nudix hydrolase homolog 3 [Arabidopsis thaliana]
PLN02791 family protein( domain architecture ID 11477145)
PLN02791 family protein
List of domain hits
Name | Accession | Description | Interval | E-value | |||||||||||
PLN02791 | PLN02791 | Nudix hydrolase homolog |
1-772 | 0e+00 | |||||||||||
Nudix hydrolase homolog : Pssm-ID: 215425 [Multi-domain] Cd Length: 770 Bit Score: 1557.10 E-value: 0e+00
|
|||||||||||||||
Name | Accession | Description | Interval | E-value | |||||||||||
PLN02791 | PLN02791 | Nudix hydrolase homolog |
1-772 | 0e+00 | |||||||||||
Nudix hydrolase homolog Pssm-ID: 215425 [Multi-domain] Cd Length: 770 Bit Score: 1557.10 E-value: 0e+00
|
|||||||||||||||
NUDIX_Hydrolase | cd04692 | uncharacterized NUDIX hydrolase subfamily; NUDIX hydrolase is a superfamily of enzymes found ... |
6-152 | 2.82e-59 | |||||||||||
uncharacterized NUDIX hydrolase subfamily; NUDIX hydrolase is a superfamily of enzymes found in all three kingdoms of life, and it catalyzes the hydrolysis of NUcleoside DIphosphates linked to other moieties, X. Enzymes belonging to this superfamily require a divalent cation, such as Mg2+ or Mn2+ for their activity. Members of this family are recognized by a highly conserved 23-residue NUDIX motif (GX5EX7REUXEEXGU, where U = I, L or V), which forms a structural motif that functions as a metal binding and catalytic site. Substrates of NUDIX hydrolase include intact and oxidatively damaged nucleoside triphosphates, dinucleoside polyphosphates, nucleotide-sugars and dinucleotide enzymes. These substrates are metabolites or cell signaling molecules that require regulation during different stages of the cell cycle or during periods of stress. In general, the role of the NUDIX hydrolase is to sanitize the nucleotide pools and to maintain cell viability, thereby serving as surveillance and "house-cleaning" enzymes. Substrate specificity is used to define child families within the superfamily. Differences in substrate specificity are determined by the N-terminal extension or by residues in variable loop regions. Mechanistically, substrate hydrolysis occurs by a nucleophilic substitution reaction, with variation in the numbers and roles of divalent cations required. This superfamily consists of at least nine families: IPP (isopentenyl diphosphate) isomerase, ADP ribose pyrophosphatase, mutT pyrophosphohydrolase, coenzyme-A pyrophosphatase, MTH1-7,8-dihydro-8-oxoguanine-triphosphatase, diadenosine tetraphosphate hydrolase, NADH pyrophosphatase, GDP-mannose hydrolase and the c-terminal portion of the mutY adenine glycosylase. Pssm-ID: 467574 [Multi-domain] Cd Length: 142 Bit Score: 197.01 E-value: 2.82e-59
|
|||||||||||||||
Idi | COG1443 | Isopentenyldiphosphate isomerase [Lipid transport and metabolism]; Isopentenyldiphosphate ... |
3-169 | 2.55e-49 | |||||||||||
Isopentenyldiphosphate isomerase [Lipid transport and metabolism]; Isopentenyldiphosphate isomerase is part of the Pathway/BioSystem: Isoprenoid biosynthesis Pssm-ID: 441052 [Multi-domain] Cd Length: 162 Bit Score: 170.76 E-value: 2.55e-49
|
|||||||||||||||
NUDIX | pfam00293 | NUDIX domain; |
31-167 | 3.35e-11 | |||||||||||
NUDIX domain; Pssm-ID: 395229 [Multi-domain] Cd Length: 132 Bit Score: 61.35 E-value: 3.35e-11
|
|||||||||||||||
Name | Accession | Description | Interval | E-value | |||||||||||
PLN02791 | PLN02791 | Nudix hydrolase homolog |
1-772 | 0e+00 | |||||||||||
Nudix hydrolase homolog Pssm-ID: 215425 [Multi-domain] Cd Length: 770 Bit Score: 1557.10 E-value: 0e+00
|
|||||||||||||||
NUDIX_Hydrolase | cd04692 | uncharacterized NUDIX hydrolase subfamily; NUDIX hydrolase is a superfamily of enzymes found ... |
6-152 | 2.82e-59 | |||||||||||
uncharacterized NUDIX hydrolase subfamily; NUDIX hydrolase is a superfamily of enzymes found in all three kingdoms of life, and it catalyzes the hydrolysis of NUcleoside DIphosphates linked to other moieties, X. Enzymes belonging to this superfamily require a divalent cation, such as Mg2+ or Mn2+ for their activity. Members of this family are recognized by a highly conserved 23-residue NUDIX motif (GX5EX7REUXEEXGU, where U = I, L or V), which forms a structural motif that functions as a metal binding and catalytic site. Substrates of NUDIX hydrolase include intact and oxidatively damaged nucleoside triphosphates, dinucleoside polyphosphates, nucleotide-sugars and dinucleotide enzymes. These substrates are metabolites or cell signaling molecules that require regulation during different stages of the cell cycle or during periods of stress. In general, the role of the NUDIX hydrolase is to sanitize the nucleotide pools and to maintain cell viability, thereby serving as surveillance and "house-cleaning" enzymes. Substrate specificity is used to define child families within the superfamily. Differences in substrate specificity are determined by the N-terminal extension or by residues in variable loop regions. Mechanistically, substrate hydrolysis occurs by a nucleophilic substitution reaction, with variation in the numbers and roles of divalent cations required. This superfamily consists of at least nine families: IPP (isopentenyl diphosphate) isomerase, ADP ribose pyrophosphatase, mutT pyrophosphohydrolase, coenzyme-A pyrophosphatase, MTH1-7,8-dihydro-8-oxoguanine-triphosphatase, diadenosine tetraphosphate hydrolase, NADH pyrophosphatase, GDP-mannose hydrolase and the c-terminal portion of the mutY adenine glycosylase. Pssm-ID: 467574 [Multi-domain] Cd Length: 142 Bit Score: 197.01 E-value: 2.82e-59
|
|||||||||||||||
Idi | COG1443 | Isopentenyldiphosphate isomerase [Lipid transport and metabolism]; Isopentenyldiphosphate ... |
3-169 | 2.55e-49 | |||||||||||
Isopentenyldiphosphate isomerase [Lipid transport and metabolism]; Isopentenyldiphosphate isomerase is part of the Pathway/BioSystem: Isoprenoid biosynthesis Pssm-ID: 441052 [Multi-domain] Cd Length: 162 Bit Score: 170.76 E-value: 2.55e-49
|
|||||||||||||||
NUDIX_Hydrolase | cd04693 | uncharacterized NUDIX hydrolase subfamily; NUDIX hydrolase is a superfamily of enzymes found ... |
