NCBI Home Page NCBI Site Search page NCBI Guide that lists and describes the NCBI resources
Conserved domains on  [gi|55250041|gb|AAH85465|]
View 

Pleckstrin homology domain containing, family A (phosphoinositide binding specific) member 8 [Danio rerio]

Protein Classification

pleckstrin homology domain-containing family A member 8( domain architecture ID 10100853)

pleckstrin homology domain-containing family A member 8 (PLEKHA8/FAPP2) is a cargo transport protein that is required for apical transport from the Golgi complex

Graphical summary

 Zoom to residue level

show extra options »

Show site features     Horizontal zoom: ×

List of domain hits

Name Accession Description Interval E-value
PH_FAPP1_FAPP2 cd01247
Four phosphate adaptor protein 1 and 2 Pleckstrin homology (PH) domain; Human FAPP1 (also ...
1-100 9.94e-72

Four phosphate adaptor protein 1 and 2 Pleckstrin homology (PH) domain; Human FAPP1 (also called PLEKHA3/Pleckstrin homology domain-containing, family A member 3) regulates secretory transport from the trans-Golgi network to the plasma membrane. It is recruited through binding of PH domain to phosphatidylinositol 4-phosphate (PtdIns(4)P) and a small GTPase ADP-ribosylation factor 1 (ARF1). These two binding sites have little overlap the FAPP1 PH domain to associate with both ligands simultaneously and independently. FAPP1 has a N-terminal PH domain followed by a short proline-rich region. FAPP1 is a member of the oxysterol binding protein (OSBP) family which includes OSBP, OSBP-related proteins (ORP), and Goodpasture antigen binding protein (GPBP). They have a wide range of purported functions including sterol transport, cell cycle control, pollen development and vessicle transport from Golgi recognize both PI lipids and ARF proteins. FAPP2 (also called PLEKHA8/Pleckstrin homology domain-containing, family A member 8), a member of the Glycolipid lipid transfer protein(GLTP) family has an N-terminal PH domain that targets the TGN and C-terminal GLTP domain. FAPP2 functions to traffic glucosylceramide (GlcCer) which is made in the Golgi. It's interaction with vesicle-associated membrane protein-associated protein (VAP) could be a means of regulation. Some FAPP2s share the FFAT-like motifs found in GLTP. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


:

Pssm-ID: 269951  Cd Length: 100  Bit Score: 224.21  E-value: 9.94e-72
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 55250041   1 MEGVLYKWTNYISGWQPRWFVLEGGTLSYYDSQEDAWKGCKGSIKISVCEIQVHPSDFTRVDLIIPGEQYFYLRAINAAE 80
Cdd:cd01247   1 MEGVLWKWTNYLSGWQPRWFVLDDGVLSYYKSQEEVNQGCKGSVKMSVCEIIVHPTDPTRMDLIIPGEQHFYLKASSAAE 80
                        90       100
                ....*....|....*....|
gi 55250041  81 RQKWLVALGTAKACLTDNRT 100
Cdd:cd01247  81 RQRWLVALGSAKACLTDTRA 100
GLTP pfam08718
Glycolipid transfer protein (GLTP); GLTP is a cytosolic protein that catalyzes the ...
360-498 4.93e-52

Glycolipid transfer protein (GLTP); GLTP is a cytosolic protein that catalyzes the intermembrane transfer of glycolipids.


:

Pssm-ID: 462575  Cd Length: 140  Bit Score: 173.84  E-value: 4.93e-52
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 55250041   360 IPTQAFLDSCYAIVPVLDKLGPtVFAPVKIDFVGNIKKIQQKVVSDPESFPTLQSIVLHEVKTEVAQVR-NSATEALLWL 438
Cdd:pfam08718   1 IDTEPFLEACRELVKFFDLLGS-AFSFVKSDIVGNIKKLRERYEADPEKYSTLQDMVEKEKEAGTVKKKkGSATRALLWL 79
                          90       100       110       120       130       140
                  ....*....|....*....|....*....|....*....|....*....|....*....|.
gi 55250041   439 KRGLKFLKEFLSEI-NTGVKDVQGALYNAYGKTLRQYHGWVVRGVFALALRAAPSYEGFMA 498
Cdd:pfam08718  80 KRGLEFIALFLERLlANPDESLSDAASKAYNKTLAPYHGWIVRKAFSVAMKALPSRKDFLA 140
DMP1 super family cl25845
Dentin matrix protein 1 (DMP1); This family consists of several mammalian dentin matrix ...
203-339 4.74e-03

Dentin matrix protein 1 (DMP1); This family consists of several mammalian dentin matrix protein 1 (DMP1) sequences. The dentin matrix acidic phosphoprotein 1 (DMP1) gene has been mapped to human chromosome 4q21. DMP1 is a bone and teeth specific protein initially identified from mineralized dentin. DMP1 is primarily localized in the nuclear compartment of undifferentiated osteoblasts. In the nucleus, DMP1 acts as a transcriptional component for activation of osteoblast-specific genes like osteocalcin. During the early phase of osteoblast maturation, Ca(2+) surges into the nucleus from the cytoplasm, triggering the phosphorylation of DMP1 by a nuclear isoform of casein kinase II. This phosphorylated DMP1 is then exported out into the extracellular matrix, where it regulates nucleation of hydroxyapatite. DMP1 is a unique molecule that initiates osteoblast differentiation by transcription in the nucleus and orchestrates mineralized matrix formation extracellularly, at later stages of osteoblast maturation. The DMP1 gene has been found to be ectopically expressed in lung cancer although the reason for this is unknown.


The actual alignment was detected with superfamily member pfam07263:

Pssm-ID: 462128 [Multi-domain]  Cd Length: 519  Bit Score: 39.52  E-value: 4.74e-03
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 55250041   203 KSNDPKNLHPGETRKDLINTSGTSAHESGPDNEPPpspQENISTAHTE-------------SGLMEDQNDLIEPNNGSSS 269
Cdd:pfam07263 313 KSESQEDSEESQSQEDSQNSQDPSSESSQEADLPS---QESSSESQEEvvsesrgdnpdntSSSEEDQEDSDSSEEDSLS 389
                          90       100       110       120       130       140       150
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 55250041   270 STQDHEEPVEEQQTDGSTEDADHSQEEQQEvsmSPTQNKQEVQEDIQTDLELNETQSENKQEEEDEDKVD 339
Cdd:pfam07263 390 TFSSSESESREEQADSESNESLRSSEESPE---SSEDENSSSQEGLQSHSASTESQSEESQSEQDSQSEE 456
 
Name Accession Description Interval E-value
PH_FAPP1_FAPP2 cd01247
Four phosphate adaptor protein 1 and 2 Pleckstrin homology (PH) domain; Human FAPP1 (also ...
1-100 9.94e-72

Four phosphate adaptor protein 1 and 2 Pleckstrin homology (PH) domain; Human FAPP1 (also called PLEKHA3/Pleckstrin homology domain-containing, family A member 3) regulates secretory transport from the trans-Golgi network to the plasma membrane. It is recruited through binding of PH domain to phosphatidylinositol 4-phosphate (PtdIns(4)P) and a small GTPase ADP-ribosylation factor 1 (ARF1). These two binding sites have little overlap the FAPP1 PH domain to associate with both ligands simultaneously and independently. FAPP1 has a N-terminal PH domain followed by a short proline-rich region. FAPP1 is a member of the oxysterol binding protein (OSBP) family which includes OSBP, OSBP-related proteins (ORP), and Goodpasture antigen binding protein (GPBP). They have a wide range of purported functions including sterol transport, cell cycle control, pollen development and vessicle transport from Golgi recognize both PI lipids and ARF proteins. FAPP2 (also called PLEKHA8/Pleckstrin homology domain-containing, family A member 8), a member of the Glycolipid lipid transfer protein(GLTP) family has an N-terminal PH domain that targets the TGN and C-terminal GLTP domain. FAPP2 functions to traffic glucosylceramide (GlcCer) which is made in the Golgi. It's interaction with vesicle-associated membrane protein-associated protein (VAP) could be a means of regulation. Some FAPP2s share the FFAT-like motifs found in GLTP. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 269951  Cd Length: 100  Bit Score: 224.21  E-value: 9.94e-72
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 55250041   1 MEGVLYKWTNYISGWQPRWFVLEGGTLSYYDSQEDAWKGCKGSIKISVCEIQVHPSDFTRVDLIIPGEQYFYLRAINAAE 80
Cdd:cd01247   1 MEGVLWKWTNYLSGWQPRWFVLDDGVLSYYKSQEEVNQGCKGSVKMSVCEIIVHPTDPTRMDLIIPGEQHFYLKASSAAE 80
                        90       100
                ....*....|....*....|
gi 55250041  81 RQKWLVALGTAKACLTDNRT 100
Cdd:cd01247  81 RQRWLVALGSAKACLTDTRA 100
GLTP pfam08718
Glycolipid transfer protein (GLTP); GLTP is a cytosolic protein that catalyzes the ...
360-498 4.93e-52

Glycolipid transfer protein (GLTP); GLTP is a cytosolic protein that catalyzes the intermembrane transfer of glycolipids.


Pssm-ID: 462575  Cd Length: 140  Bit Score: 173.84  E-value: 4.93e-52
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 55250041   360 IPTQAFLDSCYAIVPVLDKLGPtVFAPVKIDFVGNIKKIQQKVVSDPESFPTLQSIVLHEVKTEVAQVR-NSATEALLWL 438
Cdd:pfam08718   1 IDTEPFLEACRELVKFFDLLGS-AFSFVKSDIVGNIKKLRERYEADPEKYSTLQDMVEKEKEAGTVKKKkGSATRALLWL 79
                          90       100       110       120       130       140
                  ....*....|....*....|....*....|....*....|....*....|....*....|.
gi 55250041   439 KRGLKFLKEFLSEI-NTGVKDVQGALYNAYGKTLRQYHGWVVRGVFALALRAAPSYEGFMA 498
Cdd:pfam08718  80 KRGLEFIALFLERLlANPDESLSDAASKAYNKTLAPYHGWIVRKAFSVAMKALPSRKDFLA 140
PH smart00233
Pleckstrin homology domain; Domain commonly found in eukaryotic signalling proteins. The ...
1-93 4.30e-15

Pleckstrin homology domain; Domain commonly found in eukaryotic signalling proteins. The domain family possesses multiple functions including the abilities to bind inositol phosphates, and various proteins. PH domains have been found to possess inserted domains (such as in PLC gamma, syntrophins) and to be inserted within other domains. Mutations in Brutons tyrosine kinase (Btk) within its PH domain cause X-linked agammaglobulinaemia (XLA) in patients. Point mutations cluster into the positively charged end of the molecule around the predicted binding site for phosphatidylinositol lipids.


