as hemopoietic lineage switch protein 5 (HLS5), is a putative hepatocellular carcinoma (HCC) suppressor that inhibits phosphorylation of pyruvate kinase isoform M2 (PKM2), which is involved in aerobic glycolysis of cancer cells and further suppresses the Warburg effect and tumorigenicity in HCC. It also negatively regulates Toll-like receptor 7 (TLR7)- and TLR9-mediated type I interferon production by suppressing the stability of interferon regulatory factor 7 (IRF7). Moreover, TRIM35 regulates erythroid differentiation by modulating globin transcription factor 1 (GATA-1) activity. TRIM35 belongs to the C-IV subclass of the TRIM (tripartite motif) family of proteins that are defined by their N-terminal RBCC (RING, Bbox, and coiled coil) domains, including three consecutive zinc-binding domains, a C3HC4-type RING-HC finger, Bbox1 and Bbox2, and a coiled coil region, as well as a B30.2/SPRY (SplA and ryanodine receptor) domain positioned C-terminal to the RBCC domain.
Pssm-ID: 438261 [Multi-domain] Cd Length: 66 Bit Score: 38.60 E-value: 1.38e-03
second RING finger, HC subclass, found in the LON peptidase N-terminal domain and RING finger ...
1383-1423
1.46e-03
second RING finger, HC subclass, found in the LON peptidase N-terminal domain and RING finger protein family; The LON peptidase N-terminal domain and RING finger protein family includes LONRF1 (also known as RING finger protein 191 or RNF191), LONRF2 (also known as RING finger protein 192, RNF192, or neuroblastoma apoptosis-related protease), LONRF3 (also known as RING finger protein 127 or RNF127), which are characterized by containing two C3HC4-type RING-HC fingers, four tetratricopeptide (TPR) repeats, and an ATP-dependent protease La (LON) substrate-binding domain at the C-terminus. Their biological functions remain unclear. This model corresponds to the second RING-HC finger.
Pssm-ID: 438177 [Multi-domain] Cd Length: 45 Bit Score: 37.63 E-value: 1.46e-03
RING finger, HC subclass, found in Caenorhabditis elegans RING finger protein NHL-1 and ...
1380-1423
1.46e-03
RING finger, HC subclass, found in Caenorhabditis elegans RING finger protein NHL-1 and similar proteins; NHL-1 functions as an E3 ubiquitin-protein ligase in the presence of both UBC-13 and UBC-1 within the ubiquitin pathway of Caenorhabditis elegans. It acts in chemosensory neurons to promote stress resistance in distal tissues by the transcription factor DAF-16 activation but is dispensable for the activation of heat shock factor 1 (HSF-1). NHL-1 belongs to the TRIM (tripartite motif)-NHL family of proteins that are defined by their N-terminal RBCC (RING, Bbox, and coiled coil) domains, including three consecutive zinc-binding domains, a C3HC4-type RING-HC finger, Bbox1 and Bbox2, and a coiled coil domain, as well as an NHL (named after proteins NCL-1, HT2A and Lin-41 that contain repeats folded into a six-bladed beta propeller) repeat domain positioned C-terminal to the RBCC domain.
Pssm-ID: 438187 [Multi-domain] Cd Length: 53 Bit Score: 38.18 E-value: 1.46e-03
RING finger, HC subclass, found in tripartite motif-containing protein 13 (TRIM13) and similar ...
1380-1423
1.50e-03
RING finger, HC subclass, found in tripartite motif-containing protein 13 (TRIM13) and similar proteins; TRIM13, also known as B-cell chronic lymphocytic leukemia tumor suppressor Leu5, leukemia-associated protein 5, putative tumor suppressor RFP2, RING finger protein 77 (RNF77), or Ret finger protein 2, is an endoplasmic reticulum (ER) membrane anchored E3 ubiquitin-protein ligase that interacts with proteins localized to the ER, including valosin-containing protein (VCP), a protein indispensable for ER-associated degradation (ERAD). It also targets the known ER proteolytic substrate CD3-delta, but not the N-end rule substrate Ub-R-YFP (yellow fluorescent protein) for degradation. Moreover, TRIM13 regulates ubiquitination and degradation of NEMO to suppress tumor necrosis factor (TNF) induced nuclear factor-kappaB (NF- kappa B) activation. It is also involved in NF-kappaB p65 activation and nuclear factor of activated T-cells (NFAT)-dependent activation of c-Rel upon T-cell receptor engagement. Furthermore, TRIM13 negatively regulates melanoma differentiation-associated gene 5 (MDA5)-mediated type I interferon production. It also regulates caspase-8 ubiquitination, translocation to autophagosomes, and activation during ER stress induced cell death. Meanwhile, TRIM13 enhances ionizing radiation-induced apoptosis by increasing p53 stability and decreasing AKT kinase activity through MDM2 and AKT degradation. TRIM13 belongs to the C-V subclass of the TRIM (tripartite motif) family of proteins that are defined by an N-terminal RBCC (RING, Bbox, and coiled coil) domain, including three consecutive zinc-binding domains, a C3HC4-type RING-HC finger, Bbox1 and Bbox2, and a coiled coil region. In addition, TRIM13 contains a C-terminal transmembrane domain.
Pssm-ID: 438418 [Multi-domain] Cd Length: 56 Bit Score: 37.97 E-value: 1.50e-03
RING finger, HC subclass, found in Mus musculus tripartite motif-containing protein 43 (TRIM43) ...
