unnamed protein product [Mus musculus]
major facilitator superfamily domain-containing protein 12( domain architecture ID 13024796)
major facilitator superfamily domain-containing protein 12 (MFSD12) acts as a transporter that mediates the import of cysteine into melanosomes, thereby regulating skin pigmentation
List of domain hits
Name | Accession | Description | Interval | E-value | |||||||
MFS_MFSD12 | cd17491 | Major facilitator superfamily domain-containing protein 12; Major facilitator superfamily ... |
21-465 | 0e+00 | |||||||
Major facilitator superfamily domain-containing protein 12; Major facilitator superfamily domain-containing protein 12 (MFSD12) protein subfamily includes a group of uncharacterized proteins similar to human MFSD2. MFSD2 is composed of two vertebrate members, MFSD2A and MFSD2B. MFSD2A is an LPC symporter that plays an essential role for blood-brain barrier formation and function. MFSD2B is a potential risk or protect factor in the prognosis of lung adenocarcinoma. The MFSD12 subfamily belongs to the Salmonella enterica Na+/melibiose symporter like (MelB-like) family of the Major Facilitator Superfamily (MFS) of transporters. MFS proteins are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. : Pssm-ID: 341044 Cd Length: 438 Bit Score: 636.99 E-value: 0e+00
|
|||||||||||
Name | Accession | Description | Interval | E-value | |||||||
MFS_MFSD12 | cd17491 | Major facilitator superfamily domain-containing protein 12; Major facilitator superfamily ... |
21-465 | 0e+00 | |||||||
Major facilitator superfamily domain-containing protein 12; Major facilitator superfamily domain-containing protein 12 (MFSD12) protein subfamily includes a group of uncharacterized proteins similar to human MFSD2. MFSD2 is composed of two vertebrate members, MFSD2A and MFSD2B. MFSD2A is an LPC symporter that plays an essential role for blood-brain barrier formation and function. MFSD2B is a potential risk or protect factor in the prognosis of lung adenocarcinoma. The MFSD12 subfamily belongs to the Salmonella enterica Na+/melibiose symporter like (MelB-like) family of the Major Facilitator Superfamily (MFS) of transporters. MFS proteins are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. Pssm-ID: 341044 Cd Length: 438 Bit Score: 636.99 E-value: 0e+00
|
|||||||||||
MelB | COG2211 | Na+/melibiose symporter or related transporter [Carbohydrate transport and metabolism]; |
12-419 | 5.14e-35 | |||||||
Na+/melibiose symporter or related transporter [Carbohydrate transport and metabolism]; Pssm-ID: 441813 [Multi-domain] Cd Length: 447 Bit Score: 135.80 E-value: 5.14e-35
|
|||||||||||
MFS_2 | pfam13347 | MFS/sugar transport protein; This family is part of the major facilitator superfamily of ... |
40-419 | 6.99e-14 | |||||||
MFS/sugar transport protein; This family is part of the major facilitator superfamily of membrane transport proteins. Pssm-ID: 433134 [Multi-domain] Cd Length: 427 Bit Score: 73.11 E-value: 6.99e-14
|
|||||||||||
PRK10429 | PRK10429 | melibiose:sodium transporter MelB; |
14-390 | 2.68e-04 | |||||||
melibiose:sodium transporter MelB; Pssm-ID: 182453 Cd Length: 473 Bit Score: 43.16 E-value: 2.68e-04
|
|||||||||||
Name | Accession | Description | Interval | E-value | |||||||
MFS_MFSD12 | cd17491 | Major facilitator superfamily domain-containing protein 12; Major facilitator superfamily ... |
21-465 | 0e+00 | |||||||
Major facilitator superfamily domain-containing protein 12; Major facilitator superfamily domain-containing protein 12 (MFSD12) protein subfamily includes a group of uncharacterized proteins similar to human MFSD2. MFSD2 is composed of two vertebrate members, MFSD2A and MFSD2B. MFSD2A is an LPC symporter that plays an essential role for blood-brain barrier formation and function. MFSD2B is a potential risk or protect factor in the prognosis of lung adenocarcinoma. The MFSD12 subfamily belongs to the Salmonella enterica Na+/melibiose symporter like (MelB-like) family of the Major Facilitator Superfamily (MFS) of transporters. MFS proteins are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. Pssm-ID: 341044 Cd Length: 438 Bit Score: 636.99 E-value: 0e+00
|
|||||||||||