Pssm-ID: 214574 [Multi-domain]  Cd Length: 102  Bit Score: 71.04  E-value: 4.30e-15
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 55250041      1 MEGVLYKWT-NYISGWQPRWFVLEGGTLSYYDSQEDAWKG-CKGSIKISVCEIQVHPSDFTRVD-----LIIPGEQYFYL 73
Cdd:smart00233   3 KEGWLYKKSgGGKKSWKKRYFVLFNSTLLYYKSKKDKKSYkPKGSIDLSGCTVREAPDPDSSKKphcfeIKTSDRKTLLL 82
                           90       100
                   ....*....|....*....|
gi 55250041     74 RAINAAERQKWLVALGTAKA 93
Cdd:smart00233  83 QAESEEEREKWVEALRKAIA 102
PH pfam00169
PH domain; PH stands for pleckstrin homology.
1-88 7.24e-11

PH domain; PH stands for pleckstrin homology.


Pssm-ID: 459697 [Multi-domain]  Cd Length: 105  Bit Score: 59.11  E-value: 7.24e-11
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 55250041     1 MEGVLYKWTNYI-SGWQPRWFVLEGGTLSYY-DSQEDAWKGCKGSIKISVCEIQVHPSDFT---------RVDLIIPGEQ 69
Cdd:pfam00169   3 KEGWLLKKGGGKkKSWKKRYFVLFDGSLLYYkDDKSGKSKEPKGSISLSGCEVVEVVASDSpkrkfcfelRTGERTGKRT 82
                          90
                  ....*....|....*....
gi 55250041    70 YfYLRAINAAERQKWLVAL 88
Cdd:pfam00169  83 Y-LLQAESEEERKDWIKAI 100
DMP1 pfam07263
Dentin matrix protein 1 (DMP1); This family consists of several mammalian dentin matrix ...
203-339 4.74e-03

Dentin matrix protein 1 (DMP1); This family consists of several mammalian dentin matrix protein 1 (DMP1) sequences. The dentin matrix acidic phosphoprotein 1 (DMP1) gene has been mapped to human chromosome 4q21. DMP1 is a bone and teeth specific protein initially identified from mineralized dentin. DMP1 is primarily localized in the nuclear compartment of undifferentiated osteoblasts. In the nucleus, DMP1 acts as a transcriptional component for activation of osteoblast-specific genes like osteocalcin. During the early phase of osteoblast maturation, Ca(2+) surges into the nucleus from the cytoplasm, triggering the phosphorylation of DMP1 by a nuclear isoform of casein kinase II. This phosphorylated DMP1 is then exported out into the extracellular matrix, where it regulates nucleation of hydroxyapatite. DMP1 is a unique molecule that initiates osteoblast differentiation by transcription in the nucleus and orchestrates mineralized matrix formation extracellularly, at later stages of osteoblast maturation. The DMP1 gene has been found to be ectopically expressed in lung cancer although the reason for this is unknown.


Pssm-ID: 462128 [Multi-domain]  Cd Length: 519  Bit Score: 39.52  E-value: 4.74e-03
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 55250041   203 KSNDPKNLHPGETRKDLINTSGTSAHESGPDNEPPpspQENISTAHTE-------------SGLMEDQNDLIEPNNGSSS 269
Cdd:pfam07263 313 KSESQEDSEESQSQEDSQNSQDPSSESSQEADLPS---QESSSESQEEvvsesrgdnpdntSSSEEDQEDSDSSEEDSLS 389
                          90       100       110       120       130       140       150
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 55250041   270 STQDHEEPVEEQQTDGSTEDADHSQEEQQEvsmSPTQNKQEVQEDIQTDLELNETQSENKQEEEDEDKVD 339
Cdd:pfam07263 390 TFSSSESESREEQADSESNESLRSSEESPE---SSEDENSSSQEGLQSHSASTESQSEESQSEQDSQSEE 456
 
Name Accession Description Interval E-value
PH_FAPP1_FAPP2 cd01247
Four phosphate adaptor protein 1 and 2 Pleckstrin homology (PH) domain; Human FAPP1 (also ...
1-100 9.94e-72

Four phosphate adaptor protein 1 and 2 Pleckstrin homology (PH) domain; Human FAPP1 (also called PLEKHA3/Pleckstrin homology domain-containing, family A member 3) regulates secretory transport from the trans-Golgi network to the plasma membrane. It is recruited through binding of PH domain to phosphatidylinositol 4-phosphate (PtdIns(4)P) and a small GTPase ADP-ribosylation factor 1 (ARF1). These two binding sites have little overlap the FAPP1 PH domain to associate with both ligands simultaneously and independently. FAPP1 has a N-terminal PH domain followed by a short proline-rich region. FAPP1 is a member of the oxysterol binding protein (OSBP) family which includes OSBP, OSBP-related proteins (ORP), and Goodpasture antigen binding protein (GPBP). They have a wide range of purported functions including sterol transport, cell cycle control, pollen development and vessicle transport from Golgi recognize both PI lipids and ARF proteins. FAPP2 (also called PLEKHA8/Pleckstrin homology domain-containing, family A member 8), a member of the Glycolipid lipid transfer protein(GLTP) family has an N-terminal PH domain that targets the TGN and C-terminal GLTP domain. FAPP2 functions to traffic glucosylceramide (GlcCer) which is made in the Golgi. It's interaction with vesicle-associated membrane protein-associated protein (VAP) could be a means of regulation. Some FAPP2s share the FFAT-like motifs found in GLTP. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 269951  Cd Length: 100  Bit Score: 224.21  E-value: 9.94e-72
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 55250041   1 MEGVLYKWTNYISGWQPRWFVLEGGTLSYYDSQEDAWKGCKGSIKISVCEIQVHPSDFTRVDLIIPGEQYFYLRAINAAE 80
Cdd:cd01247   1 MEGVLWKWTNYLSGWQPRWFVLDDGVLSYYKSQEEVNQGCKGSVKMSVCEIIVHPTDPTRMDLIIPGEQHFYLKASSAAE 80
                        90       100
                ....*....|....*....|
gi 55250041  81 RQKWLVALGTAKACLTDNRT 100
Cdd:cd01247  81 RQRWLVALGSAKACLTDTRA 100
GLTP pfam08718
Glycolipid transfer protein (GLTP); GLTP is a cytosolic protein that catalyzes the ...
360-498 4.93e-52

Glycolipid transfer protein (GLTP); GLTP is a cytosolic protein that catalyzes the intermembrane transfer of glycolipids.


Pssm-ID: 462575  Cd Length: 140  Bit Score: 173.84  E-value: 4.93e-52
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 55250041   360 IPTQAFLDSCYAIVPVLDKLGPtVFAPVKIDFVGNIKKIQQKVVSDPESFPTLQSIVLHEVKTEVAQVR-NSATEALLWL 438
Cdd:pfam08718   1 IDTEPFLEACRELVKFFDLLGS-AFSFVKSDIVGNIKKLRERYEADPEKYSTLQDMVEKEKEAGTVKKKkGSATRALLWL 79
                          90       100       110       120       130       140
                  ....*....|....*....|....*....|....*....|....*....|....*....|.
gi 55250041   439 KRGLKFLKEFLSEI-NTGVKDVQGALYNAYGKTLRQYHGWVVRGVFALALRAAPSYEGFMA 498
Cdd:pfam08718  80 KRGLEFIALFLERLlANPDESLSDAASKAYNKTLAPYHGWIVRKAFSVAMKALPSRKDFLA 140
PH_GPBP cd13283
Goodpasture antigen binding protein Pleckstrin homology (PH) domain; The GPBP (also called ...
1-93 2.69e-35

Goodpasture antigen binding protein Pleckstrin homology (PH) domain; The GPBP (also called Collagen type IV alpha-3-binding protein/hCERT; START domain-containing protein 11/StARD11; StAR-related lipid transfer protein 11) is a kinase that phosphorylates an N-terminal region of the alpha 3 chain of type IV collagen, which is commonly known as the goodpasture antigen. Its splice variant the ceramide transporter (CERT) mediates the cytosolic transport of ceramide. There have been additional splice variants identified, but all of them function as ceramide transport proteins. GPBP and CERT both contain an N-terminal PH domain, followed by a serine rich domain, and a C-terminal START domain. However, GPBP has an additional serine rich domain just upstream of its START domain. They are members of the oxysterol binding protein (OSBP) family which includes OSBP, OSBP-related proteins (ORP), Goodpasture antigen binding protein (GPBP), and Four phosphate adaptor protein 1 (FAPP1). They have a wide range of purported functions including sterol transport, cell cycle control, pollen development and vessicle transport from Golgi recognize both PI lipids and ARF proteins. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270100 [Multi-domain]  Cd Length: 100  Bit Score: 127.79  E-value: 2.69e-35
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 55250041   1 MEGVLYKWTNYISGWQPRWFVLEGGTLSYYDSQEDAWKGCKGSIKISVCEIQVHPSDFTRVDLIIpGEQYFYLRAINAAE 80
Cdd:cd13283   1 LRGVLSKWTNYIHGWQDRYFVLKDGTLSYYKSESEKEYGCRGSISLSKAVIKPHEFDECRFDVSV-NDSVWYLRAESPEE 79
                        90
                ....*....|...
gi 55250041  81 RQKWLVALGTAKA 93
Cdd:cd13283  80 RQRWIDALESHKA 92
PH_OSBP_ORP4 cd13284
Human Oxysterol binding protein and OSBP-related protein 4 Pleckstrin homology (PH) domain; ...
1-93 2.24e-27

Human Oxysterol binding protein and OSBP-related protein 4 Pleckstrin homology (PH) domain; Human OSBP is proposed to function is sterol-dependent regulation of ERK dephosphorylation and sphingomyelin synthesis as well as modulation of insulin signaling and hepatic lipogenesis. It contains a N-terminal PH domain, a FFAT motif (two phenylalanines in an acidic tract), and a C-terminal OSBP-related domain. OSBPs and Osh1p PH domains specifically localize to the Golgi apparatus in a PtdIns4P-dependent manner. ORP4 is proposed to function in Vimentin-dependent sterol transport and/or signaling. Human ORP4 has 2 forms, a long (ORP4L) and a short (ORP4S). ORP4L contains a N-terminal PH domain, a FFAT motif (two phenylalanines in an acidic tract), and a C-terminal OSBP-related domain. ORP4S is truncated and contains only an OSBP-related domain. Oxysterol binding proteins are a multigene family that is conserved in yeast, flies, worms, mammals and plants. They all contain a C-terminal oxysterol binding domain, and most contain an N-terminal PH domain. OSBP PH domains bind to membrane phosphoinositides and thus likely play an important role in intracellular targeting. They are members of the oxysterol binding protein (OSBP) family which includes OSBP, OSBP-related proteins (ORP), Goodpasture antigen binding protein (GPBP), and Four phosphate adaptor protein 1 (FAPP1). They have a wide range of purported functions including sterol transport, cell cycle control, pollen development and vessicle transport from Golgi recognize both PI lipids and ARF proteins. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270101  Cd Length: 99  Bit Score: 105.92  E-value: 2.24e-27
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 55250041   1 MEGVLYKWTNYISGWQPRWFVLEGGTLSYYDSQEDAWKGCKGSIKISVCEIQVHPSdftrVDLIIP--GEQYFYLRAINA 78
Cdd:cd13284   1 MKGWLLKWTNYIKGYQRRWFVLSNGLLSYYRNQAEMAHTCRGTINLAGAEIHTEDS----CNFVISngGTQTFHLKASSE 76
                        90
                ....*....|....*
gi 55250041  79 AERQKWLVALGTAKA 93
Cdd:cd13284  77 VERQRWVTALELAKA 91
PH_Osh1p_Osh2p_yeast cd13292
Yeast oxysterol binding protein homologs 1 and 2 Pleckstrin homology (PH) domain; Yeast Osh1p ...
1-97 6.39e-26