1380-1423
1.51e-03
RING finger, HC subclass, found in Mus musculus tripartite motif-containing protein 43 (TRIM43) and similar propteins; This subfamily includes TRIM43A, TRIM43B and TRIM43C, which are expressed specifically in mouse preimplantation embryos. They contain a typical C3HC4-type RING-HC finger.
Pssm-ID: 438495 [Multi-domain] Cd Length: 57 Bit Score: 37.97 E-value: 1.51e-03
Mitotic checkpoint protein; This family consists of several eukaryotic mitotic checkpoint ...
829-1348
1.62e-03
Mitotic checkpoint protein; This family consists of several eukaryotic mitotic checkpoint (Mitotic arrest deficient or MAD) proteins. The mitotic spindle checkpoint monitors proper attachment of the bipolar spindle to the kinetochores of aligned sister chromatids and causes a cell cycle arrest in prometaphase when failures occur. Multiple components of the mitotic spindle checkpoint have been identified in yeast and higher eukaryotes. In S.cerevisiae, the existence of a Mad1-dependent complex containing Mad2, Mad3, Bub3 and Cdc20 has been demonstrated.
Pssm-ID: 461677 [Multi-domain] Cd Length: 660 Bit Score: 42.81 E-value: 1.62e-03
RING finger, HC subclass, found in really interesting new gene proteins RING1, RING2 and ...
1383-1423
1.71e-03
RING finger, HC subclass, found in really interesting new gene proteins RING1, RING2 and similar proteins; RING1, also known as polycomb complex protein RING1, RING finger protein 1 (RNF1), or RING finger protein 1A (RING1A), is a transcriptional repressor that is associated with the Polycomb group (PcG) protein complex involved in stable repression of gene activity. RING2, also known as huntingtin-interacting protein 2-interacting protein 3, HIP2-interacting protein 3, protein DinG, RING finger protein 1B (RING1B), RING finger protein 2 (RNF2), or RING finger protein BAP-1, is an E3 ubiquitin-protein ligase that interacts with both nucleosomal DNA and an acidic patch on histone H4 to achieve the specific monoubiquitination of K119 on histone H2A (H2AK119ub), thereby playing a central role in histone code and gene regulation. Both RING1 and RING2 are core components of polycomb repressive complex 1 (PRC1) that functions as an E3-ubuiquitin ligase transferring the mono-ubuiquitin mark to the C-terminal tail of Histone H2A at K118/K119. PRC1 is also capable of chromatin compaction, a function not requiring histone tails, and this activity appears important in gene silencing. RING2 acts as the main E3 ubiquitin ligase on histone H2A of the PRC1 complex, while RING1 may rather act as a modulator of RNF2/RING2 activity. Members of this family contain a C3HC4-type RING-HC finger.
Pssm-ID: 438193 [Multi-domain] Cd Length: 66 Bit Score: 38.40 E-value: 1.71e-03
RING finger, HC subclass, found in tripartite motif-containing protein 39 (TRIM39) and similar ...
1385-1423
1.80e-03
RING finger, HC subclass, found in tripartite motif-containing protein 39 (TRIM39) and similar proteins; TRIM39, also known as RING finger protein 23 (RNF23) or testis-abundant finger protein, is an E3 ubiquitin-protein ligase that plays a role in controlling DNA damage-induced apoptosis through inhibition of the anaphase promoting complex (APC/C), a multiprotein ubiquitin ligase that controls multiple cell cycle regulators, including cyclins, geminin, and others. TRIM39 also functions as a regulator of several key processes in the proliferative cycle. It directly regulates p53 stability. It modulates cell cycle progression and DNA damage responses via stabilizing p21. Moreover, TRIM39 negatively regulates the nuclear factor kappaB (NFkappaB)-mediated signaling pathway through stabilization of Cactin, an inhibitor of NFkappaB- and Toll-like receptor (TLR)-mediated transcription, which is induced by inflammatory stimulants such as tumor necrosis factor alpha. Furthermore, TRIM39 is a MOAP-1-binding protein that can promote apoptosis signaling through stabilization of MOAP-1 via the inhibition of its poly-ubiquitination process. TRIM39 belongs to the C-IV subclass of the TRIM (tripartite motif) family of proteins that are defined by their N-terminal RBCC (RING, Bbox, and coiled coil) domains, including three consecutive zinc-binding domains, a C3HC4-type RING-HC finger, Bbox1 and Bbox2, and a coiled coil region, as well as a B30.2/SPRY (SplA and ryanodine receptor) domain positioned C-terminal to the RBCC domain.
Pssm-ID: 438263 [Multi-domain] Cd Length: 44 Bit Score: 37.46 E-value: 1.80e-03
RING finger, HC subclass, found in RING finger protein 125 (RNF125); RNF125, also known as ...