4-170 | 3.83e-39 | |||||||||||
uncharacterized NUDIX hydrolase subfamily; NUDIX hydrolase is a superfamily of enzymes found in all three kingdoms of life, and it catalyzes the hydrolysis of NUcleoside DIphosphates linked to other moieties, X. Enzymes belonging to this superfamily require a divalent cation, such as Mg2+ or Mn2+ for their activity. Members of this family are recognized by a highly conserved 23-residue NUDIX motif (GX5EX7REUXEEXGU, where U = I, L or V), which forms a structural motif that functions as a metal binding and catalytic site. Substrates of NUDIX hydrolase include intact and oxidatively damaged nucleoside triphosphates, dinucleoside polyphosphates, nucleotide-sugars and dinucleotide enzymes. These substrates are metabolites or cell signaling molecules that require regulation during different stages of the cell cycle or during periods of stress. In general, the role of the NUDIX hydrolase is to sanitize the nucleotide pools and to maintain cell viability, thereby serving as surveillance and "house-cleaning" enzymes. Substrate specificity is used to define child families within the superfamily. Differences in substrate specificity are determined by the N-terminal extension or by residues in variable loop regions. Mechanistically, substrate hydrolysis occurs by a nucleophilic substitution reaction, with variation in the numbers and roles of divalent cations required. This superfamily consists of at least nine families: IPP (isopentenyl diphosphate) isomerase, ADP ribose pyrophosphatase, mutT pyrophosphohydrolase, coenzyme-A pyrophosphatase, MTH1-7,8-dihydro-8-oxoguanine-triphosphatase, diadenosine tetraphosphate hydrolase, NADH pyrophosphatase, GDP-mannose hydrolase and the c-terminal portion of the mutY adenine glycosylase. Pssm-ID: 467575 [Multi-domain] Cd Length: 157 Bit Score: 141.90 E-value: 3.83e-39
|
|||||||||||||||
NUDIX_Hydrolase | cd04697 | uncharacterized NUDIX hydrolase subfamily; NUDIX hydrolase is a superfamily of enzymes found ... |
21-168 | 3.78e-23 | |||||||||||
uncharacterized NUDIX hydrolase subfamily; NUDIX hydrolase is a superfamily of enzymes found in all three kingdoms of life, and it catalyzes the hydrolysis of NUcleoside DIphosphates linked to other moieties, X. Enzymes belonging to this superfamily require a divalent cation, such as Mg2+ or Mn2+ for their activity. Members of this family are recognized by a highly conserved 23-residue NUDIX motif (GX5EX7REUXEEXGU, where U = I, L or V), which forms a structural motif that functions as a metal binding and catalytic site. Substrates of NUDIX hydrolase include intact and oxidatively damaged nucleoside triphosphates, dinucleoside polyphosphates, nucleotide-sugars and dinucleotide enzymes. These substrates are metabolites or cell signaling molecules that require regulation during different stages of the cell cycle or during periods of stress. In general, the role of the NUDIX hydrolase is to sanitize the nucleotide pools and to maintain cell viability, thereby serving as surveillance and "house-cleaning" enzymes. Substrate specificity is used to define child families within the superfamily. Differences in substrate specificity are determined by the N-terminal extension or by residues in variable loop regions. Mechanistically, substrate hydrolysis occurs by a nucleophilic substitution reaction, with variation in the numbers and roles of divalent cations required. This superfamily consists of at least nine families: IPP (isopentenyl diphosphate) isomerase, ADP ribose pyrophosphatase, mutT pyrophosphohydrolase, coenzyme-A pyrophosphatase, MTH1-7,8-dihydro-8-oxoguanine-triphosphatase, diadenosine tetraphosphate hydrolase, NADH pyrophosphatase, GDP-mannose hydrolase and the c-terminal portion of the mutY adenine glycosylase. Pssm-ID: 467578 [Multi-domain] Cd Length: 157 Bit Score: 96.53 E-value: 3.78e-23
|
|||||||||||||||
NUDIX_IPP_Isomerase | cd02885 | Isopentenyl diphosphate isomerase; Isopentenyl diphosphate (IPP) isomerase, a member of the ... |
8-168 | 2.80e-20 | |||||||||||
Isopentenyl diphosphate isomerase; Isopentenyl diphosphate (IPP) isomerase, a member of the NUDIX hydrolase superfamily, is a key enzyme in the isoprenoid biosynthetic pathway. Isoprenoids comprise a large family of natural products including sterols, carotenoids, dolichols and prenylated proteins. These compounds are synthesized from two precursors: isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP). IPP isomerase catalyzes the interconversion of IPP and DMAPP by a stereoselective antarafacial transposition of hydrogen. The enzyme requires one Mn2+ or Mg2+ ion in its active site to fold into an active conformation and also contains the NUDIX motif, a highly conserved 23-residue block (GX5EX7REUXEEXGU, where U = I, L or V), that functions as a metal binding and catalytic site. The metal binding site is present within the active site and plays structural and catalytical roles. IPP isomerase is well represented in several bacteria, archaebacteria and eukaryotes, including fungi, mammals and plants. Despite sequence variations (mainly at the N-terminus), the core structure is highly conserved. Pssm-ID: 467529 [Multi-domain] Cd Length: 162 Bit Score: 88.32 E-value: 2.80e-20
|
|||||||||||||||
PRK03759 | PRK03759 | isopentenyl-diphosphate Delta-isomerase; |
1-171 | 1.00e-13 | |||||||||||
isopentenyl-diphosphate Delta-isomerase; Pssm-ID: 235156 [Multi-domain] Cd Length: 184 Bit Score: 70.00 E-value: 1.00e-13
|
|||||||||||||||
NUDIX_Hydrolase | cd18882 | uncharacterized NUDIX hydrolase subfamily; NUDIX hydrolase is a superfamily of enzymes found ... |
39-104 | 3.45e-12 | |||||||||||