Yeast oxysterol binding protein homologs 1 and 2 Pleckstrin homology (PH) domain; Yeast Osh1p is proposed to function in postsynthetic sterol regulation, piecemeal microautophagy of the nucleus, and cell polarity establishment. Yeast Osh2p is proposed to function in sterol metabolism and cell polarity establishment. Both Osh1p and Osh2p contain 3 N-terminal ankyrin repeats, a PH domain, a FFAT motif (two phenylalanines in an acidic tract), and a C-terminal OSBP-related domain. OSBP andOsh1p PH domains specifically localize to the Golgi apparatus in a PtdIns4P-dependent manner. Oxysterol binding proteins are a multigene family that is conserved in yeast, flies, worms, mammals and plants. In general OSBPs and ORPs have been found to be involved in the transport and metabolism of cholesterol and related lipids in eukaryotes. They all contain a C-terminal oxysterol binding domain, and most contain an N-terminal PH domain. OSBP PH domains bind to membrane phosphoinositides and thus likely play an important role in intracellular targeting. They are members of the oxysterol binding protein (OSBP) family which includes OSBP, OSBP-related proteins (ORP), Goodpasture antigen binding protein (GPBP), and Four phosphate adaptor protein 1 (FAPP1). They have a wide range of purported functions including sterol transport, cell cycle control, pollen development and vessicle transport from Golgi recognize both PI lipids and ARF proteins. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 241446  Cd Length: 103  Bit Score: 102.00  E-value: 6.39e-26
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 55250041   1 MEGVLYKWTNYISGWQPRWFVLEGGTLSYYDSQEDAWKGCKGSIKISVCEIQVHPSDFTRVDLI--IPGEQYFYLRAINA 78
Cdd:cd13292   4 MKGYLKKWTNYAKGYKTRWFVLEDGVLSYYRHQDDEGSACRGSINMKNARLVSDPSEKLRFEVSskTSGSPKWYLKANHP 83
                        90
                ....*....|....*....
gi 55250041  79 AERQKWLVALGTAKACLTD 97
Cdd:cd13292  84 VEAARWIQALQKAIEWAKD 102
PH cd00821
Pleckstrin homology (PH) domain; PH domains have diverse functions, but in general are ...
1-88 2.65e-17

Pleckstrin homology (PH) domain; PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 275388 [Multi-domain]  Cd Length: 92  Bit Score: 77.20  E-value: 2.65e-17
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 55250041   1 MEGVLYKWTNY-ISGWQPRWFVLEGGTLSYYDSQEDAWKGCKGSIKIS-VCEIQVHPSDFTRV--DLIIPGEQYFYLRAI 76
Cdd:cd00821   1 KEGYLLKRGGGgLKSWKKRWFVLFEGVLLYYKSKKDSSYKPKGSIPLSgILEVEEVSPKERPHcfELVTPDGRTYYLQAD 80
                        90
                ....*....|..
gi 55250041  77 NAAERQKWLVAL 88
Cdd:cd00821  81 SEEERQEWLKAL 92
PH_CpORP2-like cd13293
Cryptosporidium-like Oxysterol binding protein related protein 2 Pleckstrin homology (PH) ...
1-88 5.56e-17

Cryptosporidium-like Oxysterol binding protein related protein 2 Pleckstrin homology (PH) domain; There are 2 types of ORPs found in Cryptosporidium: CpORP1 and CpORP2. Cryptosporium differs from other apicomplexans like Plasmodium, Toxoplasma, and Eimeria which possess only a single long-type ORP consisting of an N-terminal PH domain followed by a C-terminal ligand binding (LB) domain. CpORP2 is like this, but CpORP1 differs and has a truncated N-terminus resulting in only having a LB domain present. The exact functions of these proteins are largely unknown though CpORP1 is thought to be involved in lipid transport across the parasitophorous vacuole membrane. Oxysterol binding proteins are a multigene family that is conserved in yeast, flies, worms, mammals and plants. In general OSBPs and ORPs have been found to be involved in the transport and metabolism of cholesterol and related lipids in eukaryotes. They all contain a C-terminal oxysterol binding domain, and most contain an N-terminal PH domain. OSBP PH domains bind to membrane phosphoinositides and thus likely play an important role in intracellular targeting. They are members of the oxysterol binding protein (OSBP) family which includes OSBP, OSBP-related proteins (ORP), Goodpasture antigen binding protein (GPBP), and Four phosphate adaptor protein 1 (FAPP1). They have a wide range of purported functions including sterol transport, cell cycle control, pollen development and vessicle transport from Golgi recognize both PI lipids and ARF proteins. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 241447  Cd Length: 88  Bit Score: 75.83  E-value: 5.56e-17
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 55250041   1 MEGVLYKWTNYISGWQPRWFVLEGGTLsYYDSQEDAWKgcKGSIKISVCEIQVHPSDFTRVDlIIPGEQYFYLRAINAAE 80
Cdd:cd13293   1 MEGYLKKWTNIFNSWKPRYFILYPGIL-CYSKQKGGPK--KGTIHLKICDIRLVPDDPLRII-INTGTNQLHLRASSVEE 76

                ....*...
gi 55250041  81 RQKWLVAL 88
Cdd:cd13293  77 KLKWYNAL 84
PH_ORP9 cd13290
Human Oxysterol binding protein related protein 9 Pleckstrin homology (PH) domain; Human ORP9 ...
1-88 8.14e-17

Human Oxysterol binding protein related protein 9 Pleckstrin homology (PH) domain; Human ORP9 is proposed to function in regulation of Akt phosphorylation. ORP9 has 2 forms, a long (ORP9L) and a short (ORP9S). ORP9L contains an N-terminal PH domain, a FFAT motif (two phenylalanines in an acidic tract), and a C-terminal OSBP-related domain. ORP1S is truncated and contains a FFAT motif and an OSBP-related domain. Oxysterol binding proteins are a multigene family that is conserved in yeast, flies, worms, mammals and plants. In general OSBPs and ORPs have been found to be involved in the transport and metabolism of cholesterol and related lipids in eukaryotes. They all contain a C-terminal oxysterol binding domain, and most contain an N-terminal PH domain. OSBP PH domains bind to membrane phosphoinositides and thus likely play an important role in intracellular targeting. They are members of the oxysterol binding protein (OSBP) family which includes OSBP, OSBP-related proteins (ORP), Goodpasture antigen binding protein (GPBP), and Four phosphate adaptor protein 1 (FAPP1). They have a wide range of purported functions including sterol transport, cell cycle control, pollen development and vessicle transport from Golgi recognize both PI lipids and ARF proteins. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 241444  Cd Length: 102  Bit Score: 75.94  E-value: 8.14e-17
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 55250041   1 MEGVLYKWTNYISGWQPRWFVLE--GGTLSYYDSQEDAWKGC-KGSIKISVCEIQVHPSD---FT-RVDliipgEQYFYL 73
Cdd:cd13290   1 MEGPLSKWTNVMKGWQYRWFVLDdnAGLLSYYTSKEKMMRGSrRGCVRLKGAVVGIDDEDdstFTiTVD-----QKTFHF 75
                        90
                ....*....|....*
gi 55250041  74 RAINAAERQKWLVAL 88
Cdd:cd13290  76 QARDAEERERWIRAL 90
PH_ORP10_ORP11 cd13291
Human Oxysterol binding protein (OSBP) related proteins 10 and 11 (ORP10 and ORP11) Pleckstrin ...
1-84 1.25e-15

Human Oxysterol binding protein (OSBP) related proteins 10 and 11 (ORP10 and ORP11) Pleckstrin homology (PH) domain; Human ORP10 is involvedt in intracellular transport or organelle positioning and is proposed to function as a regulator of cellular lipid metabolism. Human ORP11 localizes at the Golgi-late endosome interface and is thought to form a dimer with ORP9 functioning as an intracellular lipid sensor or transporter. Both ORP10 and ORP11 contain a N-terminal PH domain, a FFAT motif (two phenylalanines in an acidic tract), and a C-terminal OSBP-related domain. Oxysterol binding proteins are a multigene family that is conserved in yeast, flies, worms, mammals and plants. In general OSBPs and ORPs have been found to be involved in the transport and metabolism of cholesterol and related lipids in eukaryotes. They all contain a C-terminal oxysterol binding domain, and most contain an N-terminal PH domain. OSBP PH domains bind to membrane phosphoinositides and thus likely play an important role in intracellular targeting. They are members of the oxysterol binding protein (OSBP) family which includes OSBP, OSBP-related proteins (ORP), Goodpasture antigen binding protein (GPBP), and Four phosphate adaptor protein 1 (FAPP1). They have a wide range of purported functions including sterol transport, cell cycle control, pollen development and vessicle transport from Golgi recognize both PI lipids and ARF proteins. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270106  Cd Length: 107  Bit Score: 72.71  E-value: 1.25e-15
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 55250041   1 MEGVLYKWTNYISGWQPRWFVL--EGGTLSYYDSQEDAWKGCKGSIKISVCEIQvhPSDFTRVDLII---PGEQYfYLRA 75
Cdd:cd13291   1 LEGQLLKYTNVVKGWQNRWFVLdpDTGILEYFLSEESKNQKPRGSLSLAGAVIS--PSDEDSHTFTVnaaNGEMY-KLRA 77

                ....*....
gi 55250041  76 INAAERQKW 84
Cdd:cd13291  78 ADAKERQEW 86
PH smart00233
Pleckstrin homology domain; Domain commonly found in eukaryotic signalling proteins. The ...
1-93 4.30e-15

Pleckstrin homology domain; Domain commonly found in eukaryotic signalling proteins. The domain family possesses multiple functions including the abilities to bind inositol phosphates, and various proteins. PH domains have been found to possess inserted domains (such as in PLC gamma, syntrophins) and to be inserted within other domains. Mutations in Brutons tyrosine kinase (Btk) within its PH domain cause X-linked agammaglobulinaemia (XLA) in patients. Point mutations cluster into the positively charged end of the molecule around the predicted binding site for phosphatidylinositol lipids.