1382-1424
2.02e-03
RING finger, HC subclass, found in RING finger protein 125 (RNF125); RNF125, also known as T-cell RING activation protein 1 (TRAC-1), is an E3 ubiquitin-protein ligase that is predominantly expressed in lymphoid cells, and functions as a positive regulator of T cell activation. It also down-modulates HIV replication and inhibits pathogen-induced cytokine production. It negatively regulates type I interferon signaling, which conjugates Lys(48)-linked ubiquitination to retinoic acid-inducible gene-I (RIG-I) and subsequently leads to the proteasome-dependent degradation of RIG-I. Further, RNF125 conjugates ubiquitin to melanoma differentiation-associated gene 5 (MDA5), a family protein of RIG-I. It thus acts as a negative regulator of RIG-I signaling, and is a direct target of miR-15b in the context of Japanese encephalitis virus (JEV) infection. Moreover, RNF125 binds to and ubiquitinates JAK1, prompting its degradation and inhibition of receptor tyrosine kinase (RTK) expression. It also negatively regulates p53 function through physical interaction and ubiquitin-mediated proteasome degradation. Mutations in RNF125 may lead to overgrowth syndromes (OGS). RNF125, together with three closely related proteins: RNF114, RNF138 and RNF166, forms a novel family of ubiquitin ligases with a C3HC4-type RING-HC finger, a C2HC-, and two C2H2-type zinc fingers, as well as a ubiquitin interacting motif (UIM). The UIM of RNF125 binds K48-linked poly-ubiquitin chains and is, together with the RING domain, required for auto-ubiquitination.
Pssm-ID: 438204 [Multi-domain] Cd Length: 50 Bit Score: 37.55 E-value: 2.02e-03
chromosome segregation protein SMC, common bacterial type; SMC (structural maintenance of ...
1101-1383
2.20e-03
chromosome segregation protein SMC, common bacterial type; SMC (structural maintenance of chromosomes) proteins bind DNA and act in organizing and segregating chromosomes for partition. SMC proteins are found in bacteria, archaea, and eukaryotes. This family represents the SMC protein of most bacteria. The smc gene is often associated with scpB (TIGR00281) and scpA genes, where scp stands for segregation and condensation protein. SMC was shown (in Caulobacter crescentus) to be induced early in S phase but present and bound to DNA throughout the cell cycle. [Cellular processes, Cell division, DNA metabolism, Chromosome-associated proteins]
Pssm-ID: 274008 [Multi-domain] Cd Length: 1179 Bit Score: 42.74 E-value: 2.20e-03
chromosome segregation protein SMC, common bacterial type; SMC (structural maintenance of ...
1087-1378
2.32e-03
chromosome segregation protein SMC, common bacterial type; SMC (structural maintenance of chromosomes) proteins bind DNA and act in organizing and segregating chromosomes for partition. SMC proteins are found in bacteria, archaea, and eukaryotes. This family represents the SMC protein of most bacteria. The smc gene is often associated with scpB (TIGR00281) and scpA genes, where scp stands for segregation and condensation protein. SMC was shown (in Caulobacter crescentus) to be induced early in S phase but present and bound to DNA throughout the cell cycle. [Cellular processes, Cell division, DNA metabolism, Chromosome-associated proteins]
Pssm-ID: 274008 [Multi-domain] Cd Length: 1179 Bit Score: 42.74 E-value: 2.32e-03
Modified RING finger, HC subclass (C3HC3D-type), found in tumor necrosis factor (TNF) ...
1381-1421
2.34e-03
Modified RING finger, HC subclass (C3HC3D-type), found in tumor necrosis factor (TNF) receptor-associated factor 7 (TRAF7) and similar proteins; TRAF7, also known as RING finger and WD repeat-containing protein 1 or RING finger protein 119 (RNF119), is an E3 ubiquitin-protein ligase involved in signal transduction pathways that lead either to activation or repression of NF-kappaB transcription factor by promoting K29-linked ubiquitination of several cellular targets, including the NF-kappaB essential modulator (NEMO) and the p65 subunit of NF-kappaB transcription factor. It is also involved in K29-linked polyubiquitination that has been implicated in lysosomal degradation of proteins. Moreover, TRAF7 is required for K48-linked ubiquitination of p53, a key tumor suppressor and a master regulator of various signaling pathways, such as those related to apoptosis, cell cycle and DNA repair. It is also required for tumor necrosis factor alpha (TNFalpha)-induced Jun N-terminal kinase activation and promotes cell death by regulating polyubiquitination and lysosomal degradation of c-FLIP protein. Furthermore, TRAF7 functions as small ubiquitin-like modifier (SUMO) E3 ligase involved in other post-translational modification, such as sumoylation. It binds to and stimulates sumoylation of the proto-oncogene product c-Myb, a transcription factor regulating proliferation and differentiation of hematopoietic cells. It potentiates MEKK3-induced AP1 and CHOP activation and induces apoptosis. Meanwhile, TRAF7 mediates MyoD1 regulation of the pathway and cell-cycle progression in myoblasts. It also plays a role in Toll-like receptors (TLR) signaling. TRAF7 contains an N-terminal domain with a modified C3HC3D-type RING-HC finger and an adjacent zinc finger, and a unique C-terminal domain that comprises a coiled coil domain and seven WD40 repeats.
Pssm-ID: 438306 [Multi-domain] Cd Length: 47 Bit Score: 37.33 E-value: 2.34e-03
RIM-binding protein of the cytomatrix active zone; This is a family of proteins that form part ...
730-1363
2.59e-03
RIM-binding protein of the cytomatrix active zone; This is a family of proteins that form part of the CAZ (cytomatrix at the active zone) complex which is involved in determining the site of synaptic vesicle fusion. The C-terminus is a PDZ-binding motif that binds directly to RIM (a small G protein Rab-3A effector). The family also contains four coiled-coil domains.
Pssm-ID: 431111 [Multi-domain] Cd Length: 766 Bit Score: 42.50 E-value: 2.59e-03
RING finger (Really Interesting New Gene) domain and U-box domain superfamily; The RING finger ...