uncharacterized NUDIX hydrolase subfamily; NUDIX hydrolase is a superfamily of enzymes found in all three kingdoms of life, and it catalyzes the hydrolysis of NUcleoside DIphosphates linked to other moieties, X. Enzymes belonging to this superfamily require a divalent cation, such as Mg2+ or Mn2+ for their activity. Members of this family are recognized by a highly conserved 23-residue NUDIX motif (GX5EX7REUXEEXGU, where U = I, L or V), which forms a structural motif that functions as a metal binding and catalytic site. Substrates of NUDIX hydrolase include intact and oxidatively damaged nucleoside triphosphates, dinucleoside polyphosphates, nucleotide-sugars and dinucleotide enzymes. These substrates are metabolites or cell signaling molecules that require regulation during different stages of the cell cycle or during periods of stress. In general, the role of the NUDIX hydrolase is to sanitize the nucleotide pools and to maintain cell viability, thereby serving as surveillance and "house-cleaning" enzymes. Substrate specificity is used to define child families within the superfamily. Differences in substrate specificity are determined by the N-terminal extension or by residues in variable loop regions. Mechanistically, substrate hydrolysis occurs by a nucleophilic substitution reaction, with variation in the numbers and roles of divalent cations required. This superfamily consists of at least nine families: IPP (isopentenyl diphosphate) isomerase, ADP ribose pyrophosphatase, mutT pyrophosphohydrolase, coenzyme-A pyrophosphatase, MTH1-7,8-dihydro-8-oxoguanine-triphosphatase, diadenosine tetraphosphate hydrolase, NADH pyrophosphatase, GDP-mannose hydrolase and the c-terminal portion of the mutY adenine glycosylase. Pssm-ID: 467593 [Multi-domain] Cd Length: 130 Bit Score: 64.20 E-value: 3.45e-12
|
|||||||||||||||
MutT | COG0494 | 8-oxo-dGTP pyrophosphatase MutT and related house-cleaning NTP pyrophosphohydrolases, NUDIX ... |
31-159 | 3.32e-11 | |||||||||||
8-oxo-dGTP pyrophosphatase MutT and related house-cleaning NTP pyrophosphohydrolases, NUDIX family [Defense mechanisms]; Pssm-ID: 440260 [Multi-domain] Cd Length: 143 Bit Score: 61.59 E-value: 3.32e-11
|
|||||||||||||||
NUDIX | pfam00293 | NUDIX domain; |
31-167 | 3.35e-11 | |||||||||||
NUDIX domain; Pssm-ID: 395229 [Multi-domain] Cd Length: 132 Bit Score: 61.35 E-value: 3.35e-11
|
|||||||||||||||
PRK15393 | PRK15393 | NUDIX hydrolase YfcD; Provisional |
1-154 | 6.90e-10 | |||||||||||
NUDIX hydrolase YfcD; Provisional Pssm-ID: 185291 [Multi-domain] Cd Length: 180 Bit Score: 59.04 E-value: 6.90e-10
|
|||||||||||||||
NUDIX_Hydrolase | cd02883 | NUDIX hydrolase superfamily; NUDIX hydrolase is a superfamily of enzymes found in all three ... |
33-151 | 2.49e-09 | |||||||||||
NUDIX hydrolase superfamily; NUDIX hydrolase is a superfamily of enzymes found in all three kingdoms of life, and it catalyzes the hydrolysis of NUcleoside DIphosphates linked to other moieties, X. Enzymes belonging to this superfamily require a divalent cation, such as Mg2+ or Mn2+ for their activity. Members of this family are recognized by a highly conserved 23-residue NUDIX motif (GX5EX7REUXEEXGU, where U = I, L or V), which forms a structural motif that functions as a metal binding and catalytic site. Substrates of NUDIX hydrolase include intact and oxidatively damaged nucleoside triphosphates, dinucleoside polyphosphates, nucleotide-sugars and dinucleotide enzymes. These substrates are metabolites or cell signaling molecules that require regulation during different stages of the cell cycle or during periods of stress. In general, the role of the NUDIX hydrolase is to sanitize the nucleotide pools and to maintain cell viability, thereby serving as surveillance and "house-cleaning" enzymes. Substrate specificity is used to define child families within the superfamily. Differences in substrate specificity are determined by the N-terminal extension or by residues in variable loop regions. Mechanistically, substrate hydrolysis occurs by a nucleophilic substitution reaction, with variation in the numbers and roles of divalent cations required. This superfamily consists of at least nine families: IPP (isopentenyl diphosphate) isomerase, ADP ribose pyrophosphatase, mutT pyrophosphohydrolase, coenzyme-A pyrophosphatase, MTH1-7,8-dihydro-8-oxoguanine-triphosphatase, diadenosine tetraphosphate hydrolase, NADH pyrophosphatase, GDP-mannose hydrolase and the c-terminal portion of the mutY adenine glycosylase. Pssm-ID: 467528 [Multi-domain] Cd Length: 106 Bit Score: 55.10 E-value: 2.49e-09
|
|||||||||||||||
NUDIX_Tnr3_like | cd03676 | thiamine diphosphokinase Tnr3 from Schizosaccharomyces pombe and similar proteins; Tnr3 is a ... |
33-101 | 1.35e-08 | |||||||||||
thiamine diphosphokinase Tnr3 from Schizosaccharomyces pombe and similar proteins; Tnr3 is a bifunctional enzyme composed of a C-terminal thiamine pyrophosphokinase domain, which transfers pyrophosphate from ATP to thiamine and an N-terminal NUDIX hydrolase domain that converts oxidized derivatives of thiamine diphosphate (oxothiamine and oxythiamine) to their respective monophosphates. Members of the NUDIX hydrolase superfamily catalyze the hydrolysis of NUcleoside DIphosphates linked to other moieties, X. Enzymes belong to this superfamily requires a divalent cation, such as Mg2+ or Mn2+, for their activity and contain a highly conserved 23-residue NUDIX motif (GX5EX7REUXEEXGU, where U = I, L or V), which functions as a metal binding and catalytic site. Substrates of NUDIX hydrolases include intact and oxidatively damaged nucleoside triphosphates, dinucleoside polyphosphates, nucleotide-sugars and dinucleotide enzymes. These substrates are metabolites or cell signaling molecules that require regulation during different stages of the cell cycle or during periods of stress. In general, the role of the NUDIX hydrolase is to sanitize the nucleotide pools and to maintain cell viability, thereby serving as surveillance _ "house-cleaning" enzymes. Substrate specificity is used to define families within the superfamily. Differences in substrate specificity are determined by the N-terminal extension or by residues in variable loop regions. Mechanistically, substrate hydrolysis occurs by a nucleophilic substitution reaction, with variation in the numbers and roles of divalent cations required. Pssm-ID: 467544 Cd Length: 153 Bit Score: 54.42 E-value: 1.35e-08
|
|||||||||||||||
