V1re10 protein [Mus musculus]
G protein-coupled receptor family protein( domain architecture ID 705710)
G protein-coupled receptor family protein is a seven-transmembrane G protein-coupled receptor (7TM-GPCR) family protein which typically transmits an extracellular signal into the cell by the conformational rearrangement of the 7TM helices and by the subsequent binding and activation of an intracellular heterotrimeric G protein; GPCR ligands include light-sensitive compounds, odors, pheromones, hormones, and neurotransmitters
List of domain hits
Name | Accession | Description | Interval | E-value | |||||
7tm_GPCRs super family | cl28897 | seven-transmembrane G protein-coupled receptor superfamily; This hierarchical evolutionary ... |
8-299 | 1.18e-69 | |||||
seven-transmembrane G protein-coupled receptor superfamily; This hierarchical evolutionary model represents the seven-transmembrane (7TM) receptors, often referred to as G protein-coupled receptors (GPCRs), which transmit physiological signals from the outside of the cell to the inside via G proteins. GPCRs constitute the largest known superfamily of transmembrane receptors across the three kingdoms of life that respond to a wide variety of extracellular stimuli including peptides, lipids, neurotransmitters, amino acids, hormones, and sensory stimuli such as light, smell and taste. All GPCRs share a common structural architecture comprising of seven-transmembrane (TM) alpha-helices interconnected by three extracellular and three intracellular loops. A general feature of GPCR signaling is agonist-induced conformational changes in the receptors, leading to activation of the heterotrimeric G proteins, which consist of the guanine nucleotide-binding G-alpha subunit and the dimeric G-beta-gamma subunits. The activated G proteins then bind to and activate numerous downstream effector proteins, which generate second messengers that mediate a broad range of cellular and physiological processes. However, some 7TM receptors, such as the type 1 microbial rhodopsins, do not activate G proteins. Based on sequence similarity, GPCRs can be divided into six major classes: class A (the rhodopsin-like family), class B (the Methuselah-like, adhesion and secretin-like receptor family), class C (the metabotropic glutamate receptor family), class D (the fungal mating pheromone receptors), class E (the cAMP receptor family), and class F (the frizzled/smoothened receptor family). Nearly 800 human GPCR genes have been identified and are involved essentially in all major physiological processes. Approximately 40% of clinically marketed drugs mediate their effects through modulation of GPCR function for the treatment of a variety of human diseases including bacterial infections. The actual alignment was detected with superfamily member cd13949: Pssm-ID: 475119 Cd Length: 295 Bit Score: 217.91 E-value: 1.18e-69
|
|||||||||
Name | Accession | Description | Interval | E-value | |||||
7tm_V1R_pheromone | cd13949 | vomeronasal organ pheromone receptor type-1 family, member of the seven-transmembrane G ... |
8-299 | 1.18e-69 | |||||
vomeronasal organ pheromone receptor type-1 family, member of the seven-transmembrane G protein-coupled receptor superfamily; This family represents vomeronasal type-1 receptors (V1Rs) that are specifically expressed in the vomeronasal organ (VNO), which is the sensory organ of the accessory olfactory system present in amphibians, reptiles, and non-primate mammals such as mice and rodents, but it is non-functional or absent in humans, apes and monkeys. The VNO detects pheromones, chemicals released from animals that can influence social and reproductive behaviors, such as male-male aggression or sexual mating, in other members of the same species. On the other hand, the olfactory epithelium, which contains olfactory receptor neurons inside the nasal cavity, is responsible for detecting odor molecules (smells). There are two types of vertebrate pheromones: (1) small volatile molecules such as 2-heptanone, a substance in the urine of both male and female that extends estrous cycle length in female mice; and (2) water-soluble molecules such as the major histocompatibility complex (HMC) class-I peptide, which can induce the pregnancy block effect, the tendency for female rodents to abort their pregnancies upon exposure to the scent of an unknown male. While V1Rs and G-alpha(i2) protein are co-expressed in the apical neurons of the VNO, V2Rs (type-2 vomeronasal receptors) and G-alpha(o) protein are coexpressed in the basal layer of the VNO. Activation of V1R or V2R causes stimulation of phospholipase pathway, generating diacylglycerol (DAG) and inositol 1,4,5-triphosphate (IP3). V1Rs have a short N-terminal extracellular domain, whereas V2Rs contain a long N-terminal extracellular domain, which is believed to bind pheromones. Although V1Rs share the seven-transmembrane domain structure with V1Rs and olfactory receptors, they share little sequence similarity with each other. Pssm-ID: 320087 Cd Length: 295 Bit Score: 217.91 E-value: 1.18e-69