MFS_MelB_like | cd17332 | Salmonella enterica Na+/melibiose symporter MelB and similar transporters of the Major ... |
21-451 | 1.33e-64 | |||||||
Salmonella enterica Na+/melibiose symporter MelB and similar transporters of the Major Facilitator Superfamily; This family is composed of Salmonella enterica Na+/melibiose symporter MelB, Major Facilitator Superfamily domain-containing proteins, MFSD2 and MFSD12, and other sugar transporters. MelB catalyzes the electrogenic symport of galactosides with Na+, Li+ or H+. The MFSD2 subfamily is composed of two vertebrate members, MFSD2A and MFSD2B. MFSD2A is more commonly called sodium-dependent lysophosphatidylcholine symporter 1 (NLS1). It is an LPC symporter that plays an essential role for blood-brain barrier formation and function. Inactivating mutations in MFSD2A cause a lethal microcephaly syndrome. MFSD2B is a potential risk or protect factor in the prognosis of lung adenocarcinoma. MelB-like family belongs to the Major Facilitator Superfamily (MFS) of membrane transport proteins, which are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. Pssm-ID: 340890 [Multi-domain] Cd Length: 424 Bit Score: 214.78 E-value: 1.33e-64
|
|||||||||||
MelB | COG2211 | Na+/melibiose symporter or related transporter [Carbohydrate transport and metabolism]; |
12-419 | 5.14e-35 | |||||||
Na+/melibiose symporter or related transporter [Carbohydrate transport and metabolism]; Pssm-ID: 441813 [Multi-domain] Cd Length: 447 Bit Score: 135.80 E-value: 5.14e-35
|
|||||||||||
MFS_2 | pfam13347 | MFS/sugar transport protein; This family is part of the major facilitator superfamily of ... |
40-419 | 6.99e-14 | |||||||
MFS/sugar transport protein; This family is part of the major facilitator superfamily of membrane transport proteins. Pssm-ID: 433134 [Multi-domain] Cd Length: 427 Bit Score: 73.11 E-value: 6.99e-14
|
|||||||||||
MFS_MdtG_SLC18_like | cd17325 | bacterial MdtG-like and eukaryotic solute carrier 18 (SLC18) family of the Major Facilitator ... |
218-392 | 2.17e-06 | |||||||
bacterial MdtG-like and eukaryotic solute carrier 18 (SLC18) family of the Major Facilitator Superfamily of transporters; This family is composed of eukaryotic solute carrier 18 (SLC18) family transporters and related bacterial multidrug resistance (MDR) transporters including several proteins from Escherichia coli such as multidrug resistance protein MdtG, from Bacillus subtilis such as multidrug resistance proteins 1 (Bmr1) and 2 (Bmr2), and from Staphylococcus aureus such as quinolone resistance protein NorA. The family also includes Escherichia coli arabinose efflux transporters YfcJ and YhhS. MDR transporters are drug/H+ antiporters (DHA) that mediate the efflux of a variety of drugs and toxic compounds, and confer resistance to these compounds. The SLC18 transporter family includes vesicular monoamine transporters (VAT1 and VAT2), vesicular acetylcholine transporter (VAChT), and SLC18B1, which is proposed to be a vesicular polyamine transporter (VPAT). The MdtG/SLC18 family belongs to the Major Facilitator Superfamily (MFS) of membrane transport proteins, which are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. Pssm-ID: 340883 [Multi-domain] Cd Length: 375 Bit Score: 49.88 E-value: 2.17e-06
|
|||||||||||
MFS_MFSD2 | cd17392 | Major facilitator superfamily domain-containing protein 2 subfamily; The major facilitator ... |
21-423 | 3.40e-06 | |||||||
Major facilitator superfamily domain-containing protein 2 subfamily; The major facilitator superfamily domain-containing protein 2 (MFSD2) subfamily is composed of two vertebrate members, MFSD2A amd MFSD2B. MFSD2A is more commonly called sodium-dependent lysophosphatidylcholine symporter 1 (NLS1). It is an LPC symporter that plays an essential role for blood-brain barrier formation and function. Inactivating mutations in MFSD2A cause a lethal microcephaly syndrome. MFSD2B is a potential risk or protect factor in the prognosis of lung adenocarcinoma. The MFSD2 subfamily belongs to the Salmonella enterica Na+/melibiose symporter like (MelB-like) family of the Major Facilitator Superfamily (MFS) of transporters. MFS proteins are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. Pssm-ID: 340950 Cd Length: 446 Bit Score: 49.39 E-value: 3.40e-06