NUDIX_CoAse_Nudt7 | cd03426 | coenzyme A pyrophosphatase and similar proteins; Coenzyme A pyrophosphatase (CoAse; EC 3.6.1.1) ... |
46-177 | 1.98e-08 | |||||||||||
coenzyme A pyrophosphatase and similar proteins; Coenzyme A pyrophosphatase (CoAse; EC 3.6.1.1), also called nucleoside diphosphate-linked moiety X)) motif 7, is a member of the NUDIX hydrolase superfamily, functions to catalyze the elimination of oxidized inactive CoA, which can inhibit CoA-utilizing enzymes. The need of CoAses mainly arises under conditions of oxidative stress. CoAse has a conserved NUDIX fold and requires a single divalent cation for catalysis. In addition to a signature NUDIX motif G[X5]E[X7]REUXEEXGU, where U is Ile, Leu, or Val, CoAse contains an additional motif upstream called the NuCoA motif (LLTXT(SA)X3RX3GX3FPGG) which is postulated to be involved in CoA recognition. CoA plays a central role in lipid metabolism. It is involved in the initial steps of fatty acid sythesis in the cytosol, in the oxidation of fatty acids and the citric acid cycle in the mitochondria, and in the oxidation of long-chain fatty acids in peroxisomes. CoA has the important role of activating fatty acids for further modification into key biological signalling molecules. Pssm-ID: 467532 [Multi-domain] Cd Length: 158 Bit Score: 54.04 E-value: 1.98e-08
|
|||||||||||||||
NUDIX_DR0079 | cd24154 | NUDIX domain family found in Deinococcus radiodurans, and similar proteins; Deinococcus ... |
37-93 | 4.34e-08 | |||||||||||
NUDIX domain family found in Deinococcus radiodurans, and similar proteins; Deinococcus radiodurans protein DR_0079 is one of 21 NUDIX hydrolases that it encodes, and it has been observed to have a marked preference for cytosine ribonucleoside 5'-diphosphate (CDP) and cytosine ribonucleoside 5'-triphosphate (CTP), and for their corresponding deoxyribose nucleotides, dCDP and dCTP, to a lesser degree. Members of the NUDIX hydrolase superfamily catalyze the hydrolysis of NUcleoside DIphosphates linked to other moieties, X. Enzymes belonging to this superfamily require a divalent cation, such as Mg2+ or Mn2+, for their activity and contain a highly conserved 23-residue NUDIX motif (GX5EX7REUXEEXGU, where U = I, L or V), which functions as a metal binding and catalytic site. Substrates of NUDIX hydrolases include intact and oxidatively damaged nucleoside triphosphates, dinucleoside polyphosphates, nucleotide-sugars and dinucleotide enzymes. These substrates are metabolites or cell signaling molecules that require regulation during different stages of the cell cycle or during periods of stress. In general, the role of the NUDIX hydrolase is to sanitize the nucleotide pools and to maintain cell viability, thereby serving as surveillance _ "house-cleaning" enzymes. Substrate specificity is used to define families within the superfamily. Differences in substrate specificity are determined by the N-terminal extension or by residues in variable loop regions. Mechanistically, substrate hydrolysis occurs by a nucleophilic substitution reaction, with variation in the numbers and roles of divalent cations required. Pssm-ID: 467602 [Multi-domain] Cd Length: 121 Bit Score: 52.22 E-value: 4.34e-08
|
|||||||||||||||
NUDIX_Hydrolase | cd04682 | uncharacterized NUDIX hydrolase subfamily; NUDIX hydrolase is a superfamily of enzymes found ... |
48-98 | 8.18e-07 | |||||||||||
uncharacterized NUDIX hydrolase subfamily; NUDIX hydrolase is a superfamily of enzymes found in all three kingdoms of life, and it catalyzes the hydrolysis of NUcleoside DIphosphates linked to other moieties, X. Enzymes belonging to this superfamily require a divalent cation, such as Mg2+ or Mn2+ for their activity. Members of this family are recognized by a highly conserved 23-residue NUDIX motif (GX5EX7REUXEEXGU, where U = I, L or V), which forms a structural motif that functions as a metal binding and catalytic site. Substrates of NUDIX hydrolase include intact and oxidatively damaged nucleoside triphosphates, dinucleoside polyphosphates, nucleotide-sugars and dinucleotide enzymes. These substrates are metabolites or cell signaling molecules that require regulation during different stages of the cell cycle or during periods of stress. In general, the role of the NUDIX hydrolase is to sanitize the nucleotide pools and to maintain cell viability, thereby serving as surveillance and "house-cleaning" enzymes. Substrate specificity is used to define child families within the superfamily. Differences in substrate specificity are determined by the N-terminal extension or by residues in variable loop regions. Mechanistically, substrate hydrolysis occurs by a nucleophilic substitution reaction, with variation in the numbers and roles of divalent cations required. This superfamily consists of at least nine families: IPP (isopentenyl diphosphate) isomerase, ADP ribose pyrophosphatase, mutT pyrophosphohydrolase, coenzyme-A pyrophosphatase, MTH1-7,8-dihydro-8-oxoguanine-triphosphatase, diadenosine tetraphosphate hydrolase, NADH pyrophosphatase, GDP-mannose hydrolase and the c-terminal portion of the mutY adenine glycosylase. Pssm-ID: 467565 [Multi-domain] Cd Length: 123 Bit Score: 48.44 E-value: 8.18e-07
|
|||||||||||||||
NUDIX_DHNTPase_like | cd04664 | dihydroneopterin hydrolase; DHNTP pyrophosphatase (DHNTPase) catalyzes the hydrolysis of ... |
35-154 | 1.17e-06 | |||||||||||