Pssm-ID: 214574 [Multi-domain]  Cd Length: 102  Bit Score: 71.04  E-value: 4.30e-15
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 55250041      1 MEGVLYKWT-NYISGWQPRWFVLEGGTLSYYDSQEDAWKG-CKGSIKISVCEIQVHPSDFTRVD-----LIIPGEQYFYL 73
Cdd:smart00233   3 KEGWLYKKSgGGKKSWKKRYFVLFNSTLLYYKSKKDKKSYkPKGSIDLSGCTVREAPDPDSSKKphcfeIKTSDRKTLLL 82
                           90       100
                   ....*....|....*....|
gi 55250041     74 RAINAAERQKWLVALGTAKA 93
Cdd:smart00233  83 QAESEEEREKWVEALRKAIA 102
PH_ORP_plant cd13294
Plant Oxysterol binding protein related protein Pleckstrin homology (PH) domain; Plant ORPs ...
3-92 1.07e-14

Plant Oxysterol binding protein related protein Pleckstrin homology (PH) domain; Plant ORPs contain a N-terminal PH domain and a C-terminal OSBP-related domain. Not much is known about its specific function in plants to date. Members here include: Arabidopsis, spruce, and petunia. Oxysterol binding proteins are a multigene family that is conserved in yeast, flies, worms, mammals and plants. In general OSBPs and ORPs have been found to be involved in the transport and metabolism of cholesterol and related lipids in eukaryotes. They all contain a C-terminal oxysterol binding domain, and most contain an N-terminal PH domain. OSBP PH domains bind to membrane phosphoinositides and thus likely play an important role in intracellular targeting. They are members of the oxysterol binding protein (OSBP) family which includes OSBP, OSBP-related proteins (ORP), Goodpasture antigen binding protein (GPBP), and Four phosphate adaptor protein 1 (FAPP1). They have a wide range of purported functions including sterol transport, cell cycle control, pollen development and vessicle transport from Golgi recognize both PI lipids and ARF proteins. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 241448  Cd Length: 100  Bit Score: 69.83  E-value: 1.07e-14
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 55250041   3 GVLYKWTNYISGWQPRWFVLEGGTLSYYDSQEDAWKGCKGSIKISVCEIQVHPSDFTRVdLIIPGEQYFYLRAINAAERQ 82
Cdd:cd13294   3 GILYKWVNYGKGWRSRWFVLQDGVLSYYKVHGPDKVKPSGEVHLKVSSIRESRSDDKKF-YIFTGTKTLHLRAESREDRA 81
                        90
                ....*....|
gi 55250041  83 KWLVALGTAK 92
Cdd:cd13294  82 AWLEALQAAK 91
PH pfam00169
PH domain; PH stands for pleckstrin homology.
1-88 7.24e-11

PH domain; PH stands for pleckstrin homology.


Pssm-ID: 459697 [Multi-domain]  Cd Length: 105  Bit Score: 59.11  E-value: 7.24e-11
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 55250041     1 MEGVLYKWTNYI-SGWQPRWFVLEGGTLSYY-DSQEDAWKGCKGSIKISVCEIQVHPSDFT---------RVDLIIPGEQ 69
Cdd:pfam00169   3 KEGWLLKKGGGKkKSWKKRYFVLFDGSLLYYkDDKSGKSKEPKGSISLSGCEVVEVVASDSpkrkfcfelRTGERTGKRT 82
                          90
                  ....*....|....*....
gi 55250041    70 YfYLRAINAAERQKWLVAL 88
Cdd:pfam00169  83 Y-LLQAESEEERKDWIKAI 100
PH_Sbf1_hMTMR5 cd01235
Set binding factor 1 (also called Human MTMR5) Pleckstrin Homology (PH) domain; Sbf1 is a ...
1-84 2.67e-10

Set binding factor 1 (also called Human MTMR5) Pleckstrin Homology (PH) domain; Sbf1 is a myotubularin-related pseudo-phosphatase. Both Sbf1 and myotubularin interact with the SET domains of Hrx and other epigenetic regulatory proteins, but Sbf1 lacks phosphatase activity due to several amino acid changes in its structurally preserved catalytic pocket. It contains pleckstrin (PH), GEF, and myotubularin homology domains that are thought to be responsible for signaling and growth control. Sbf1 functions as an inhibitor of cellular growth. The N-terminal GEF homology domain serves to inhibit the transforming effects of Sbf1. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 269941  Cd Length: 106  Bit Score: 57.73  E-value: 2.67e-10
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 55250041   1 MEGVLYKWTNYISGWQPRWFVL--EGGTLSYYDSQEDawKGCKGSIKISVCE----------IQVHPSDFTRVDLIIpGE 68
Cdd:cd01235   5 HEGYLYKRGALLKGWKQRWFVLdsTKHQLRYYESRED--TKCKGFIDLAEVEsvtpatpiigAPKRADEGAFFDLKT-NK 81
                        90
                ....*....|....*.
gi 55250041  69 QYFYLRAINAAERQKW 84
Cdd:cd01235  82 RVYNFCAFDAESAQQW 97
PH1_PLEKHH1_PLEKHH2 cd13282
Pleckstrin homology (PH) domain containing, family H (with MyTH4 domain) members 1 and 2 ...
2-88 1.45e-08

Pleckstrin homology (PH) domain containing, family H (with MyTH4 domain) members 1 and 2 (PLEKHH1) PH domain, repeat 1; PLEKHH1 and PLEKHH2 (also called PLEKHH1L) are thought to function in phospholipid binding and signal transduction. There are 3 Human PLEKHH genes: PLEKHH1, PLEKHH2, and PLEKHH3. There are many isoforms, the longest of which contain a FERM domain, a MyTH4 domain, two PH domains, a peroximal domain, a vacuolar domain, and a coiled coil stretch. The FERM domain has a cloverleaf tripart structure (FERM_N, FERM_M, FERM_C/N, alpha-, and C-lobe/A-lobe, B-lobe, C-lobe/F1, F2, F3). The C-lobe/F3 within the FERM domain is part of the PH domain family. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 241436  Cd Length: 96  Bit Score: 52.30  E-value: 1.45e-08
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 55250041   2 EGVLYKWTNYISGWQPRWFVLEGGTLSYYDSQEDAWKGCKGSIKI-SVCEIQvhPSDFTRVDLIIPGEQYFYLRAINAAE 80
Cdd:cd13282   2 AGYLTKLGGKVKTWKRRWFVLKNGELFYYKSPNDVIRKPQGQIALdGSCEIA--RAEGAQTFEIVTEKRTYYLTADSEND 79

                ....*...
gi 55250041  81 RQKWLVAL 88
Cdd:cd13282  80 LDEWIRVI 87
PH1_ARAP cd13253
ArfGAP with RhoGAP domain, ankyrin repeat and PH domain Pleckstrin homology (PH) domain, ...
14-88 2.38e-08

ArfGAP with RhoGAP domain, ankyrin repeat and PH domain Pleckstrin homology (PH) domain, repeat 1; ARAP proteins (also called centaurin delta) are phosphatidylinositol 3,4,5-trisphosphate-dependent GTPase-activating proteins that modulate actin cytoskeleton remodeling by regulating ARF and RHO family members. They bind phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P3) and phosphatidylinositol 3,4-bisphosphate (PtdIns(3,4,5)P2) binding. There are 3 mammalian ARAP proteins: ARAP1, ARAP2, and ARAP3. All ARAP proteins contain a N-terminal SAM (sterile alpha motif) domain, 5 PH domains, an ArfGAP domain, 2 ankyrin domain, A RhoGap domain, and a Ras-associating domain. This hierarchy contains the first PH domain in ARAP. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270073  Cd Length: 94  Bit Score: 51.62  E-value: 2.38e-08
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*
gi 55250041  14 GWQPRWFVLEGGTLSYYDSQEDAWKgcKGSIKISVCEIQVHPSDFtRVDLIIpGEQYFYLRAINAAERQKWLVAL 88
Cdd:cd13253  17 GFQKRWVVFDGLSLRYFDSEKDAYS--KRIIPLSAISTVRAVGDN-KFELVT-TNRTFVFRAESDDERNLWCSTL 87
PH_ORP1 cd13285
Human Oxysterol binding protein related protein 1 Pleckstrin homology (PH) domain; Human ORP1 ...
2-88 4.03e-07

Human Oxysterol binding protein related protein 1 Pleckstrin homology (PH) domain; Human ORP1 has 2 forms, a long (ORP1L) and a short (ORP1S). ORP1L contains 3 N-terminal ankyrin repeats, followed by a PH domain, a FFAT motif (two phenylalanines in an acidic tract), and a C-terminal OSBP-related domain. ORP1S is truncated and contains only an OSBP-related domain. ORP1L is proposed to function in motility and distribution of late endosomes, autophagy, and macrophage lipid metabolism. ORP1S is proposed to function in vesicle transport from Golgi. Oxysterol binding proteins are a multigene family that is conserved in yeast, flies, worms, mammals and plants. In general OSBPs and ORPs have been found to be involved in the transport and metabolism of cholesterol and related lipids in eukaryotes. They all contain a C-terminal oxysterol binding domain, and most contain an N-terminal PH domain. OSBP PH domains bind to membrane phosphoinositides and thus likely play an important role in intracellular targeting. They are members of the oxysterol binding protein (OSBP) family which includes OSBP, OSBP-related proteins (ORP), Goodpasture antigen binding protein (GPBP), and Four phosphate adaptor protein 1 (FAPP1). They have a wide range of purported functions including sterol transport, cell cycle control, pollen development and vessicle transport from Golgi recognize both PI lipids and ARF proteins. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270102  Cd Length: 125  Bit Score: 48.93  E-value: 4.03e-07
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 55250041   2 EGVLYKWTNYIsGWQPRWFVLEGGTLSYYDSQEDAW-----KGCKgSIKISVCEIQVHPSDFTRVDLIIPGEQYFYLRAI 76
Cdd:cd13285  11 EGQLWKSSRFF-GWRSYWVVLEDGVLSWYHKQADAAagikrQGCK-SLTQAKCTVKSTDSCFFTIRCFDDTVHRFKVPPK 88
                        90
                ....*....|....
gi 55250041  77 N--AAERQKWLVAL 88
Cdd:cd13285  89 NnpVVTRKKWLEAL 102
PH_Btk cd01238
Bruton's tyrosine kinase pleckstrin homology (PH) domain; Btk is a member of the Tec family of ...
15-104 4.32e-07