1385-1423
2.66e-03
RING finger (Really Interesting New Gene) domain and U-box domain superfamily; The RING finger is a specialized type of Zn-finger of 40 to 60 residues that binds two atoms of zinc. It is defined by the "cross-brace" motif that chelates zinc atoms by eight amino acid residues, typically Cys or His, arranged in a characteristic spacing. Canonical RING motifs have been categorized into two major subclasses, RING-HC (C3HC4-type) and RING-H2 (C3H2C3-type), according to their Cys/His content. There are also many variants of RING fingers: some have different Cys/His patterns while some lack a single Cys or His residue at typical Zn ligand positions (the fourth or eighth zinc ligand is prevalently exchanged for an Asp, which can indeed chelate Zn in a RING finger as well). C4C4-, C3HC3D-, C2H2C4-, and C3HC5-type RING fingers are closely related to RING-HC fingers. In contrast, C4HC3- (RING-CH alias RINGv), C3H3C2-, C3H2C2D-, C3DHC3-, and C4HC2H-type RING fingers are more closely related to RING-H2 fingers. However, not all RING finger-containing proteins display regular RING finger features, and the RING finger family has turned out to be multifarious. The degenerate RING fingers of the Siz/PIAS RING (SP-RING) family proteins and sporulation protein RMD5, are characterized by lacking the second, fifth, and sixth Zn2+ ion-coordinating residues. They bind only one Zn2+ ion. On the other hand, the RING fingers of the human APC11 and RBX1 proteins can bind a third Zn atom since they harbor four additional Zn ligands. U-box is a modified form of the RING finger domain that lacks metal chelating Cys and His residues. It resembles the cross-brace RING structure consisting of three beta-sheets and a single alpha-helix, which would be stabilized by salt bridges instead of chelated metal ions. U-box proteins are widely distributed among eukaryotic organisms and show a higher prevalence in plants than in other organisms. RING finger/U-box-containing proteins are a group of diverse proteins with a variety of cellular functions, including oncogenesis, development, viral replication, signal transduction, the cell cycle and apoptosis. Many of them are ubiquitin-protein ligases (E3s) that serve as scaffolds for binding to ubiquitin-conjugating enzymes (E2s, also referred to as ubiquitin carrier proteins or UBCs) in close proximity to substrate proteins, which enable efficient transfer of ubiquitin from E2 to the substrates.
Pssm-ID: 438111 [Multi-domain] Cd Length: 42 Bit Score: 37.05 E-value: 2.66e-03
RING finger, HC subclass, found in RING finger and transmembrane domain-containing protein 1 ...
1385-1423
3.25e-03
RING finger, HC subclass, found in RING finger and transmembrane domain-containing protein 1 (RNFT1); RNFT1, also known as protein PTD016, is a multi-pass membrane protein containing a C3HC4-type RING-HC finger. Its biological role remains unclear.
Pssm-ID: 438399 [Multi-domain] Cd Length: 58 Bit Score: 37.17 E-value: 3.25e-03
RING finger, HC subclass, found in polycomb group RING finger protein 1 (PCGF1) and similar ...
1376-1424
3.26e-03
RING finger, HC subclass, found in polycomb group RING finger protein 1 (PCGF1) and similar proteins; PCGF1, also known as nervous system Polycomb-1 (NSPc1) or RING finger protein 68 (RNF68), is one of six PcG RING finger (PCGF) homologs (PCGF1/NSPc1, PCGF2/Mel-18, PCGF3, PCGF4/BMI1, PCGF5, and PCGF6/MBLR). It serves as the core component of a noncanonical Polycomb repressive complex 1 (PRC1)-like BCOR complex that also contains RING1, RNF2, RYBP, SKP1, as well as the BCL6 co-repressor BCOR and the histone demethylase KDM2B, and is required to maintain the transcriptionally repressive state of some genes, such as Hox genes, BCL6 and the cyclin-dependent kinase inhibitor, CDKN1A. PCGF1 promotes cell cycle progression and enhances cell proliferation as well. It is a cell growth regulator that acts as a transcriptional repressor of p21Waf1/Cip1 via the retinoid acid response element (RARE element). Moreover, PCGF1 functions as an epigenetic regulator involved in hematopoietic cell differentiation. It cooperates with the transcription factor runt-related transcription factor 1 (Runx1) in regulating differentiation and self-renewal of hematopoietic cells. Furthermore, PCGF1 represents a physical and functional link between Polycomb function and pluripotency. PCGF1 contains a C3HC4-type RING-HC finger.
Pssm-ID: 438391 [Multi-domain] Cd Length: 71 Bit Score: 37.63 E-value: 3.26e-03
RING finger, HC subclass, found in RING finger protein 114 (RNF114) and similar proteins; ...
1383-1426
4.00e-03
RING finger, HC subclass, found in RING finger protein 114 (RNF114) and similar proteins; RNF114, also known as zinc finger protein 228 (ZNF228) or zinc finger protein 313 (ZNF313), is a p21(WAF1)-targeting ubiquitin E3 ligase that interacts with X-linked inhibitor of apoptosis (XIAP)-associated factor 1 (XAF1) and may play a role in p53-mediated cell-fate decisions. It is involved in the immune response to double-stranded RNA in disease pathogenesis. Moreover, RNF114 interacts with A20 and modulates its ubiquitylation. It negatively regulates nuclear factor-kappaB (NF-kappaB)-dependent transcription and positively regulates T-cell activation. RNF114 may play a putative role in the regulation of immune responses, since it corresponds to a novel psoriasis susceptibility gene, ZNF313. RNF114, together with three closely related proteins: RNF125, RNF138 and RNF166, forms a novel family of ubiquitin ligases with a C3HC4-type RING-HC finger, a C2HC-, and two C2H2-type zinc fingers, as well as a ubiquitin interacting motif (UIM).