dihydroneopterin hydrolase; DHNTP pyrophosphatase (DHNTPase) catalyzes the hydrolysis of dihydroneopterin triphosphate (DHNTP) to dihydroneopterin monophosphate (DHNMP) and pyrophosphate,the second step in the pterin branch of the folate synthesis pathway in bacteria. Members of the NUDIX hydrolase superfamily catalyze the hydrolysis of NUcleoside DIphosphates linked to other moieties, X. Enzymes belonging to this superfamily require a divalent cation, such as Mg2+ or Mn2+, for their activity and contain a highly conserved 23-residue NUDIX motif (GX5EX7REUXEEXGU, where U = I, L or V), which functions as a metal binding and catalytic site. Substrates of NUDIX hydrolases include intact and oxidatively damaged nucleoside triphosphates, dinucleoside polyphosphates, nucleotide-sugars and dinucleotide enzymes. These substrates are metabolites or cell signaling molecules that require regulation during different stages of the cell cycle or during periods of stress. In general, the role of the NUDIX hydrolase is to sanitize the nucleotide pools and to maintain cell viability, thereby serving as surveillance _ "house-cleaning" enzymes. Substrate specificity is used to define families within the superfamily. Differences in substrate specificity are determined by the N-terminal extension or by residues in variable loop regions. Mechanistically, substrate hydrolysis occurs by a nucleophilic substitution reaction, with variation in the numbers and roles of divalent cations required. Pssm-ID: 467549 [Multi-domain] Cd Length: 132 Bit Score: 48.40 E-value: 1.17e-06
|
|||||||||||||||
NUDIX_Hydrolase | cd04690 | uncharacterized NUDIX hydrolase subfamily; NUDIX hydrolase is a superfamily of enzymes found ... |
37-104 | 1.84e-06 | |||||||||||
uncharacterized NUDIX hydrolase subfamily; NUDIX hydrolase is a superfamily of enzymes found in all three kingdoms of life, and it catalyzes the hydrolysis of NUcleoside DIphosphates linked to other moieties, X. Enzymes belonging to this superfamily require a divalent cation, such as Mg2+ or Mn2+ for their activity. Members of this family are recognized by a highly conserved 23-residue NUDIX motif (GX5EX7REUXEEXGU, where U = I, L or V), which forms a structural motif that functions as a metal binding and catalytic site. Substrates of NUDIX hydrolase include intact and oxidatively damaged nucleoside triphosphates, dinucleoside polyphosphates, nucleotide-sugars and dinucleotide enzymes. These substrates are metabolites or cell signaling molecules that require regulation during different stages of the cell cycle or during periods of stress. In general, the role of the NUDIX hydrolase is to sanitize the nucleotide pools and to maintain cell viability, thereby serving as surveillance and "house-cleaning" enzymes. Substrate specificity is used to define child families within the superfamily. Differences in substrate specificity are determined by the N-terminal extension or by residues in variable loop regions. Mechanistically, substrate hydrolysis occurs by a nucleophilic substitution reaction, with variation in the numbers and roles of divalent cations required. This superfamily consists of at least nine families: IPP (isopentenyl diphosphate) isomerase, ADP ribose pyrophosphatase, mutT pyrophosphohydrolase, coenzyme-A pyrophosphatase, MTH1-7,8-dihydro-8-oxoguanine-triphosphatase, diadenosine tetraphosphate hydrolase, NADH pyrophosphatase, GDP-mannose hydrolase and the c-terminal portion of the mutY adenine glycosylase. Pssm-ID: 467572 [Multi-domain] Cd Length: 123 Bit Score: 47.53 E-value: 1.84e-06
|
|||||||||||||||
PLN02552 | PLN02552 | isopentenyl-diphosphate delta-isomerase |
32-163 | 1.25e-05 | |||||||||||
isopentenyl-diphosphate delta-isomerase Pssm-ID: 215303 [Multi-domain] Cd Length: 247 Bit Score: 47.42 E-value: 1.25e-05
|
|||||||||||||||
NUDIX_eIF-2B | cd18872 | translation initiation factor IF-2B alpha subunit; Eukaryotic translation initiation factor 2B ... |
37-91 | 1.52e-05 | |||||||||||
translation initiation factor IF-2B alpha subunit; Eukaryotic translation initiation factor 2B subunit alpha (EIF2B1) is one of five subunits of eukaryotic translation initiation factor 2B (EIF2B), a GTP exchange factor for eukaryotic initiation factor 2 and an essential regulator for protein synthesis. Mutations in this gene and the genes encoding other EIF2B subunits have been associated with leukoencephalopathy with vanishing white matter. Members of the NUDIX hydrolase superfamily catalyze the hydrolysis of NUcleoside DIphosphates linked to other moieties, X. Enzymes belonging to this superfamily require a divalent cation, such as Mg2+ or Mn2+, for their activity and contain a highly conserved 23-residue NUDIX motif (GX5EX7REUXEEXGU, where U = I, L or V), which functions as a metal binding and catalytic site. Substrates of NUDIX hydrolases include intact and oxidatively damaged nucleoside triphosphates, dinucleoside polyphosphates, nucleotide-sugars and dinucleotide enzymes. These substrates are metabolites or cell signaling molecules that require regulation during different stages of the cell cycle or during periods of stress. In general, the role of the NUDIX hydrolase is to sanitize the nucleotide pools and to maintain cell viability, thereby serving as surveillance _ "house-cleaning" enzymes. Substrate specificity is used to define families within the superfamily. Differences in substrate specificity are determined by the N-terminal extension or by residues in variable loop regions. Mechanistically, substrate hydrolysis occurs by a nucleophilic substitution reaction, with variation in the numbers and roles of divalent cations required. Pssm-ID: 467584 [Multi-domain] Cd Length: 129 Bit Score: 44.94 E-value: 1.52e-05
|
|||||||||||||||
NUDIX_Nudt17 | cd04694 | nucleoside diphosphate-linked moiety X)) motif 17; Nucleoside diphosphate-linked moiety X)) ... |
45-154 | 1.95e-05 | |||||||||||
nucleoside diphosphate-linked moiety X)) motif 17; Nucleoside diphosphate-linked moiety X)) motif 17 (EC 3.6.1.-) encoded by the NUDT17 gene on chromosome 1q21.1 and encodes an enzyme thought to hydrolyse some nucleoside diphosphate derivatives. Members of the NUDIX hydrolase superfamily catalyze the hydrolysis of NUcleoside DIphosphates linked to other moieties, X. Enzymes belonging to this superfamily require a divalent cation, such as Mg2+ or Mn2+, for their activity and contain a highly conserved 23-residue NUDIX motif (GX5EX7REUXEEXGU, where U = I, L or V), which functions as a metal binding and catalytic site. Substrates of NUDIX hydrolases include intact and oxidatively damaged nucleoside triphosphates, dinucleoside polyphosphates, nucleotide-sugars and dinucleotide enzymes. These substrates are metabolites or cell signaling molecules that require regulation during different stages of the cell cycle or during periods of stress. In general, the role of the NUDIX hydrolase is to sanitize the nucleotide pools and to maintain cell viability, thereby serving as surveillance _ "house-cleaning" enzymes. Substrate specificity is used to define families within the superfamily. Differences in substrate specificity are determined by the N-terminal extension or by residues in variable loop regions. Mechanistically, substrate hydrolysis occurs by a nucleophilic substitution reaction, with variation in the numbers and roles of divalent cations required. Pssm-ID: 467576 [Multi-domain] Cd Length: 135 Bit Score: 44.98 E-value: 1.95e-05