Bruton's tyrosine kinase pleckstrin homology (PH) domain; Btk is a member of the Tec family of cytoplasmic protein tyrosine kinases that includes BMX, IL2-inducible T-cell kinase (Itk) and Tec. Btk plays a role in the maturation of B cells. Tec proteins general have an N-terminal PH domain, followed by a Tek homology (TH) domain, a SH3 domain, a SH2 domain and a kinase domain. The Btk PH domain binds phosphatidylinositol 3,4,5-trisphosphate and responds to signalling via phosphatidylinositol 3-kinase. The PH domain is also involved in membrane anchoring which is confirmed by the discovery of a mutation of a critical arginine residue in the BTK PH domain. This results in severe human immunodeficiency known as X-linked agammaglobulinemia (XLA) in humans and a related disorder is mice.PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 269944 [Multi-domain]  Cd Length: 140  Bit Score: 49.15  E-value: 4.32e-07
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 55250041  15 WQPRWFVLEGGTLSYYDSQEDAWKGCKGSI---KISVCEIqVHPSDFTRVDL---IIPGEQYFYLRAINAAERQKWLVAL 88
Cdd:cd01238  20 YKERWFVLTKSSLSYYEGDGEKRGKEKGSIdlsKVRCVEE-VKDEAFFERKYpfqVVYDDYTLYVFAPSEEDRDEWIAAL 98
                        90
                ....*....|....*.
gi 55250041  89 gtaKACLTDNRTKREK 104
Cdd:cd01238  99 ---RKVCRNNSNLHDK 111
PH1_Pleckstrin_2 cd13301
Pleckstrin 2 Pleckstrin homology (PH) domain, repeat 1; Pleckstrin is a protein found in ...
2-95 6.83e-07

Pleckstrin 2 Pleckstrin homology (PH) domain, repeat 1; Pleckstrin is a protein found in platelets. This name is derived from platelet and leukocyte C kinase substrate and the KSTR string of amino acids. Pleckstrin 2 contains two PH domains and a DEP (dishvelled, egl-10, and pleckstrin) domain. Unlike pleckstrin 1, pleckstrin 2 does not contain obvious sites of PKC phosphorylation. Pleckstrin 2 plays a role in actin rearrangement, large lamellipodia and peripheral ruffle formation, and may help orchestrate cytoskeletal arrangement. The PH domains of pleckstrin 2 are thought to contribute to lamellipodia formation. This cd contains the first PH domain repeat. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270113  Cd Length: 108  Bit Score: 47.75  E-value: 6.83e-07
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 55250041   2 EGVLYKWTNYISGWQPRWFVLEGGTLSYYDSQEDAWKgcKGSIKISVCEIQVHPSDFTRVDLII-----PGEQYFyLRAI 76
Cdd:cd13301   6 EGYLVKKGHVVNNWKARWFVLKEDGLEYYKKKTDSSP--KGMIPLKGCTITSPCLEYGKRPLVFklttaKGQEHF-FQAC 82
                        90
                ....*....|....*....
gi 55250041  77 NAAERQKWLVALGTAKACL 95
Cdd:cd13301  83 SREERDAWAKDITKAITCL 101
PH2_MyoX cd13296
Myosin X Pleckstrin homology (PH) domain, repeat 2; MyoX, a MyTH-FERM myosin, is a molecular ...
15-88 9.26e-07

Myosin X Pleckstrin homology (PH) domain, repeat 2; MyoX, a MyTH-FERM myosin, is a molecular motor that has crucial functions in the transport and/or tethering of integrins in the actin-based extensions known as filopodia, microtubule binding, and in netrin-mediated axon guidance. It functions as a dimer. MyoX walks on bundles of actin, rather than single filaments, unlike the other unconventional myosins. MyoX is present in organisms ranging from humans to choanoflagellates, but not in Drosophila and Caenorhabditis elegans.MyoX consists of a N-terminal motor/head region, a neck made of 3 IQ motifs, and a tail consisting of a coiled-coil domain, a PEST region, 3 PH domains, a myosin tail homology 4 (MyTH4), and a FERM domain at its very C-terminus. The first PH domain in the MyoX tail is a split-PH domain, interupted by the second PH domain such that PH 1a and PH 1b flanks PH 2. The third PH domain (PH 3) follows the PH 1b domain. This cd contains the second PH repeat. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270108  Cd Length: 103  Bit Score: 47.46  E-value: 9.26e-07
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*.
gi 55250041  15 WQPRWFVLEGGTLSYYDSQEDAWKgCKGSIKI--SVCEIQVHPSDfTRVDLIIPGEQYfYLRAINAAERQKWLVAL 88
Cdd:cd13296  20 WKSRWFVLRDTVLKYYENDQEGEK-LLGTIDIrsAKEIVDNDPKE-NRLSITTEERTY-HLVAESPEDASQWVNVL 92
PH_RASA1 cd13260
RAS p21 protein activator (GTPase activating protein) 1 Pleckstrin homology (PH) domain; RASA1 ...
1-89 9.99e-07

RAS p21 protein activator (GTPase activating protein) 1 Pleckstrin homology (PH) domain; RASA1 (also called RasGap1 or p120) is a member of the RasGAP family of GTPase-activating proteins. RASA1 contains N-terminal SH2-SH3-SH2 domains, followed by two C2 domains, a PH domain, a RasGAP domain, and a BTK domain. Splice variants lack the N-terminal domains. It is a cytosolic vertebrate protein that acts as a suppressor of RAS via its C-terminal GAP domain function, enhancing the weak intrinsic GTPase activity of RAS proteins resulting in the inactive GDP-bound form of RAS, allowing control of cellular proliferation and differentiation. Additionally, it is involved in mitogenic signal transmission towards downstream interacting partners through its N-terminal SH2-SH3-SH2 domains. RASA1 interacts with a number of proteins including: G3BP1, SOCS3, ANXA6, Huntingtin, KHDRBS1, Src, EPHB3, EPH receptor B2, Insulin-like growth factor 1 receptor, PTK2B, DOK1, PDGFRB, HCK, Caveolin 2, DNAJA3, HRAS, GNB2L1 and NCK1. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270080  Cd Length: 103  Bit Score: 47.34  E-value: 9.99e-07
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 55250041   1 MEGVLYKWTNYISGWQPRWFVLEGGT--LSYYDSqEDAWKGcKGSIKISVCEI-QVHPSDFTR------VDLIIPGEQYF 71
Cdd:cd13260   5 KKGYLLKKGGKNKKWKNLYFVLEGKEqhLYFFDN-EKRTKP-KGLIDLSYCSLyPVHDSLFGRpncfqiVVRALNESTIT 82
                        90
                ....*....|....*...
gi 55250041  72 YLRAINAAERQKWLVALG 89
Cdd:cd13260  83 YLCADTAELAQEWMRALR 100
PH_Osh3p_yeast cd13289
Yeast oxysterol binding protein homolog 3 Pleckstrin homology (PH) domain; Yeast Osh3p is ...
14-88 1.83e-06

Yeast oxysterol binding protein homolog 3 Pleckstrin homology (PH) domain; Yeast Osh3p is proposed to function in sterol transport and regulation of nuclear fusion during mating and of pseudohyphal growth as well as sphingolipid metabolism. Osh3 contains a N-GOLD (Golgi dynamics) domain, a PH domain, a FFAT motif (two phenylalanines in an acidic tract), and a C-terminal OSBP-related domain. GOLD domains are thought to mediate protein-protein interactions, but their role in ORPs are unknown. Oxysterol binding proteins are a multigene family that is conserved in yeast, flies, worms, mammals and plants. In general OSBPs and ORPs have been found to be involved in the transport and metabolism of cholesterol and related lipids in eukaryotes. They all contain a C-terminal oxysterol binding domain, and most contain an N-terminal PH domain. OSBP PH domains bind to membrane phosphoinositides and thus likely play an important role in intracellular targeting. They are members of the oxysterol binding protein (OSBP) family which includes OSBP, OSBP-related proteins (ORP), Goodpasture antigen binding protein (GPBP), and Four phosphate adaptor protein 1 (FAPP1). They have a wide range of purported functions including sterol transport, cell cycle control, pollen development and vessicle transport from Golgi recognize both PI lipids and ARF proteins. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 241443  Cd Length: 90  Bit Score: 46.10  E-value: 1.83e-06
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*..
gi 55250041  14 GWQPRWFVL--EGGTLSYYDSQEDAwkgCKGSIKISVCEIQVHPSdfTRVDLIIPGEQYFYLRAINAAERQKWLVAL 88
Cdd:cd13289  16 GFARRYFVLnfKYGTLSYYFNPNSP---VRGQIPLRLASISASPR--RRTIHIDSGSEVWHLKALNDEDFQAWMKAL 87
PH_TAAP2-like cd13255
Tandem PH-domain-containing protein 2 Pleckstrin homology (PH) domain; The binding of TAPP2 ...
15-100 2.23e-06

Tandem PH-domain-containing protein 2 Pleckstrin homology (PH) domain; The binding of TAPP2 (also called PLEKHA2) adaptors to PtdIns(3,4)P(2), but not PI(3,4, 5)P3, function as negative regulators of insulin and PI3K signalling pathways (i.e. TAPP/utrophin/syntrophin complex). TAPP2 contains two sequential PH domains in which the C-terminal PH domain specifically binds PtdIns(3,4)P2 with high affinity. The N-terminal PH domain does not interact with any phosphoinositide tested. They also contain a C-terminal PDZ-binding motif that interacts with several PDZ-binding proteins, including PTPN13 (known previously as PTPL1 or FAP-1) as well as the scaffolding proteins MUPP1 (multiple PDZ-domain-containing protein 1), syntrophin and utrophin. The members here are most sequence similar to TAPP2 proteins, but may not be actual TAPP2 proteins. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270075  Cd Length: 110  Bit Score: 46.64  E-value: 2.23e-06
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 55250041  15 WQPRWFVLEGGTLSYYDSQEDaWKGCK----GSIKiSVCEIQVHPSDFTrVDLIIPgEQYFYLRAINAAERQKWLVALGT 90
Cdd:cd13255  22 WKKRWFVLRPTKLAYYKNDKE-YRLLRlidlTDIH-TCTEVQLKKHDNT-FGIVTP-ARTFYVQADSKAEMESWISAINL 97
                        90
                ....*....|
gi 55250041  91 AKACLTDNRT 100
Cdd:cd13255  98 ARQALRATIT 107
PH_RhoGap25-like cd13263
Rho GTPase activating protein 25 and related proteins Pleckstrin homology (PH) domain; ...
3-84 4.50e-06

Rho GTPase activating protein 25 and related proteins Pleckstrin homology (PH) domain; RhoGAP25 (also called ArhGap25) like other RhoGaps are involved in cell polarity, cell morphology and cytoskeletal organization. They act as GTPase activators for the Rac-type GTPases by converting them to an inactive GDP-bound state and control actin remodeling by inactivating Rac downstream of Rho leading to suppress leading edge protrusion and promotes cell retraction to achieve cellular polarity and are able to suppress RAC1 and CDC42 activity in vitro. Overexpression of these proteins induces cell rounding with partial or complete disruption of actin stress fibers and formation of membrane ruffles, lamellipodia, and filopodia. This hierarchy contains RhoGAP22, RhoGAP24, and RhoGAP25. Members here contain an N-terminal PH domain followed by a RhoGAP domain and either a BAR or TATA Binding Protein (TBP) Associated Factor 4 (TAF4) domain. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270083  Cd Length: 114  Bit Score: 45.84  E-value: 4.50e-06
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 55250041   3 GVLYKWTNYISGWQPRWFVLEGGTLSYYDSQEDawKGCKGSIKISVCEIQVHPSDFTRVDL----IIPG---------EQ 69
Cdd:cd13263   7 GWLKKQGSIVKNWQQRWFVLRGDQLYYYKDEDD--TKPQGTIPLPGNKVKEVPFNPEEPGKflfeIIPGgggdrmtsnHD 84
                        90
                ....*....|....*
gi 55250041  70 YFYLRAINAAERQKW 84
Cdd:cd13263  85 SYLLMANSQAEMEEW 99
PH_AtPH1 cd13276
Arabidopsis thaliana Pleckstrin homolog (PH) 1 (AtPH1) PH domain; AtPH1 is expressed in all ...
2-91 2.36e-05