|
|||||||||||
MFS | cd06174 | Major Facilitator Superfamily; The Major Facilitator Superfamily (MFS) is a large and diverse ... |
276-407 | 5.00e-05 | |||||||
Major Facilitator Superfamily; The Major Facilitator Superfamily (MFS) is a large and diverse group of secondary transporters that includes uniporters, symporters, and antiporters. MFS proteins facilitate the transport across cytoplasmic or internal membranes of a variety of substrates including ions, sugar phosphates, drugs, neurotransmitters, nucleosides, amino acids, and peptides. They do so using the electrochemical potential of the transported substrates. Uniporters transport a single substrate, while symporters and antiporters transport two substrates in the same or in opposite directions, respectively, across membranes. MFS proteins are typically 400 to 600 amino acids in length, and the majority contain 12 transmembrane alpha helices (TMs) connected by hydrophilic loops. The N- and C-terminal halves of these proteins display weak similarity and may be the result of a gene duplication/fusion event. Based on kinetic studies and the structures of a few bacterial superfamily members, GlpT (glycerol-3-phosphate transporter), LacY (lactose permease), and EmrD (multidrug transporter), MFS proteins are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. Bacterial members function primarily for nutrient uptake, and as drug-efflux pumps to confer antibiotic resistance. Some MFS proteins have medical significance in humans such as the glucose transporter Glut4, which is impaired in type II diabetes, and glucose-6-phosphate transporter (G6PT), which causes glycogen storage disease when mutated. Pssm-ID: 349949 [Multi-domain] Cd Length: 378 Bit Score: 45.50 E-value: 5.00e-05
|
|||||||||||
AraJ | COG2814 | Predicted arabinose efflux permease AraJ, MFS family [Carbohydrate transport and metabolism]; |
252-406 | 6.43e-05 | |||||||
Predicted arabinose efflux permease AraJ, MFS family [Carbohydrate transport and metabolism]; Pssm-ID: 442063 [Multi-domain] Cd Length: 348 Bit Score: 44.96 E-value: 6.43e-05
|
|||||||||||
MFS | cd06174 | Major Facilitator Superfamily; The Major Facilitator Superfamily (MFS) is a large and diverse ... |
24-415 | 8.55e-05 | |||||||
Major Facilitator Superfamily; The Major Facilitator Superfamily (MFS) is a large and diverse group of secondary transporters that includes uniporters, symporters, and antiporters. MFS proteins facilitate the transport across cytoplasmic or internal membranes of a variety of substrates including ions, sugar phosphates, drugs, neurotransmitters, nucleosides, amino acids, and peptides. They do so using the electrochemical potential of the transported substrates. Uniporters transport a single substrate, while symporters and antiporters transport two substrates in the same or in opposite directions, respectively, across membranes. MFS proteins are typically 400 to 600 amino acids in length, and the majority contain 12 transmembrane alpha helices (TMs) connected by hydrophilic loops. The N- and C-terminal halves of these proteins display weak similarity and may be the result of a gene duplication/fusion event. Based on kinetic studies and the structures of a few bacterial superfamily members, GlpT (glycerol-3-phosphate transporter), LacY (lactose permease), and EmrD (multidrug transporter), MFS proteins are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. Bacterial members function primarily for nutrient uptake, and as drug-efflux pumps to confer antibiotic resistance. Some MFS proteins have medical significance in humans such as the glucose transporter Glut4, which is impaired in type II diabetes, and glucose-6-phosphate transporter (G6PT), which causes glycogen storage disease when mutated. Pssm-ID: 349949 [Multi-domain] Cd Length: 378 Bit Score: 44.72 E-value: 8.55e-05
|
|||||||||||
MFS_MFSD2B | cd17452 | Major facilitator superfamily domain-containing protein 2B; Major facilitator superfamily ... |
21-390 | 9.41e-05 | |||||||