|
|||||||||||||||
NUDIX_ASFGF2_Nudt6 | cd04670 | Antisense Basic Fibroblast Growth Factor; Antisense Basic Fibroblast Growth Factor (ASFGF2; EC ... |
47-158 | 3.82e-05 | |||||||||||
Antisense Basic Fibroblast Growth Factor; Antisense Basic Fibroblast Growth Factor (ASFGF2; EC 3.6.1.-), also known as nucleoside diphosphate-linked moiety X)) motif 6/Nudt6, and similar proteins including peroxisomal coenzyme A diphosphatase/Nudt7 and mitochondrial coenzyme A diphosphatase/Nudt8. The Nudt6 gene overlaps and lies on the opposite strand from FGF2 gene, and is thought to be the FGF2 antisense gene. The two genes are independently transcribed, and their expression shows an inverse relationship, suggesting that this antisense transcript may regulate FGF2 expression. This gene has also been shown to have hormone-regulatory and antiproliferative actions in the pituitary that are independent of FGF2 expression. Alternatively spliced transcript variants encoding different isoforms have been found for this gene. Members of the NUDIX hydrolase superfamily catalyze the hydrolysis of NUcleoside DIphosphates linked to other moieties, X. Enzymes belonging to this superfamily require a divalent cation, such as Mg2+ or Mn2+, for their activity and contain a highly conserved 23-residue NUDIX motif (GX5EX7REUXEEXGU, where U = I, L or V), which functions as a metal binding and catalytic site. Substrates of NUDIX hydrolases include intact and oxidatively damaged nucleoside triphosphates, dinucleoside polyphosphates, nucleotide-sugars and dinucleotide enzymes. These substrates are metabolites or cell signaling molecules that require regulation during different stages of the cell cycle or during periods of stress. In general, the role of the NUDIX hydrolase is to sanitize the nucleotide pools and to maintain cell viability, thereby serving as surveillance _ "house-cleaning" enzymes. Substrate specificity is used to define families within the superfamily. Differences in substrate specificity are determined by the N-terminal extension or by residues in variable loop regions. Mechanistically, substrate hydrolysis occurs by a nucleophilic substitution reaction, with variation in the numbers and roles of divalent cations required. Pssm-ID: 467554 [Multi-domain] Cd Length: 131 Bit Score: 44.07 E-value: 3.82e-05
|
|||||||||||||||
NUDIX_ADPRase_Nudt5_UGPPase_Nudt14 | cd03424 | ADP-ribose pyrophosphatase, UDP-glucose pyrophosphatase, and similar proteins; ADP-ribose ... |
68-154 | 9.91e-05 | |||||||||||
ADP-ribose pyrophosphatase, UDP-glucose pyrophosphatase, and similar proteins; ADP-ribose pyrophosphatase (ADPRase) ( NUDIX (Nucleoside diphosphate-linked moiety X)) motif 5; Nudt5) catalyzes the hydrolysis of ADP-ribose and a variety of additional ADP-sugar conjugates to AMP and ribose-5-phosphate. In humans, there are four distinct ADPRase activities, three putative cytosolic enzymes (ADPRase-I, -II, and -Mn) and a single mitochondrial enzyme (ADPRase-m). Human ADPRase-II is also referred to as NUDT5. It lacks the N-terminal target sequence unique to mitochondrial ADPRase. The different cytosolic types are distinguished by their specificities for substrate and specific requirement for metal ions. NUDT5 forms a homodimer. It also contains a highly conserved 23-residue NUDIX motif (GX5EX7REUXEEXGU, where U = I, L or V) which functions as a metal binding site/catalytic site. In addition to the NUDIX motif, there are additional conserved amino acid residues, distal from the signature sequence, that correlate with substrate specificity. UDP-glucose pyrophosphatase (UGPPase) (EC 3.6.1.45; also known as nucleoside diphosphate-linked moiety X)) motif 14; Nudt14) hydrolyzes the pyrophosphate of the nucleoside diphosphate sugar to generate glucose-1-P and UMP. In mammals, UDP-glucose is the glucosyl donor for the synthesis of the storage polysaccharide glycogen. UGPPase, as a regulator of UDP-glucose, could play a regulatory role, but it has been shown to prefer ADP-ribose over UDP-glucose. Like other members of the NUDIX hydrolase superfamily, it requires a divalent cation, such as Mg2+, for its activity. It also contains a highly conserved 23-residue NUDIX motif (GX5EX7REUXEEXGU, where U = I, L or V) which functions as a metal binding site/catalytic site. Pssm-ID: 467530 [Multi-domain] Cd Length: 134 Bit Score: 42.88 E-value: 9.91e-05
|
|||||||||||||||
NUDIX_Hydrolase | cd04683 | uncharacterized NUDIX hydrolase subfamily; NUDIX hydrolase is a superfamily of enzymes found ... |
34-91 | 2.81e-04 | |||||||||||