|
|||||||||
V1R | pfam03402 | Vomeronasal organ pheromone receptor family, V1R; This family represents one of two known ... |
7-286 | 2.03e-64 | |||||
Vomeronasal organ pheromone receptor family, V1R; This family represents one of two known vomeronasal organ receptor families, the V1R family. Pssm-ID: 460912 Cd Length: 292 Bit Score: 204.49 E-value: 2.03e-64
|
|||||||||
Name | Accession | Description | Interval | E-value | |||||
7tm_V1R_pheromone | cd13949 | vomeronasal organ pheromone receptor type-1 family, member of the seven-transmembrane G ... |
8-299 | 1.18e-69 | |||||
vomeronasal organ pheromone receptor type-1 family, member of the seven-transmembrane G protein-coupled receptor superfamily; This family represents vomeronasal type-1 receptors (V1Rs) that are specifically expressed in the vomeronasal organ (VNO), which is the sensory organ of the accessory olfactory system present in amphibians, reptiles, and non-primate mammals such as mice and rodents, but it is non-functional or absent in humans, apes and monkeys. The VNO detects pheromones, chemicals released from animals that can influence social and reproductive behaviors, such as male-male aggression or sexual mating, in other members of the same species. On the other hand, the olfactory epithelium, which contains olfactory receptor neurons inside the nasal cavity, is responsible for detecting odor molecules (smells). There are two types of vertebrate pheromones: (1) small volatile molecules such as 2-heptanone, a substance in the urine of both male and female that extends estrous cycle length in female mice; and (2) water-soluble molecules such as the major histocompatibility complex (HMC) class-I peptide, which can induce the pregnancy block effect, the tendency for female rodents to abort their pregnancies upon exposure to the scent of an unknown male. While V1Rs and G-alpha(i2) protein are co-expressed in the apical neurons of the VNO, V2Rs (type-2 vomeronasal receptors) and G-alpha(o) protein are coexpressed in the basal layer of the VNO. Activation of V1R or V2R causes stimulation of phospholipase pathway, generating diacylglycerol (DAG) and inositol 1,4,5-triphosphate (IP3). V1Rs have a short N-terminal extracellular domain, whereas V2Rs contain a long N-terminal extracellular domain, which is believed to bind pheromones. Although V1Rs share the seven-transmembrane domain structure with V1Rs and olfactory receptors, they share little sequence similarity with each other. Pssm-ID: 320087 Cd Length: 295 Bit Score: 217.91 E-value: 1.18e-69
|
|||||||||
V1R | pfam03402 | Vomeronasal organ pheromone receptor family, V1R; This family represents one of two known ... |
7-286 | 2.03e-64 | |||||
Vomeronasal organ pheromone receptor family, V1R; This family represents one of two known vomeronasal organ receptor families, the V1R family. Pssm-ID: 460912 Cd Length: 292 Bit Score: 204.49 E-value: 2.03e-64
|
|||||||||
7tm_GPCRs | cd14964 | seven-transmembrane G protein-coupled receptor superfamily; This hierarchical evolutionary ... |
19-286 | 2.11e-11 | |||||
seven-transmembrane G protein-coupled receptor superfamily; This hierarchical evolutionary model represents the seven-transmembrane (7TM) receptors, often referred to as G protein-coupled receptors (GPCRs), which transmit physiological signals from the outside of the cell to the inside via G proteins. GPCRs constitute the largest known superfamily of transmembrane receptors across the three kingdoms of life that respond to a wide variety of extracellular stimuli including peptides, lipids, neurotransmitters, amino acids, hormones, and sensory stimuli such as light, smell and taste. All GPCRs share a common structural architecture comprising of seven-transmembrane (TM) alpha-helices interconnected by three extracellular and three intracellular loops. A general feature of GPCR signaling is agonist-induced conformational changes in the receptors, leading to activation of the heterotrimeric G proteins, which consist of the guanine