Arabidopsis thaliana Pleckstrin homolog (PH) 1 (AtPH1) PH domain; AtPH1 is expressed in all plant tissue and is proposed to be the plant homolog of human pleckstrin. Pleckstrin consists of two PH domains separated by a linker region, while AtPH has a single PH domain with a short N-terminal extension. AtPH1 binds PtdIns3P specifically and is thought to be an adaptor molecule since it has no obvious catalytic functions. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270095  Cd Length: 106  Bit Score: 43.46  E-value: 2.36e-05
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 55250041   2 EGVLYKWTNYISGWQPRWFVLEGGTL-SYYDSQEDAWKGCKGSIKISVC-EIQVHPSDFTR---VDLIIPGEQYFYLrAI 76
Cdd:cd13276   2 AGWLEKQGEFIKTWRRRWFVLKQGKLfWFKEPDVTPYSKPRGVIDLSKClTVKSAEDATNKenaFELSTPEETFYFI-AD 80
                        90
                ....*....|....*
gi 55250041  77 NAAERQKWLVALGTA 91
Cdd:cd13276  81 NEKEKEEWIGAIGRA 95
PH_RhoGAP2 cd13378
Rho GTPase activating protein 2 Pleckstrin homology (PH) domain; RhoGAP2 (also called RhoGap22 ...
3-83 2.68e-05

Rho GTPase activating protein 2 Pleckstrin homology (PH) domain; RhoGAP2 (also called RhoGap22 or ArhGap22) are involved in cell polarity, cell morphology and cytoskeletal organization. They activate a GTPase belonging to the RAS superfamily of small GTP-binding proteins. The encoded protein is insulin-responsive, is dependent on the kinase Akt, and requires the Akt-dependent 14-3-3 binding protein which binds sequentially to two serine residues resulting in regulation of cell motility. Members here contain an N-terminal PH domain followed by a RhoGAP domain and either a BAR or TATA Binding Protein (TBP) Associated Factor 4 (TAF4) domain. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 241529  Cd Length: 116  Bit Score: 43.78  E-value: 2.68e-05
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 55250041   3 GVLYKWTNYISGWQPRWFVLEGGTLSYY-DSQEDAWKGC---KGSikiSVCEIQVHPSDftrvdliiPGEQYFYLRAINA 78
Cdd:cd13378   7 GWLKKQRSIMKNWQQRWFVLRGDQLFYYkDEEETKPQGCislQGS---QVNELPPNPEE--------PGKHLFEILPGGA 75

                ....*
gi 55250041  79 AERQK 83
Cdd:cd13378  76 GDREK 80
PH_PEPP1_2_3 cd13248
Phosphoinositol 3-phosphate binding proteins 1, 2, and 3 pleckstrin homology (PH) domain; ...
1-91 3.15e-05

Phosphoinositol 3-phosphate binding proteins 1, 2, and 3 pleckstrin homology (PH) domain; PEPP1 (also called PLEKHA4/PH domain-containing family A member 4 and RHOXF1/Rhox homeobox family member 1), and related homologs PEPP2 (also called PLEKHA5/PH domain-containing family A member 5) and PEPP3 (also called PLEKHA6/PH domain-containing family A member 6), have PH domains that interact specifically with PtdIns(3,4)P3. Other proteins that bind PtdIns(3,4)P3 specifically are: TAPP1 (tandem PH-domain-containing protein-1) and TAPP2], PtdIns3P AtPH1, and Ptd- Ins(3,5)P2 (centaurin-beta2). All of these proteins contain at least 5 of the 6 conserved amino acids that make up the putative phosphatidylinositol 3,4,5- trisphosphate-binding motif (PPBM) located at their N-terminus. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270068  Cd Length: 104  Bit Score: 43.03  E-value: 3.15e-05
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 55250041   1 MEGVLYKWTNyiSG---WQPRWFVLEGGTLSYYDSQEDawKGCKGSI-----KISVCeiqvHPSD-------FTRVDlii 65
Cdd:cd13248   9 MSGWLHKQGG--SGlknWRKRWFVLKDNCLYYYKDPEE--EKALGSIllpsyTISPA----PPSDeisrkfaFKAEH--- 77
                        90       100
                ....*....|....*....|....*.
gi 55250041  66 PGEQYFYLRAINAAERQKWLVALGTA 91
Cdd:cd13248  78 ANMRTYYFAADTAEEMEQWMNAMSLA 103
PH_Ses cd13288
Sesquipedalian family Pleckstrin homology (PH) domain; The sesquipedalian family has 2 ...
1-88 3.52e-05

Sesquipedalian family Pleckstrin homology (PH) domain; The sesquipedalian family has 2 mammalian members: Ses1 and Ses2, which are also callled 7 kDa inositol polyphosphate phosphatase-interacting protein 1 and 2. They play a role in endocytic trafficking and are required for receptor recycling from endosomes, both to the trans-Golgi network and the plasma membrane. Members of this family form homodimers and heterodimers. Sesquipedalian interacts with inositol polyphosphate 5-phosphatase OCRL-1 (INPP5F) also known as Lowe oculocerebrorenal syndrome protein, a phosphatase enzyme that is involved in actin polymerization and is found in the trans-Golgi network and INPP5B. Sesquipedalian contains a single PH domain. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270105 [Multi-domain]  Cd Length: 120  Bit Score: 43.38  E-value: 3.52e-05
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 55250041   1 MEGVLYKWTNYISGWQPRWFVLEGGTLSYYDSQEDawKGCKGSIKISVCEIQVHPSDFTRVDLII---PGEQYFYLRAIN 77
Cdd:cd13288  10 KEGYLWKKGERNTSYQKRWFVLKGNLLFYFEKKGD--REPLGVIVLEGCTVELAEDAEPYAFAIRfdgPGARSYVLAAEN 87
                        90
                ....*....|.
gi 55250041  78 AAERQKWLVAL 88
Cdd:cd13288  88 QEDMESWMKAL 98
PH_ACAP cd13250
ArfGAP with coiled-coil, ankyrin repeat and PH domains Pleckstrin homology (PH) domain; ACAP ...
1-97 5.47e-05

ArfGAP with coiled-coil, ankyrin repeat and PH domains Pleckstrin homology (PH) domain; ACAP (also called centaurin beta) functions both as a Rab35 effector and as an Arf6-GTPase-activating protein (GAP) by which it controls actin remodeling and membrane trafficking. ACAP contain an NH2-terminal bin/amphiphysin/Rvs (BAR) domain, a phospholipid-binding domain, a PH domain, a GAP domain, and four ankyrin repeats. The AZAPs constitute a family of Arf GAPs that are characterized by an NH2-terminal pleckstrin homology (PH) domain and a central Arf GAP domain followed by two or more ankyrin repeats. On the basis of sequence and domain organization, the AZAP family is further subdivided into four subfamilies: 1) the ACAPs contain an NH2-terminal bin/amphiphysin/Rvs (BAR) domain (a phospholipid-binding domain that is thought to sense membrane curvature), a single PH domain followed by the GAP domain, and four ankyrin repeats; 2) the ASAPs also contain an NH2-terminal BAR domain, the tandem PH domain/GAP domain, three ankyrin repeats, two proline-rich regions, and a COOH-terminal Src homology 3 domain; 3) the AGAPs contain an NH2-terminal GTPase-like domain (GLD), a split PH domain, and the GAP domain followed by four ankyrin repeats; and 4) the ARAPs contain both an Arf GAP domain and a Rho GAP domain, as well as an NH2-terminal sterile-a motif (SAM), a proline-rich region, a GTPase-binding domain, and five PH domains. PMID 18003747 and 19055940 Centaurin can bind to phosphatidlyinositol (3,4,5)P3. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270070  Cd Length: 98  Bit Score: 42.21  E-value: 5.47e-05
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 55250041   1 MEGVLYKWTNYISG-WQPRWFVLEGGTLSYY-DSQEDAWKgcKGSIKISVCEIQV-HPSD----FtrvDLIIPGEQYfYL 73
Cdd:cd13250   1 KEGYLFKRSSNAFKtWKRRWFSLQNGQLYYQkRDKKDEPT--VMVEDLRLCTVKPtEDSDrrfcF---EVISPTKSY-ML 74
                        90       100
                ....*....|....*....|....
gi 55250041  74 RAINAAERQKWLVALGTAKACLTD 97
Cdd:cd13250  75 QAESEEDRQAWIQAIQSAIASALN 98
PH_11 pfam15413
Pleckstrin homology domain; This Pleckstrin homology domain is found in some fungal species.
6-88 1.20e-04

Pleckstrin homology domain; This Pleckstrin homology domain is found in some fungal species.


Pssm-ID: 405988  Cd Length: 105  Bit Score: 41.42  E-value: 1.20e-04
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 55250041     6 YKWTNYISGWQPRWF-VLEGGTLSYYDSQEDawKGCKGSIKISVCEIQVHPSDF----------------TRVDLIIPGE 68
Cdd:pfam15413   4 YLKKKGPKTWKHRWFaVLRNGVLFYYKSEKM--KVVKHVIVLSNYIVGKLGTDIisgalfkidnirsetsDDLLLEISTE 81
                          90       100
                  ....*....|....*....|.
gi 55250041    69 Q-YFYLRAINAAERQKWLVAL 88
Cdd:pfam15413  82 TkIFFLYGDNNEETYEWVEAL 102
PH_Bem3 cd13277
Bud emergence protein 3 (Bem3) Pleckstrin homology (PH) domain; Bud emergence in Saccharomyces ...
14-88 1.37e-04

Bud emergence protein 3 (Bem3) Pleckstrin homology (PH) domain; Bud emergence in Saccharomyces cerevisiae involves cell cycle-regulated reorganizations of cortical cytoskeletal elements and requires the action of the Rho-type GTPase Cdc42. Bem3 contains a RhoGAP domain and a PH domain. Though Bem3 and Bem2 both contain a RhoGAP, but only Bem3 is able to stimulate the hydrolysis of GTP on Cdc42. Bem3 is thought to be the GAP for Cdc42. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270096  Cd Length: 111  Bit Score: 41.50  E-value: 1.37e-04
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 55250041  14 GWQPRWFVLEGGTLSYYDSQEDAwkgCKGSIKISVCEIQVHPSD-----FTRVDLII--------PGEQYFYLRAINAAE 80
Cdd:cd13277  22 GWKLRYGVLDGNILELYESRGGQ---LLESIKLRNAQIERQPNLpddkyGTRHGFLInehkksglSSTTKYYLCAETDKE 98