uncharacterized NUDIX hydrolase subfamily; NUDIX hydrolase is a superfamily of enzymes found in all three kingdoms of life, and it catalyzes the hydrolysis of NUcleoside DIphosphates linked to other moieties, X. Enzymes belonging to this superfamily require a divalent cation, such as Mg2+ or Mn2+ for their activity. Members of this family are recognized by a highly conserved 23-residue NUDIX motif (GX5EX7REUXEEXGU, where U = I, L or V), which forms a structural motif that functions as a metal binding and catalytic site. Substrates of NUDIX hydrolase include intact and oxidatively damaged nucleoside triphosphates, dinucleoside polyphosphates, nucleotide-sugars and dinucleotide enzymes. These substrates are metabolites or cell signaling molecules that require regulation during different stages of the cell cycle or during periods of stress. In general, the role of the NUDIX hydrolase is to sanitize the nucleotide pools and to maintain cell viability, thereby serving as surveillance and "house-cleaning" enzymes. Substrate specificity is used to define child families within the superfamily. Differences in substrate specificity are determined by the N-terminal extension or by residues in variable loop regions. Mechanistically, substrate hydrolysis occurs by a nucleophilic substitution reaction, with variation in the numbers and roles of divalent cations required. This superfamily consists of at least nine families: IPP (isopentenyl diphosphate) isomerase, ADP ribose pyrophosphatase, mutT pyrophosphohydrolase, coenzyme-A pyrophosphatase, MTH1-7,8-dihydro-8-oxoguanine-triphosphatase, diadenosine tetraphosphate hydrolase, NADH pyrophosphatase, GDP-mannose hydrolase and the c-terminal portion of the mutY adenine glycosylase. Pssm-ID: 467566 [Multi-domain] Cd Length: 137 Bit Score: 41.44 E-value: 2.81e-04
|
|||||||||||||||
NUDIX_ADPRase_NudF | cd24159 | Bdellovibrio Bacteriovorus nucleoside diphosphate sugar hydrolase, and similar proteins; ... |
68-148 | 4.87e-04 | |||||||||||
Bdellovibrio Bacteriovorus nucleoside diphosphate sugar hydrolase, and similar proteins; Bdellovibrio bacteriovorus nucleoside diphosphate sugar (NDPS) hydrolase Bd3179 has been shown to similarities to the Escherichia coli adenosine diphosphate ribose (ADPR) hydrolase and the guanosine diphosphate mannose (GDPM) hydrolase. It may have a role when Bdellovibrio degrades and metabolizes host cell. ADP-ribose pyrophosphatase (ADPRase) catalyzes the hydrolysis of ADP-ribose and a variety of additional ADP-sugar conjugates to AMP and ribose-5-phosphate. In humans, there are four distinct ADPRase activities, three putative cytosolic enzymes (ADPRase-I, -II, and -Mn) and a single mitochondrial enzyme (ADPRase-m). Human ADPRase-II is also referred to as NUDT5. It lacks the N-terminal target sequence unique to mitochondrial ADPRase. The different cytosolic types are distinguished by their specificities for substrate and specific requirement for metal ions. NUDT5 forms a homodimer. It also contains a highly conserved 23-residue NUDIX motif (GX5EX7REUXEEXGU, where U = I, L or V) which functions as a metal binding site/catalytic site. In addition to the NUDIX motif, there are additional conserved amino acid residues, distal from the signature sequence, that correlate with substrate specificity. UDP-glucose pyrophosphatase (UGPPase) (EC 3.6.1.45; also known as nucleoside diphosphate-linked moiety X)) motif 14; Nudt14) hydrolyzes the pyrophosphate of the nucleoside diphosphate sugar to generate glucose-1-P and UMP. In mammals, UDP-glucose is the glucosyl donor for the synthesis of the storage polysaccharide glycogen. UGPPase, as a regulator of UDP-glucose, could play a regulatory role, but it has been shown to prefer ADP-ribose over UDP-glucose. Like other members of the NUDIX hydrolase superfamily, it requires a divalent cation, such as Mg2+, for its activity. It also contains a highly conserved 23-residue NUDIX motif (GX5EX7REUXEEXGU, where U = I, L or V) which functions as a metal binding site/catalytic site. Pssm-ID: 467607 [Multi-domain] Cd Length: 173 Bit Score: 41.60 E-value: 4.87e-04
|
|||||||||||||||
NUDIX_Hydrolase | cd18884 | uncharacterized NUDIX hydrolase subfamily; NUDIX hydrolase is a superfamily of enzymes found ... |
58-158 | 7.14e-04 | |||||||||||
uncharacterized NUDIX hydrolase subfamily; NUDIX hydrolase is a superfamily of enzymes found in all three kingdoms of life, and it catalyzes the hydrolysis of NUcleoside DIphosphates linked to other moieties, X. Enzymes belonging to this superfamily require a divalent cation, such as Mg2+ or Mn2+ for their activity. Members of this family are recognized by a highly conserved 23-residue NUDIX motif (GX5EX7REUXEEXGU, where U = I, L or V), which forms a structural motif that functions as a metal binding and catalytic site. Substrates of NUDIX hydrolase include intact and oxidatively damaged nucleoside triphosphates, dinucleoside polyphosphates, nucleotide-sugars and dinucleotide enzymes. These substrates are metabolites or cell signaling molecules that require regulation during different stages of the cell cycle or during periods of stress. In general, the role of the NUDIX hydrolase is to sanitize the nucleotide pools and to maintain cell viability, thereby serving as surveillance and "house-cleaning" enzymes. Substrate specificity is used to define child families within the superfamily. Differences in substrate specificity are determined by the N-terminal extension or by residues in variable loop regions. Mechanistically, substrate hydrolysis occurs by a nucleophilic substitution reaction, with variation in the numbers and roles of divalent cations required. This superfamily consists of at least nine families: IPP (isopentenyl diphosphate) isomerase, ADP ribose pyrophosphatase, mutT pyrophosphohydrolase, coenzyme-A pyrophosphatase, MTH1-7,8-dihydro-8-oxoguanine-triphosphatase, diadenosine tetraphosphate hydrolase, NADH pyrophosphatase, GDP-mannose hydrolase and the c-terminal portion of the mutY adenine glycosylase. Pssm-ID: 467595 [Multi-domain] Cd Length: 125 Bit Score: 40.09 E-value: 7.14e-04
|
|||||||||||||||
YjhB | COG1051 | ADP-ribose pyrophosphatase YjhB, NUDIX family [Nucleotide transport and metabolism]; |
32-154 | 7.22e-04 | |||||||||||
ADP-ribose pyrophosphatase YjhB, NUDIX family [Nucleotide transport and metabolism]; Pssm-ID: 440671 [Multi-domain] Cd Length: 125 Bit Score: 40.35 E-value: 7.22e-04
|
|||||||||||||||
NUDIX_Hydrolase | cd03674 | uncharacterized NUDIX hydrolase subfamily; NUDIX hydrolase is a superfamily of enzymes found ... |
37-154 | 4.81e-03 | |||||||||||