nucleotide-binding G-alpha subunit and the dimeric G-beta-gamma subunits. The activated G proteins then bind to and activate numerous downstream effector proteins, which generate second messengers that mediate a broad range of cellular and physiological processes. However, some 7TM receptors, such as the type 1 microbial rhodopsins, do not activate G proteins. Based on sequence similarity, GPCRs can be divided into six major classes: class A (the rhodopsin-like family), class B (the Methuselah-like, adhesion and secretin-like receptor family), class C (the metabotropic glutamate receptor family), class D (the fungal mating pheromone receptors), class E (the cAMP receptor family), and class F (the frizzled/smoothened receptor family). Nearly 800 human GPCR genes have been identified and are involved essentially in all major physiological processes. Approximately 40% of clinically marketed drugs mediate their effects through modulation of GPCR function for the treatment of a variety of human diseases including bacterial infections. Pssm-ID: 410628 [Multi-domain] Cd Length: 267 Bit Score: 63.22 E-value: 2.11e-11
|
|||||||||
7tm_classA_rhodopsin-like | cd00637 | rhodopsin receptor-like class A family of the seven-transmembrane G protein-coupled receptor ... |
10-272 | 7.26e-07 | |||||
rhodopsin receptor-like class A family of the seven-transmembrane G protein-coupled receptor superfamily; Class A rhodopsin-like receptors constitute about 90% of all GPCRs. The class A GPCRs include the light-sensitive rhodopsin as well as receptors for biogenic amines, lipids, nucleotides, odorants, peptide hormones, and a variety of other ligands. All GPCRs have a common structural architecture comprising of seven-transmembrane (TM) alpha-helices interconnected by three extracellular and three intracellular loops. A general feature of GPCR signaling is agonist-induced conformational changes in the receptors, leading to activation of the heterotrimeric G proteins, which consist of the guanine nucleotide-binding G-alpha subunit and the dimeric G-beta-gamma subunits. The activated G proteins then bind to and activate numerous downstream effector proteins, which generate second messengers that mediate a broad range of cellular and physiological processes. Based on sequence similarity, GPCRs can be divided into six major classes: class A (rhodopsin-like family), class B (Methuselah-like, adhesion and secretin-like receptor family), class C (metabotropic glutamate receptor family), class D (fungal mating pheromone receptors), class E (cAMP receptor family), and class F (frizzled/smoothened receptor family). Nearly 800 human GPCR genes have been identified and are involved essentially in all major physiological processes. Approximately 40% of clinically marketed drugs mediate their effects through modulation of GPCR function for the treatment of a variety of human diseases including bacterial infections. Pssm-ID: 410626 [Multi-domain] Cd Length: 275 Bit Score: 49.59 E-value: 7.26e-07
|
|||||||||
7tmA_TRH-R | cd14995 | thyrotropin-releasing hormone receptor, member of the class A family of seven-transmembrane G ... |
10-146 | 7.34e-03 | |||||
thyrotropin-releasing hormone receptor, member of the class A family of seven-transmembrane G protein-coupled receptors; TRH-R is a member of the class A rhodopsin-like G protein-coupled receptors, which binds the tripeptide thyrotropin releasing hormone. The TRH-R activates phosphoinositide metabolism through a pertussis-toxin-insensitive G-protein, the G(q)/G(11) class. TRH stimulates the synthesis and release of thyroid-stimulating hormone in the anterior pituitary. TRH is produced in many other tissues, especially within the nervous system, where it appears to act as a neurotransmitter/neuromodulator. It also stimulates the synthesis and release of prolactin. In the CNS, TRH stimulates a number of behavioral and pharmacological actions, including increased turnover of catecholamines in the nucleus accumbens. There are two thyrotropin-releasing hormone receptors in some mammals, thyrotropin-releasing hormone receptor 1 (TRH1) which has been found in a number of species including rat, mouse, and human and thyrotropin-releasing hormone receptor 2 (TRH2) which has, only been found in rodents. These TRH receptors are found in high levels in the anterior pituitary, and are also found in the retina and in certain areas of the brain. Pssm-ID: 320126 [Multi-domain] Cd Length: 269 Bit Score: 37.36 E-value: 7.34e-03
|
|||||||||
Blast search parameters | ||||
|