Major facilitator superfamily domain-containing protein 2B; Major facilitator superfamily domain-containing protein 2B (MFSD2B) is closely related to MFSD2A, and their conserved genomic structure suggests that they are derived from the duplication of an ancestral gene. Variations of chromosome 2 gene expressions among patients with lung cancer or non-cancer identified MFSD2B as a potential risk or protect factor in the prognosis of lung adenocarcinoma. MFSD2B belongs to the Salmonella enterica Na+/melibiose symporter like (MelB-like) family of the Major Facilitator Superfamily (MFS) of transporters. MFS proteins are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. Pssm-ID: 341010 Cd Length: 416 Bit Score: 44.81 E-value: 9.41e-05
|
|||||||||||
PRK10429 | PRK10429 | melibiose:sodium transporter MelB; |
14-390 | 2.68e-04 | |||||||
melibiose:sodium transporter MelB; Pssm-ID: 182453 Cd Length: 473 Bit Score: 43.16 E-value: 2.68e-04
|
|||||||||||
MFS_1 | pfam07690 | Major Facilitator Superfamily; |
276-407 | 4.11e-04 | |||||||
Major Facilitator Superfamily; Pssm-ID: 429598 [Multi-domain] Cd Length: 344 Bit Score: 42.41 E-value: 4.11e-04
|
|||||||||||
MFS_Tpo1_MDR_like | cd17323 | Yeast Polyamine transporter 1 (Tpo1) and similar multidrug resistance (MDR) transporters of ... |
310-405 | 5.51e-04 | |||||||
Yeast Polyamine transporter 1 (Tpo1) and similar multidrug resistance (MDR) transporters of the Major Facilitator Superfamily; This family is composed of fungal multidrug resistance (MDR) transporters including several proteins from Saccharomyces cerevisiae such as polyamine transporters 1-4 (Tpo1-4), quinidine resistance proteins 1-3 (Qdr1-3), dityrosine transporter 1 (Dtr1), fluconazole resistance protein 1 (Flr1), and protein HOL1. MDR transporters are drug/H+ antiporters (DHA) that mediate the efflux of a variety of drugs and toxic compounds, and confer resistance to these compounds. For example, Flr1 confers resistance to the azole derivative fluconazole while Tpo1 confers resistance and adaptation to quinidine and ketoconazole. The polyamine transporters are involved in the detoxification of excess polyamines in the cytoplasm. Tpo1-like MDR transporters belong to the Major Facilitator Superfamily (MFS) of membrane transport proteins, which are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. Pssm-ID: 340881 [Multi-domain] Cd Length: 376 Bit Score: 42.18 E-value: 5.51e-04
|
|||||||||||
FucP | COG0738 | Fucose permease [Carbohydrate transport and metabolism]; |
292-398 | 7.05e-04 | |||||||
Fucose permease [Carbohydrate transport and metabolism]; Pssm-ID: 440501 [Multi-domain] Cd Length: 391 Bit Score: 41.76 E-value: 7.05e-04
|
|||||||||||
MFS_SLC22 | cd17317 | Solute carrier 22 (SLC22) family of organic cation/anion/zwitterion transporters of the Major ... |
306-407 | 2.88e-03 | |||||||
Solute carrier 22 (SLC22) family of organic cation/anion/zwitterion transporters of the Major Facilitator Superfamily; The Solute carrier 22 (SLC22) family of organic cation/anion/zwitterion transporters includes organic cation transporters (OCTs), organic zwitterion/cation transporters (OCTNs), and organic anion transporters (OATs). SLC22 transporters interact with a variety of compounds that include drugs of abuse, environmental toxins, opioid analgesics, antidepressant and anxiolytic agents, and neurotransmitters and their metabolites. The SLC22 family belongs to the Major Facilitator Superfamily (MFS) of membrane transport proteins, which are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. Pssm-ID: 340875 [Multi-domain] Cd Length: 331 Bit Score: 39.87 E-value: 2.88e-03
|
|||||||||||
NarK | COG2223 | Nitrate/nitrite transporter NarK [Inorganic ion transport and metabolism]; |
213-406 | 3.23e-03 | |||||||
Nitrate/nitrite transporter NarK [Inorganic ion transport and metabolism]; Pssm-ID: 441825 [Multi-domain] Cd Length: 392 Bit Score: 39.86 E-value: 3.23e-03
|
|||||||||||
AraJ | COG2814 | Predicted arabinose efflux permease AraJ, MFS family [Carbohydrate transport and metabolism]; |
276-407 | 3.29e-03 | |||||||
Predicted arabinose efflux permease AraJ, MFS family [Carbohydrate transport and metabolism]; Pssm-ID: 442063 [Multi-domain] Cd Length: 348 Bit Score: 39.57 E-value: 3.29e-03
|
|||||||||||
MFS_SLC45_SUC | cd17313 | Solute carrier family 45 and similar sugar transporters of the Major Facilitator Superfamily ... |