Pssm-ID: 438202 [Multi-domain] Cd Length: 46 Bit Score: 36.66 E-value: 4.00e-03
RING finger, HC subclass, found in RING finger protein 208 (RNF208) and similar proteins; ...
1383-1423
4.05e-03
RING finger, HC subclass, found in RING finger protein 208 (RNF208) and similar proteins; RNF208 is an E3 ubiquitin-protein ligase whose activity can be modulated by S-nitrosylation. It contains a C3HC4-type RING-HC finger.
Pssm-ID: 438221 [Multi-domain] Cd Length: 56 Bit Score: 36.83 E-value: 4.05e-03
RING finger, HC subclass, found in E3 ubiquitin-protein ligase Deltex3 (DTX3), Deltex-3-like ...
1384-1424
5.26e-03
RING finger, HC subclass, found in E3 ubiquitin-protein ligase Deltex3 (DTX3), Deltex-3-like (DTX3L) and similar proteins; This subfamily contains Deltex3 (DTX3) and Deltex-3-like (DTX3L), both of which are E3 ubiquitin-protein ligases belonging to the Deltex (DTX) family. DTX3, also known as RING finger protein 154 (RNF154), has a biological function that remains unclear. DTX3L, also known as B-lymphoma- and BAL-associated protein (BBAP) or Rhysin-2 (Rhysin2), regulates endosomal sorting of the G protein-coupled receptor CXCR4 from endosomes to lysosomes. It also regulates subcellular localization of its partner protein, B aggressive lymphoma (BAL), by a dynamic nucleocytoplasmic trafficking mechanism. In contrast to other DTXs, both DTX3 and DTX3L contain a C3HC4-type RING-HC finger, and a previously unidentified C-terminal domain. DTX3L can associate with DTX1 through its unique N termini and further enhance self-ubiquitination.
Pssm-ID: 438169 [Multi-domain] Cd Length: 45 Bit Score: 36.19 E-value: 5.26e-03
RING finger, HC subclass, found in RING finger protein 151 (RNF151) and similar proteins; ...
1383-1423
5.33e-03
RING finger, HC subclass, found in RING finger protein 151 (RNF151) and similar proteins; RNF151 is a testis-specific RING finger protein that interacts with dysbindin, a synaptic and microtubular protein that binds brain snapin, a SNARE-binding protein that mediates intracellular membrane fusion in both neuronal and non-neuronal cells. Thus, it may be involved in acrosome formation of spermatids by interacting with multiple proteins participating in membrane biogenesis and microtubule organization. RNF151 contains a C3HC4-type RING finger domain, a putative nuclear localization signal (NLS), and a TNF receptor associated factor (TRAF)-type zinc finger domain.
Pssm-ID: 438209 [Multi-domain] Cd Length: 49 Bit Score: 36.28 E-value: 5.33e-03
first RING finger, H2 subclass, found in RING finger protein 32 (RNF32) and similar proteins; ...
1385-1423
5.39e-03
first RING finger, H2 subclass, found in RING finger protein 32 (RNF32) and similar proteins; RNF32 is mainly expressed in testis spermatogenesis, most likely in spermatocytes and/or in spermatids, suggesting a possible role in sperm formation. RNF32 contains two C3H2C3-type RING-H2 fingers separated by an IQ domain of unknown function. Although the biological function of RNF32 remains unclear, proteins with double RING-H2 fingers may act as scaffolds for binding several proteins that function in the same pathway. This model corresponds to the first RING-H2 finger.
Pssm-ID: 438339 [Multi-domain] Cd Length: 49 Bit Score: 36.12 E-value: 5.39e-03
nucleotide-binding domain (NBD) of the BcrAD/BadFG and HgdC/HadI family; The BcrAD/BadFG and ...
7-38
5.45e-03
nucleotide-binding domain (NBD) of the BcrAD/BadFG and HgdC/HadI family; The BcrAD/BadFG and HgdC/HadI family includes BcrA/BadF/BzdQ and BcrD/BadG/BzdP proteins which are subunits of benzoyl-CoA reductase, that may be involved in ATP hydrolysis. The family also contains some dehydratase activators, such as Acidaminococcus fermentans (R)-2-hydroxyglutaryl-CoA dehydratase activating ATPase (HgdC), Clostridioides difficile 2-hydroxyisocaproyl-CoA dehydratase activator (HadI), Clostridium sporogenes (R)-phenyllactate dehydratase activator (FldI), and Anaerotignum propionicum activator of lactoyl-CoA dehydratase (LcdC). Uncharacterized proteins, such as Escherichia coli protein YjiL and Methanocaldococcus jannaschii protein MJ0800, are also included in this family.
Pssm-ID: 466886 [Multi-domain] Cd Length: 250 Bit Score: 40.22 E-value: 5.45e-03
Calcium binding and coiled-coil domain (CALCOCO1) like; Proteins found in this family are ...