                ....*...
gi 55250041  81 RQKWLVAL 88
Cdd:cd13277  99 RDEWVSAL 106
PH_Skap1 cd13380
Src kinase-associated phosphoprotein 1 Pleckstrin homology (PH) domain; Adaptor protein Skap1 ...
13-85 2.19e-04

Src kinase-associated phosphoprotein 1 Pleckstrin homology (PH) domain; Adaptor protein Skap1 (also called Skap55/Src kinase-associated phosphoprotein of 55 kDa) and its partner, ADAP (adhesion and degranulation promoting adapter protein) help reorganize the cytoskeleton and/or promote integrin-mediated adhesion upon immunoreceptor activation. Skap1 is also involved in T Cell Receptor (TCR)-induced RapL-Rap1 complex formation and LFA-1 activation. Skap1 has an N-terminal coiled-coil conformation which is proposed to be involved in homodimer formation, a central PH domain and a C-terminal SH3 domain that associates with ADAP. The Skap1 PH domain plays a role in controlling integrin function via recruitment of ADAP-SKAP complexes to integrins as well as in controlling the ability of ADAP to interact with the CBM signalosome and regulate NF-kappaB. SKAP1 is necessary for RapL binding to membranes in a PH domain-dependent manner and the PI3K pathway. Skap adaptor proteins couple receptors to cytoskeletal rearrangements. Skap55/Skap1, Skap2, and Skap-homology (Skap-hom) have an N-terminal coiled-coil conformation, a central PH domain and a C-terminal SH3 domain. Their PH domains bind 3'-phosphoinositides as well as directly affecting targets such as in Skap55 where it directly affecting integrin regulation by ADAP and NF-kappaB activation or in Skap-hom where the dimerization and PH domains comprise a 3'-phosphoinositide-gated molecular switch that controls ruffle formation. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270180  Cd Length: 106  Bit Score: 40.61  E-value: 2.19e-04
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....
gi 55250041  13 SGWQPRWFVLEGGTLSYYDSQEDawKGCKGSIKISVCEIQVHPS---DFTR---VDLIIPGEQYFYLRAINAAERQKWL 85
Cdd:cd13380  19 SEWQKRWCVLTNRAFYYYASEKS--KQPKGGFLIKGYSAQMAPHlrkDSRRdscFELTTPGRRTYQFTAASPSEARDWV 95
PH_DAPP1 cd10573
Dual Adaptor for Phosphotyrosine and 3-Phosphoinositides Pleckstrin homology (PH) domain; ...
2-35 2.58e-04

Dual Adaptor for Phosphotyrosine and 3-Phosphoinositides Pleckstrin homology (PH) domain; DAPP1 (also known as PHISH/3' phosphoinositide-interacting SH2 domain-containing protein or Bam32) plays a role in B-cell activation and has potential roles in T-cell and mast cell function. DAPP1 promotes B cell receptor (BCR) induced activation of Rho GTPases Rac1 and Cdc42, which feed into mitogen-activated protein kinases (MAPK) activation pathways and affect cytoskeletal rearrangement. DAPP1can also regulate BCR-induced activation of extracellular signal-regulated kinase (ERK), and c-jun NH2-terminal kinase (JNK). DAPP1 contains an N-terminal SH2 domain and a C-terminal pleckstrin homology (PH) domain with a single tyrosine phosphorylation site located centrally. DAPP1 binds strongly to both PtdIns(3,4,5)P3 and PtdIns(3,4)P2. The PH domain is essential for plasma membrane recruitment of PI3K upon cell activation. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 269977 [Multi-domain]  Cd Length: 96  Bit Score: 40.39  E-value: 2.58e-04
                        10        20        30
                ....*....|....*....|....*....|....
gi 55250041   2 EGVLYKWTNYISGWQPRWFVLEGGTLSYYDSQED 35
Cdd:cd10573   6 EGYLTKLGGIVKNWKTRWFVLRRNELKYFKTRGD 39
PH3_ARAP cd13256
ArfGAP with RhoGAP domain, ankyrin repeat and PH domain Pleckstrin homology (PH) domain, ...
1-91 2.94e-04

ArfGAP with RhoGAP domain, ankyrin repeat and PH domain Pleckstrin homology (PH) domain, repeat 3; ARAP proteins (also called centaurin delta) are phosphatidylinositol 3,4,5-trisphosphate-dependent GTPase-activating proteins that modulate actin cytoskeleton remodeling by regulating ARF and RHO family members. They bind phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P3) and phosphatidylinositol 3,4-bisphosphate (PtdIns(3,4,5)P2) binding. There are 3 mammalian ARAP proteins: ARAP1, ARAP2, and ARAP3. All ARAP proteins contain a N-terminal SAM (sterile alpha motif) domain, 5 PH domains, an ArfGAP domain, 2 ankyrin domain, A RhoGap domain, and a Ras-associating domain. This hierarchy contains the third PH domain in ARAP. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270076  Cd Length: 110  Bit Score: 40.52  E-value: 2.94e-04
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 55250041   1 MEGVLYKWTNYISGWQPR---------WFVLEGGTLSYYDSqeDAWKGCKGSIKIS--VCeIQVHPSDFTRVD------- 62
Cdd:cd13256   4 HSGFLYKSPSAAKPTLERrareefsrrWCVLEDGFLSYYES--ERSPEPNGEIDVSeiVC-LAVSPPDTHPGDgfpftfe 80
                        90       100
                ....*....|....*....|....*....
gi 55250041  63 LIIPGEQYFYLRAINAAERQKWLVALGTA 91
Cdd:cd13256  81 LYLESERLYLFGLETAEALHEWVKAIAKA 109
PH1_PH_fungal cd13298
Fungal proteins Pleckstrin homology (PH) domain, repeat 1; The functions of these fungal ...
1-98 3.36e-04

Fungal proteins Pleckstrin homology (PH) domain, repeat 1; The functions of these fungal proteins are unknown, but they all contain 2 PH domains. This cd represents the first PH repeat. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270110  Cd Length: 106  Bit Score: 40.30  E-value: 3.36e-04
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 55250041   1 MEGVLYKWTNYISGWQPRWFVLEGGTLSYY-DSQEdawKGCKGSIKIS----VCEIQVHPSDFTRVdlIIPGEQYFYLRA 75
Cdd:cd13298   8 KSGYLLKRSRKTKNWKKRWVVLRPCQLSYYkDEKE---YKLRRVINLSellaVAPLKDKKRKNVFG--IYTPSKNLHFRA 82
                        90       100
                ....*....|....*....|...
gi 55250041  76 INAAERQKWLVALgTAKACLTDN 98
Cdd:cd13298  83 TSEKDANEWVEAL-REEFRLDDE 104
PH_TBC1D2A cd01265
TBC1 domain family member 2A pleckstrin homology (PH) domain; TBC1D2A (also called PARIS-1 ...
12-92 3.41e-04

TBC1 domain family member 2A pleckstrin homology (PH) domain; TBC1D2A (also called PARIS-1/Prostate antigen recognized and identified by SEREX 1 and ARMUS) contains a PH domain and a TBC-type GTPase catalytic domain. TBC1D2A integrates signaling between Arf6, Rac1, and Rab7 during junction disassembly. Activated Rac1 recruits TBC1D2A to locally inactivate Rab7 via its C-terminal TBC/RabGAP domain and facilitate E-cadherin degradation in lysosomes. The TBC1D2A PH domain mediates localization at cell-cell contacts and coprecipitates with cadherin complexes. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 269966  Cd Length: 102  Bit Score: 40.00  E-value: 3.41e-04
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 55250041  12 ISGWQPRWFVLEGGT--LSYYDSQEDAwkGCKGSIKIS--VCEIQVHPSDFTRVdLIIPGEQYFyLRAINAAERQKWLVA 87
Cdd:cd01265  16 LKGWKRRWFVLDESKcqLYYYRSPQDA--TPLGSIDLSgaAFSYDPEAEPGQFE-IHTPGRVHI-LKASTRQAMLYWLQA 91

                ....*
gi 55250041  88 LGTAK 92
Cdd:cd01265  92 LQSKR 96
PH_GAP1-like cd01244
RAS p21 protein activator (GTPase activating protein) family pleckstrin homology (PH) domain; ...
2-97 8.36e-04

RAS p21 protein activator (GTPase activating protein) family pleckstrin homology (PH) domain; RASAL1, GAP1(m), GAP1(IP4BP), and CAPRI are all members of the GAP1 family of GTPase-activating proteins. They contain N-terminal SH2-SH3-SH2 domains, followed by two C2 domains, a PH domain, a RasGAP domain, and a BTK domain. With the notable exception of GAP1(m), they all possess an arginine finger-dependent GAP activity on the Ras-related protein Rap1. They act as a suppressor of RAS enhancing the weak intrinsic GTPase activity of RAS proteins resulting in the inactive GDP-bound form of RAS, allowing control of cellular proliferation and differentiation. PH domains share little sequence conservation, but all have a common fold, which is electrostatically polarized. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 269950  Cd Length: 107  Bit Score: 39.19  E-value: 8.36e-04
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 55250041   2 EGVLYKW----TNYISGWQ--PRWFVLEGGTLSYYDSqedawKGCKGSIKISVCEI----QVHPSDFTR--VDLIIPGEQ 69
Cdd:cd01244   2 EGYLIKRaqgrKKKFGRKNfkKRYFRLTNEALSYSKS-----KGKQPLCSIPLEDIlaveRVEEESFKMknMFQIVQPDR 76
                        90       100
                ....*....|....*....|....*...
gi 55250041  70 YFYLRAINAAERQKWLVALgtAKACLTD 97
Cdd:cd01244  77 TLYLQAKNVVELNEWLSAL--RKVCLCN 102
PH_ORP3_ORP6_ORP7 cd13287
Human Oxysterol binding protein related proteins 3, 6, and 7 Pleckstrin homology (PH) domain; ...
2-88 9.00e-04