uncharacterized NUDIX hydrolase subfamily; NUDIX hydrolase is a superfamily of enzymes found in all three kingdoms of life, and it catalyzes the hydrolysis of NUcleoside DIphosphates linked to other moieties, X. Enzymes belonging to this superfamily require a divalent cation, such as Mg2+ or Mn2+ for their activity. Members of this family are recognized by a highly conserved 23-residue NUDIX motif (GX5EX7REUXEEXGU, where U = I, L or V), which forms a structural motif that functions as a metal binding and catalytic site. Substrates of NUDIX hydrolase include intact and oxidatively damaged nucleoside triphosphates, dinucleoside polyphosphates, nucleotide-sugars and dinucleotide enzymes. These substrates are metabolites or cell signaling molecules that require regulation during different stages of the cell cycle or during periods of stress. In general, the role of the NUDIX hydrolase is to sanitize the nucleotide pools and to maintain cell viability, thereby serving as surveillance and "house-cleaning" enzymes. Substrate specificity is used to define child families within the superfamily. Differences in substrate specificity are determined by the N-terminal extension or by residues in variable loop regions. Mechanistically, substrate hydrolysis occurs by a nucleophilic substitution reaction, with variation in the numbers and roles of divalent cations required. This superfamily consists of at least nine families: IPP (isopentenyl diphosphate) isomerase, ADP ribose pyrophosphatase, mutT pyrophosphohydrolase, coenzyme-A pyrophosphatase, MTH1-7,8-dihydro-8-oxoguanine-triphosphatase, diadenosine tetraphosphate hydrolase, NADH pyrophosphatase, GDP-mannose hydrolase and the c-terminal portion of the mutY adenine glycosylase. Pssm-ID: 467542 [Multi-domain] Cd Length: 130 Bit Score: 38.01 E-value: 4.81e-03
|
|||||||||||||||
PRK15472 | PRK15472 | nucleoside triphosphatase NudI; Provisional |
41-127 | 7.36e-03 | |||||||||||
nucleoside triphosphatase NudI; Provisional Pssm-ID: 185369 [Multi-domain] Cd Length: 141 Bit Score: 37.42 E-value: 7.36e-03
|
|||||||||||||||
NUDIX_RppH | cd04665 | RNA pyrophosphohydrolase; The initiation of mRNA degradation often requires deprotection of ... |
36-155 | 7.92e-03 | |||||||||||
RNA pyrophosphohydrolase; The initiation of mRNA degradation often requires deprotection of its 5' end. In eukaryotes, the 5'-methylguanosine (cap) structure is principally removed by the NUDIX family decapping enzyme Dcp2, yielding a 5'-monophosphorylated RNA that is a substrate for 5' exoribonucleases. In bacteria, the 5'-triphosphate group of primary transcripts is also converted to a 5' monophosphate by a NUDIX protein called RNA pyrophosphohydrolase (RppH), allowing access to both endo- and 5' exoribonucleases. NUDIX hydrolase is a superfamily of enzymes found in all three kingdoms of life, and it catalyzes the hydrolysis of NUcleoside DIphosphates linked to other moieties, X. Enzymes belonging to this superfamily require a divalent cation, such as Mg2+ or Mn2+ for their activity. Members of this family are recognized by a highly conserved 23-residue NUDIX motif (GX5EX7REUXEEXGU, where U = I, L or V), which forms a structural motif that functions as a metal binding and catalytic site. Substrates of NUDIX hydrolase include intact and oxidatively damaged nucleoside triphosphates, dinucleoside polyphosphates, nucleotide-sugars and dinucleotide enzymes. These substrates are metabolites or cell signaling molecules that require regulation during different stages of the cell cycle or during periods of stress. In general, the role of the NUDIX hydrolase is to sanitize the nucleotide pools and to maintain cell viability, thereby serving as surveillance and "house-cleaning" enzymes. Substrate specificity is used to define child families within the superfamily. Differences in substrate specificity are determined by the N-terminal extension or by residues in variable loop regions. Mechanistically, substrate hydrolysis occurs by a nucleophilic substitution reaction, with variation in the numbers and roles of divalent cations required. This superfamily consists of at least nine families: IPP (isopentenyl diphosphate) isomerase, ADP ribose pyrophosphatase, mutT pyrophosphohydrolase, coenzyme-A pyrophosphatase, MTH1-7,8-dihydro-8-oxoguanine-triphosphatase, diadenosine tetraphosphate hydrolase, NADH pyrophosphatase, GDP-mannose hydrolase and the c-terminal portion of the mutY adenine glycosylase. Pssm-ID: 467550 [Multi-domain] Cd Length: 121 Bit Score: 37.23 E-value: 7.92e-03
|
|||||||||||||||
NUDIX_U8_SnoRNA_DE_Nudt16 | cd18869 | nucleoside diphosphate-linked moiety X)) motif 16; U8 SnoRNA-decapping enzyme, also known as ... |
30-95 | 8.94e-03 | |||||||||||
nucleoside diphosphate-linked moiety X)) motif 16; U8 SnoRNA-decapping enzyme, also known as NUDIX (nucleoside diphosphate-linked moiety X)) motif 16/Nudt16, is encoded by the human NUDT16 gene and a RNA-binding and decapping enzyme that catalyzes the cleavage of the cap structure of snoRNAs and mRNAs in a metal-dependent manner. Members of the NUDIX hydrolase superfamily catalyze the hydrolysis of NUcleoside DIphosphates linked to other moieties, X. Enzymes belonging to this superfamily require a divalent cation, such as Mg2+ or Mn2+, for their activity and contain a highly conserved 23-residue NUDIX motif (GX5EX7REUXEEXGU, where U = I, L or V), which functions as a metal binding and catalytic site. Substrates of NUDIX hydrolases include intact and oxidatively damaged nucleoside triphosphates, dinucleoside polyphosphates, nucleotide-sugars and dinucleotide enzymes. These substrates are metabolites or cell signaling molecules that require regulation during different stages of the cell cycle or during periods of stress. In general, the role of the NUDIX hydrolase is to sanitize the nucleotide pools and to maintain cell viability, thereby serving as surveillance _ "house-cleaning" enzymes. Substrate specificity is used to define families within the superfamily. Differences in substrate specificity are determined by the N-terminal extension or by residues in variable loop regions. Mechanistically, substrate hydrolysis occurs by a nucleophilic substitution reaction, with variation in the numbers and roles of divalent cations required. Pssm-ID: 467581 Cd Length: 175 Bit Score: 38.11 E-value: 8.94e-03
|
|||||||||||||||
Blast search parameters | ||||
|