1117-1359
5.47e-03
Calcium binding and coiled-coil domain (CALCOCO1) like; Proteins found in this family are similar to the coiled-coil transcriptional coactivator protein coexpressed by Mus musculus (CoCoA/CALCOCO1). This protein binds to a highly conserved N-terminal domain of p160 coactivators, such as GRIP1, and thus enhances transcriptional activation by a number of nuclear receptors. CALCOCO1 has a central coiled-coil region with three leucine zipper motifs, which is required for its interaction with GRIP1 and may regulate the autonomous transcriptional activation activity of the C-terminal region.
Pssm-ID: 462303 [Multi-domain] Cd Length: 488 Bit Score: 41.03 E-value: 5.47e-03
Coiled-coil domain-containing protein 22; Human coiled-coil domain-containing protein 22 ...
1064-1164
5.48e-03
Coiled-coil domain-containing protein 22; Human coiled-coil domain-containing protein 22 (CCDC22) is involved in regulation of NF-kappa-B signalling; the function may involve association with COMMD8 and a CUL1-dependent E3 ubiquitin ligase complex. It is part of the OMMD/CCDC22/CCDC93 (CCC) complex, which interacts with the multisubunit WASH complex required for endosomal deposition of F-actin and cargo trafficking in conjunction with the retromer. This entry also includes CCDC22 homologs from animals and plants.
Pssm-ID: 461708 [Multi-domain] Cd Length: 600 Bit Score: 41.17 E-value: 5.48e-03
nucleotide-binding domain (NBD) of Aeropyrum pernix glucokinase (GLK) and similar proteins; ...
6-77
5.62e-03
nucleotide-binding domain (NBD) of Aeropyrum pernix glucokinase (GLK) and similar proteins; Glucokinase (EC 2.7.1.2), also called glucose kinase, acts as an ATP-dependent kinase that phosphorylates glucose using ATP as a donor to give glucose-6-phosphate and ADP. It is highly specific for glucose. Glucokinases are found in invertebrates and microorganisms. They belong to the kinase (ROK) family, a group of proteins that have sugar kinase and/or transcriptional repressor activities.
Pssm-ID: 466913 [Multi-domain] Cd Length: 308 Bit Score: 40.40 E-value: 5.62e-03
Modified RING finger, HC subclass (C3HC3D-type), found in ligand of Numb protein LNX1, LNX2, ...
1383-1421
6.00e-03
Modified RING finger, HC subclass (C3HC3D-type), found in ligand of Numb protein LNX1, LNX2, and similar proteins; The ligand of Numb protein X (LNX) family, also known as PDZ and RING (PDZRN) family, includes LNX1-5, which can interact with Numb, a key regulator of neurogenesis and neuronal differentiation. LNX5 (also known as PDZK4 or PDZRN4L) shows high sequence homology to LNX3 and LNX4, but it lacks the RING domain. LNX1-4 proteins function as E3 ubiquitin ligases and have a unique domain architecture consisting of an N-terminal RING-HC finger for E3 ubiquitin ligase activity and either two or four PDZ domains necessary for substrate-binding. LNX1/LNX2-like proteins contain a modified C3HC3D-type RING-HC finger and four PDZ domains. This model corresponds to the RING finger.
Pssm-ID: 438299 [Multi-domain] Cd Length: 42 Bit Score: 35.84 E-value: 6.00e-03
Modified RING finger, HC subclass (C3HC3D-type), found in tumor necrosis factor (TNF) ...
1385-1421
7.22e-03
Modified RING finger, HC subclass (C3HC3D-type), found in tumor necrosis factor (TNF) receptor-associated factor 6 (TRAF6) and similar proteins; TRAF6, also known as interleukin-1 signal transducer or RING finger protein 85 (RNF85), is a cytoplasmic adapter protein that mediates signals induced by the tumor necrosis factor receptor (TNFR) superfamily and Toll-like receptor (TLR)/interleukin-1 receptor (IL-1R) family. It functions as a mediator involved in the activation of mitogen-activated protein kinase (MAPK), phosphoinositide 3-kinase (PI3K), and interferon regulatory factor pathways, as well as in IL-1R-mediated activation of NF-kappaB. TRAF6 is also an oncogene that plays a vital role in K-RAS-mediated oncogenesis. TRAF6 contains an N-terminal domain with a modified C3HC3D-type RING-HC finger and several zinc fingers, and a C-terminal TRAF domain that comprises a coiled coil domain and a conserved TRAF-C domain.
Pssm-ID: 438305 [Multi-domain] Cd Length: 58 Bit Score: 36.20 E-value: 7.22e-03
RING finger, HC subclass, found in tripartite motif-containing protein 47 (TRIM47) and similar ...
1383-1427
7.50e-03
RING finger, HC subclass, found in tripartite motif-containing protein 47 (TRIM47) and similar proteins; TRIM47, also known as gene overexpressed in astrocytoma protein (GOA) or RING finger protein 100 (RNF100), belongs to the C-IV subclass of the TRIM (tripartite motif) family of proteins that are defined by their N-terminal RBCC (RING, Bbox, and coiled coil) domains, including three consecutive zinc-binding domains, a C3HC4-type RING-HC finger, a B-box, and two coiled coil domains, as well as a B30.2/SPRY (SplA and ryanodine receptor) domain positioned C-terminal to the RBCC domain. It plays an important role in the process of dedifferentiation that is associated with astrocytoma tumorigenesis. This subfamily also includes RING finger protein 135 (RNF135). RNF135, also known as RIG-I E3 ubiquitin ligase (REUL) or Riplet, is a widely expressed E3 ubiquitin-protein ligase that consists of an N-terminal C3HC4-type RING-HC finger and C-terminal B30.2/SPRY and PRY motifs, but lacks the B-box and coiled-coil domains that are also typically present in TRIM proteins. RNF135 serves as a specific retinoic acid-inducible gene-I (RIG-I)-interacting protein that ubiquitinates RIG-I and specifically stimulates RIG-I-mediated innate antiviral activity to produce antiviral type-I interferon (IFN) during the early phase of viral infection. It also has been identified as a bio-marker and therapy target of glioblastoma. It associates with the ERK signal transduction pathway and plays a role in glioblastoma cell proliferation, migration and cell cycle.