70-396 | 6.55e-03 | |||||||
Solute carrier family 45 and similar sugar transporters of the Major Facilitator Superfamily of transporters; This group includes the solute carrier 45 (SLC45) family as well as plant sucrose transporters (SUCs or SUTs) and similar proteins such as Schizosaccharomyces pombe general alpha-glucoside permease. the SLC45 family is composed of four (A1-A4) vertebrate proteins as well as related insect proteins such as Drosophila sucrose transporter SCRT or Slc45-1. Members of this group transport sucrose and other sugars like maltose into the cell, with the concomitant uptake of protons (symport system). Plant sucrose transporters are crucial to carbon partitioning, playing a key role in phloem loading/unloading. They play a key role in loading and unloading of sucrose into the phloem and as a result, they control sucrose distribution throughout the whole plant and drive the osmotic flow system in the phloem. They also play a role in the exchange of sucrose between beneficial symbionts (mycorrhiza and Rhizobium) as well as pathogens such as nematodes and parasitic fungi. There are nine sucrose transporter genes in Arabidopsis and five in rice. Vertebrate SLC45 family proteins have been implicated in the regulation of glucose homoeostasis in the brain (SLC45A1), with skin and hair pigmentation (SLC45A2), and with prostate cancer and myelination (SLC45A3). Mutations in SLC45A2, also called MATP (membrane-associated transporter protein) or melanoma antigen AIM1, cause oculocutaneous albinism type 4 (OCA4), an autosomal recessive disorder of melanin biosynthesis that results in congenital hypopigmentation of ocular and cutaneous tissues. The SLC45 family and related sugar transporters belong to the Major Facilitator Superfamily (MFS) of membrane transport proteins, which are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. Pssm-ID: 340871 [Multi-domain] Cd Length: 421 Bit Score: 38.76 E-value: 6.55e-03
|
|||||||||||
MFS_arabinose_efflux_permease_like | cd17473 | Putative arabinose efflux permease family transporters of the Major Facilitator Superfamily; ... |
292-406 | 7.22e-03 | |||||||
Putative arabinose efflux permease family transporters of the Major Facilitator Superfamily; This family includes a group of putative arabinose efflux permease family transporters, such as alpha proteobacterium quinolone resistance protein NorA (characterized Staphylococcus aureus Quinolone resistance protein NorA belongs to a different group), Desulfovibrio dechloracetivorans bacillibactin exporter, Vibrio aerogenes antiseptic resistance protein. The biological function of those transporters remain unclear. They belong to the Major Facilitator Superfamily (MFS) of membrane transport proteins, which are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. Pssm-ID: 341026 [Multi-domain] Cd Length: 374 Bit Score: 38.71 E-value: 7.22e-03
|
|||||||||||
MFS_STP | cd17361 | Plant Sugar transport protein subfamily of the Major Facilitator Superfamily of transporters; ... |
316-374 | 9.53e-03 | |||||||
Plant Sugar transport protein subfamily of the Major Facilitator Superfamily of transporters; The plant Sugar transport protein (STP) subfamily includes STP1-STP14; they are also called hexose transporters. They mediate the active uptake of hexoses such as glucose, 3-O-methylglucose, fructose, xylose, mannose, galactose, fucose, 2-deoxyglucose and arabinose, by sugar/hydrogen symport. Several STP family transporters are expressed in a tissue-specific manner, or at specific developmental stages. STP1 is the member with the highest expression level of all members and high expression is detected in photosynthetic tissues, such as leaves and stems, while roots, siliques, and flowers show lower expression levels. It plays a major role in the uptake and response of Arabidopsis seeds and seedlings to sugars. The STP subfamily belongs to the Glucose transporter -like (GLUT-like) family of the Major Facilitator Superfamily (MFS) of membrane transport proteins. MFS proteins are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. Pssm-ID: 340919 [Multi-domain] Cd Length: 390 Bit Score: 38.39 E-value: 9.53e-03
|
|||||||||||
Blast search parameters | ||||
|