Pssm-ID: 438266 [Multi-domain] Cd Length: 49 Bit Score: 35.86 E-value: 7.50e-03
RING finger, HC subclass, found in Caenorhabditis elegans BRCA1-associated RING domain protein ...
1385-1423
7.90e-03
RING finger, HC subclass, found in Caenorhabditis elegans BRCA1-associated RING domain protein 1 (CeBARD1) and similar proteins; CeBARD1, also called Ce-BRD-1, Cebrd-1, or RING-type E3 ubiquitin transferase BARD1, is a constituent of the CeBCD complex that possesses E3 ubiquitin-protein ligase activity. It plays a role in triggering cellular responses at damage sites in response to DNA damage that may be induced by ionizing radiation. It protects against chromosome non-disjunction and nuclear fragmentation during meiotic double-strand break repair to ensure sister chromatid recombination and aid chromosome stability. CeBARD1 contains a typical C3HC4-type RING-HC finger.
Pssm-ID: 438505 [Multi-domain] Cd Length: 47 Bit Score: 35.98 E-value: 7.90e-03
Ezrin/radixin/moesin, alpha-helical domain; The ERM family consists of three closely-related ...
1239-1354
7.95e-03
Ezrin/radixin/moesin, alpha-helical domain; The ERM family consists of three closely-related proteins, ezrin, radixin and moesin. Ezrin was first identified as a constituent of microvilli, radixin as a barbed, end-capping actin-modulating protein from isolated junctional fractions, and moesin as a heparin binding protein. A tumour suppressor molecule responsible for neurofibromatosis type 2 (NF2) is highly similar to ERM proteins and has been designated merlin (moesin-ezrin-radixin-like protein). ERM molecules contain 3 domains, an N-terminal globular domain, an extended alpha-helical domain and a charged C-terminal domain (pfam00769). Ezrin, radixin and merlin also contain a polyproline linker region between the helical and C-terminal domains. The N-terminal domain is highly conserved and is also found in merlin, band 4.1 proteins and members of the band 4.1 superfamily, designated the FERM domain. ERM proteins crosslink actin filaments with plasma membranes. They co-localize with CD44 at actin filament plasma membrane interaction sites, associating with CD44 via their N-terminal domains and with actin filaments via their C-terminal domains. This is the alpha-helical domain, which is involved in intramolecular masking of protein-protein interaction sites, regulating the activity of this proteins.
Pssm-ID: 466641 [Multi-domain] Cd Length: 120 Bit Score: 37.98 E-value: 7.95e-03
RING finger, HC subclass, found in checkpoint with forkhead and RING finger domains protein ...
1381-1423
9.06e-03
RING finger, HC subclass, found in checkpoint with forkhead and RING finger domains protein (CHFR); CHFR, also known as RING finger protein 196 (RNF196), is a checkpoint protein that delays entry into mitosis in response to stress. It functions as an E3 ubiquitin ligase that ubiquitinates and degrades its target proteins, such as Aurora-A, Plk1, Kif22, and PARP-1, which are critical for proper mitotic transitions. It also plays an important role in cell cycle progression and tumor suppression, and is negatively regulated by SUMOylation-mediated proteasomal ubiquitylation. Moreover, CHFR is involved in the early stage of the DNA damage response, which mediates the crosstalk between ubiquitination and poly-ADP-ribosylation. CHFR contains a fork head associated (FHA) domain and a C3HC4-type RING-HC finger.
Pssm-ID: 438166 [Multi-domain] Cd Length: 55 Bit Score: 35.81 E-value: 9.06e-03
Protein of unknown function (DUF3584); This protein is found in bacteria and eukaryotes. ...
785-1144
9.15e-03
Protein of unknown function (DUF3584); This protein is found in bacteria and eukaryotes. Proteins in this family are typically between 943 to 1234 amino acids in length. This family contains a P-loop motif suggesting it is a nucleotide binding protein. It may be involved in replication.
Pssm-ID: 432349 [Multi-domain] Cd Length: 1191 Bit Score: 40.59 E-value: 9.15e-03
RING finger, HC subclass, found in makorin-1 (MKRN1), makorin-3 (MKRN3), and similar proteins; ...
1391-1423
9.95e-03
RING finger, HC subclass, found in makorin-1 (MKRN1), makorin-3 (MKRN3), and similar proteins; MKRN1, also known as makorin RING finger protein 1 or RING finger protein 61 (RNF61), is an E3 ubiquitin-protein ligase targeting the telomerase catalytic subunit (TERT) for proteasome processing. It regulates the ubiquitination and degradation of peroxisome-proliferator-activated receptor gamma (PPARgamma), a nuclear receptor that is linked to obesity and metabolic diseases. It also mediates the posttranslational regulation of p14ARF, and thus potentially regulates cellular senescence and tumorigenesis in gastric cancer. Moreover, MKRN1 functions as a differentially negative regulator of p53 and p21, and controls cell cycle arrest and apoptosis. It induces degradation of West Nile virus (WNV) capsid protein to protect cells from WNV. It is a RNA-binding protein involved in the modulation of cellular stress and apoptosis. It predominantly associates with proteins involved in mRNA metabolism including regulators of mRNA turnover, transport, and/or translation, and acts as a component of a ribonucleoprotein complex in embryonic stem cells (ESCs) that is recruited to stress granules upon exposure to environmental stress. MKRN1 interacts with poly(A)-binding protein (PABP), a key component of different ribonucleoprotein complexes, in an RNA-independent manner, and stimulates translation in nerve cells. In addition, MKRN1 is a novel SEREX (serological identification of antigens by recombinant cDNA expression cloning) antigen of esophageal squamous cell carcinoma (SCC). It may be involved in carcinogenesis of the well-differentiated type of tumors possibly via ubiquitination of filamin A interacting protein 1 (L-FILIP). Human MKRN1 contains three N-terminal C3H1-type zinc fingers, a motif rich in Cys and His residues (CH), a C3HC4-type RING-HC finger, and another C3H1-type zinc finger at the C-terminus. MKRN3, also known as makorin RING finger protein 3, RING finger protein 63 (RNF63), or zinc finger protein 127 (ZNF127), is a therian mammal-specific retrocopy of MKRN1. It acts as a putative E3 ubiquitin-protein ligase involved in ubiquitination and cell signaling. MKRN3 shows a potential inhibitory effect on hypothalamic gonadotropin-releasing hormone (GnRH) secretion. Its defects represent the most frequent known genetic cause of familial central precocious puberty (CPP). In contrast to human MKRN1, human MKRN3 lacks the second C3H1-type zinc finger at the N-terminal region. The RING-HC finger of mammalian MKRN4 shows high sequence similarity with that of MKRN3, and is also included in this model.
Pssm-ID: 319644 [Multi-domain] Cd Length: 61 Bit Score: 35.93 E-value: 9.95e-03
Database: CDSEARCH/cdd Low complexity filter: no Composition Based Adjustment: yes E-value threshold: 0.01
References:
Wang J et al. (2023), "The conserved domain database in 2023", Nucleic Acids Res.51(D)384-8.
Lu S et al. (2020), "The conserved domain database in 2020", Nucleic Acids Res.48(D)265-8.
Marchler-Bauer A et al. (2017), "CDD/SPARCLE: functional classification of proteins via subfamily domain architectures.", Nucleic Acids Res.45(D)200-3.
of the residues that compose this conserved feature have been mapped to the query sequence.
Click on the triangle to view details about the feature, including a multiple sequence alignment
of your query sequence and the protein sequences used to curate the domain model,
where hash marks (#) above the aligned sequences show the location of the conserved feature residues.
The thumbnail image, if present, provides an approximate view of the feature's location in 3 dimensions.
Click on the triangle for interactive 3D structure viewing options.
Functional characterization of the conserved domain architecture found on the query.
Click here to see more details.
This image shows a graphical summary of conserved domains identified on the query sequence.
The Show Concise/Full Display button at the top of the page can be used to select the desired level of detail: only top scoring hits
(labeled illustration) or all hits
(labeled illustration).
Domains are color coded according to superfamilies
to which they have been assigned. Hits with scores that pass a domain-specific threshold
(specific hits) are drawn in bright colors.
Others (non-specific hits) and
superfamily placeholders are drawn in pastel colors.
if a domain or superfamily has been annotated with functional sites (conserved features),
they are mapped to the query sequence and indicated through sets of triangles
with the same color and shade of the domain or superfamily that provides the annotation. Mouse over the colored bars or triangles to see descriptions of the domains and features.
click on the bars or triangles to view your query sequence embedded in a multiple sequence alignment of the proteins used to develop the corresponding domain model.
The table lists conserved domains identified on the query sequence. Click on the plus sign (+) on the left to display full descriptions, alignments, and scores.
Click on the domain model's accession number to view the multiple sequence alignment of the proteins used to develop the corresponding domain model.
To view your query sequence embedded in that multiple sequence alignment, click on the colored bars in the Graphical Summary portion of the search results page,
or click on the triangles, if present, that represent functional sites (conserved features)
mapped to the query sequence.
Concise Display shows only the best scoring domain model, in each hit category listed below except non-specific hits, for each region on the query sequence.
(labeled illustration) Standard Display shows only the best scoring domain model from each source, in each hit category listed below for each region on the query sequence.
(labeled illustration) Full Display shows all domain models, in each hit category below, that meet or exceed the RPS-BLAST threshold for statistical significance.
(labeled illustration) Four types of hits can be shown, as available,
for each region on the query sequence:
specific hits meet or exceed a domain-specific e-value threshold
(illustrated example)
and represent a very high confidence that the query sequence belongs to the same protein family as the sequences use to create the domain model
non-specific hits
meet or exceed the RPS-BLAST threshold for statistical significance (default E-value cutoff of 0.01, or an E-value selected by user via the
advanced search options)
the domain superfamily to which the specific and non-specific hits belong
multi-domain models that were computationally detected and are likely to contain multiple single domains
Retrieve proteins that contain one or more of the domains present in the query sequence, using the Conserved Domain Architecture Retrieval Tool
(CDART).
Modify your query to search against a different database and/or use advanced search options