Human Oxysterol binding protein related proteins 3, 6, and 7 Pleckstrin homology (PH) domain; Human ORP3 is proposed to function in regulating the cell-matrix and cell-cell adhesion. A proposed specific function for Human ORP6 was not found at present. Human ORP7is proposed to function in negatively regulating the Golgi soluble NSF attachment protein receptor (SNARE) of 28kDa (GS28) protein stability via sequestration of Golgi-associated ATPase enhancer of 16 kDa (GATE-16). ORP3 has 2 isoforms: the longer ORP3(1) and the shorter ORP3(2). ORP3(1), ORP6, and ORP7 all contain a N-terminal PH domain, a FFAT motif (two phenylalanines in an acidic tract), and a C-terminal OSBP-related domain. The shorter ORP3(2) is missing the C-terminal portion of its OSBP-related domain. Oxysterol binding proteins are a multigene family that is conserved in yeast, flies, worms, mammals and plants. In general OSBPs and ORPs have been found to be involved in the transport and metabolism of cholesterol and related lipids in eukaryotes. They all contain a C-terminal oxysterol binding domain, and most contain an N-terminal PH domain. OSBP PH domains bind to membrane phosphoinositides and thus likely play an important role in intracellular targeting. They are members of the oxysterol binding protein (OSBP) family which includes OSBP, OSBP-related proteins (ORP), Goodpasture antigen binding protein (GPBP), and Four phosphate adaptor protein 1 (FAPP1). They have a wide range of purported functions including sterol transport, cell cycle control, pollen development and vessicle transport from Golgi recognize both PI lipids and ARF proteins. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270104  Cd Length: 123  Bit Score: 39.23  E-value: 9.00e-04
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 55250041   2 EGVLYK---WTnyISGWQPRWFVLEGGTLSYYDSQEDAWKG-CKGSIKISVCEIQVHpSDFTRVDlIIPGEQYFYLRAIN 77
Cdd:cd13287  25 EGYLLKkrkWP--LKGWHKRFFVLEKGILKYAKSPLDIAKGkLHGSIDVGLSVMSIK-KKARRID-LDTEEFIYHLKVKS 100
                        90
                ....*....|.
gi 55250041  78 AAERQKWLVAL 88
Cdd:cd13287 101 QDLFDSWVAKL 111
PH_Boi cd13316
Boi family Pleckstrin homology domain; Yeast Boi proteins Boi1 and Boi2 are functionally ...
7-47 9.98e-04

Boi family Pleckstrin homology domain; Yeast Boi proteins Boi1 and Boi2 are functionally redundant and important for cell growth with Boi mutants displaying defects in bud formation and in the maintenance of cell polarity.They appear to be linked to Rho-type GTPase, Cdc42 and Rho3. Boi1 and Boi2 display two-hybrid interactions with the GTP-bound ("active") form of Cdc42, while Rho3 can suppress of the lethality caused by deletion of Boi1 and Boi2. These findings suggest that Boi1 and Boi2 are targets of Cdc42 that promote cell growth in a manner that is regulated by Rho3. Boi proteins contain a N-terminal SH3 domain, followed by a SAM (sterile alpha motif) domain, a proline-rich region, which mediates binding to the second SH3 domain of Bem1, and C-terminal PH domain. The PH domain is essential for its function in cell growth and is important for localization to the bud, while the SH3 domain is needed for localization to the neck. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270126  Cd Length: 97  Bit Score: 38.51  E-value: 9.98e-04
                        10        20        30        40
                ....*....|....*....|....*....|....*....|.
gi 55250041   7 KWTNYiSGWQPRWFVLEGGTLSYYDSQEDAWKgcKGSIKIS 47
Cdd:cd13316   9 RGERY-GTWKTRYFVLKGTRLYYLKSENDDKE--KGLIDLT 46
PH_SWAP-70 cd13273
Switch-associated protein-70 Pleckstrin homology (PH) domain; SWAP-70 (also called ...
2-91 1.14e-03

Switch-associated protein-70 Pleckstrin homology (PH) domain; SWAP-70 (also called Differentially expressed in FDCP 6/DEF-6 or IRF4-binding protein) functions in cellular signal transduction pathways (in conjunction with Rac), regulates cell motility through actin rearrangement, and contributes to the transformation and invasion activity of mouse embryo fibroblasts. Metazoan SWAP-70 is found in B lymphocytes, mast cells, and in a variety of organs. Metazoan SWAP-70 contains an N-terminal EF-hand motif, a centrally located PH domain, and a C-terminal coiled-coil domain. The PH domain of Metazoan SWAP-70 contains a phosphoinositide-binding site and a nuclear localization signal (NLS), which localize SWAP-70 to the plasma membrane and nucleus, respectively. The NLS is a sequence of four Lys residues located at the N-terminus of the C-terminal a-helix; this is a unique characteristic of the Metazoan SWAP-70 PH domain. The SWAP-70 PH domain binds PtdIns(3,4,5)P3 and PtdIns(4,5)P2 embedded in lipid bilayer vesicles. There are additional plant SWAP70 proteins, but these are not included in this hierarchy. Rice SWAP70 (OsSWAP70) exhibits GEF activity toward the its Rho GTPase, OsRac1, and regulates chitin-induced production of reactive oxygen species and defense gene expression in rice. Arabidopsis SWAP70 (AtSWAP70) plays a role in both PAMP- and effector-triggered immunity. Plant SWAP70 contains both DH and PH domains, but their arrangement is the reverse of that in typical DH-PH-type Rho GEFs, wherein the DH domain is flanked by a C-terminal PH domain. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270092  Cd Length: 110  Bit Score: 38.82  E-value: 1.14e-03
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 55250041   2 EGVLYKWTNYISGWQPRWFVLEGGTLSYYDSQEDawKGCKGSIKI-SVCEIQVHP--SDFTRVDLIIPGEQYFYLRAINA 78
Cdd:cd13273  11 KGYLWKKGHLLPTWTERWFVLKPNSLSYYKSEDL--KEKKGEIALdSNCCVESLPdrEGKKCRFLVKTPDKTYELSASDH 88
                        90
                ....*....|...
gi 55250041  79 AERQKWLVALGTA 91
Cdd:cd13273  89 KTRQEWIAAIQTA 101
Niban-like cd23949
Niban-like protein; Niban-like proteins contain an N-terminal Pleckstrin-Homology (PH) domain ...
1-51 1.27e-03

Niban-like protein; Niban-like proteins contain an N-terminal Pleckstrin-Homology (PH) domain that may be involved in binding to specific ligands. Phosphatidylinositol (3)-phosphate (PI3P) was recognized as the innate ligand of the PH domain of MINERVA (melanoma invasion by ERK, also known as FAM129B) PH. Niban family proteins have been found to regulate phosphorylation of a number of proteins involved in the regularion of translation, such as EIF2A, EIF4EBP1 and RPS6KB1. They may also be involved in the endoplasmic reticulum stress response (FAM129A, Niban-like protein 1), suggested to play a role in apoptosis suppression in cancer cells, while Niban-like protein 2 (FAM129C) is a B-cell membrane protein that is overexpressed in chronic lymphocytic leukemia.


Pssm-ID: 469558 [Multi-domain]  Cd Length: 550  Bit Score: 41.51  E-value: 1.27e-03
                        10        20        30        40        50
                ....*....|....*....|....*....|....*....|....*....|....
gi 55250041   1 MEGVLYKWTNYISGWQPRWFVLEG-GTLSYYDSQEDAWKG--CKGSIKISVCEI 51
Cdd:cd23949  64 FSGKLSKYGEDSKKWKERFCVVRGdYNLEYYESKEAYERGkkPKGSINLAGYKV 117
PH2_TAPP1_2 cd13271
Tandem PH-domain-containing proteins 1 and 2 Pleckstrin homology (PH) domain, C-terminal ...
3-91 2.56e-03

Tandem PH-domain-containing proteins 1 and 2 Pleckstrin homology (PH) domain, C-terminal repeat; The binding of TAPP1 (also called PLEKHA1/pleckstrin homology domain containing, family A (phosphoinositide binding specific) member 1) and TAPP2 (also called PLEKHA2) adaptors to PtdIns(3,4)P(2), but not PI(3,4, 5)P3, function as negative regulators of insulin and PI3K signalling pathways (i.e. TAPP/utrophin/syntrophin complex). TAPP1 and TAPP2 contain two sequential PH domains in which the C-terminal PH domain specifically binds PtdIns(3,4)P2 with high affinity. The N-terminal PH domain does not interact with any phosphoinositide tested. They also contain a C-terminal PDZ-binding motif that interacts with several PDZ-binding proteins, including PTPN13 (known previously as PTPL1 or FAP-1) as well as the scaffolding proteins MUPP1 (multiple PDZ-domain-containing protein 1), syntrophin and utrophin. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270090  Cd Length: 114  Bit Score: 37.72  E-value: 2.56e-03
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 55250041   3 GVLYKWTNYISGWQPRWFVLEGGTLSYYDSQEDawkgcKGSIK-ISVCEIQ-VHPSD----FTRVDL--IIPGEQYFYLR 74
Cdd:cd13271  12 GYCVKQGAVRKNWKRRFFILDDNTISYYKSETD-----KEPLRtIPLREVLkVHECLvkslLMRDNLfeIITTSRTFYIQ 86
                        90
                ....*....|....*..
gi 55250041  75 AINAAERQKWLVALGTA 91
Cdd:cd13271  87 ADSPEEMHSWIKAISGA 103
PH2_ADAP cd01251
ArfGAP with dual PH domains Pleckstrin homology (PH) domain, repeat 2; ADAP (also called ...
1-91 3.16e-03

ArfGAP with dual PH domains Pleckstrin homology (PH) domain, repeat 2; ADAP (also called centaurin alpha) is a phophatidlyinositide binding protein consisting of an N-terminal ArfGAP domain and two PH domains. In response to growth factor activation, PI3K phosphorylates phosphatidylinositol 4,5-bisphosphate to phosphatidylinositol 3,4,5-trisphosphate. Centaurin alpha 1 is recruited to the plasma membrane following growth factor stimulation by specific binding of its PH domain to phosphatidylinositol 3,4,5-trisphosphate. Centaurin alpha 2 is constitutively bound to the plasma membrane since it binds phosphatidylinositol 4,5-bisphosphate and phosphatidylinositol 3,4,5-trisphosphate with equal affinity. This cd contains the second PH domain repeat. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 241282  Cd Length: 105  Bit Score: 37.18  E-value: 3.16e-03
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 55250041   1 MEGVLYKwT--NYISGWQPRWFVLEGGTLSYYDSQEDAWKgcKGSIKISVCE------------IQVH-PSDFTrvdLII 65
Cdd:cd01251   4 KEGYLEK-TgpKQTDGFRKRWFTLDDRRLMYFKDPLDAFP--KGEIFIGSKEegysvreglppgIKGHwGFGFT---LVT 77
                        90       100
                ....*....|....*....|....*.
gi 55250041  66 PGEQyFYLRAINAAERQKWLVALGTA 91
Cdd:cd01251  78 PDRT-FLLSAETEEERREWITAIQKV 102
PH_CNK_mammalian-like cd01260
Connector enhancer of KSR (Kinase suppressor of ras) (CNK) pleckstrin homology (PH) domain; ...
15-91 3.57e-03

Connector enhancer of KSR (Kinase suppressor of ras) (CNK) pleckstrin homology (PH) domain; CNK family members function as protein scaffolds, regulating the activity and the subcellular localization of RAS activated RAF. There is a single CNK protein present in Drosophila and Caenorhabditis elegans in contrast to mammals which have 3 CNK proteins (CNK1, CNK2, and CNK3). All of the CNK members contain a sterile a motif (SAM), a conserved region in CNK (CRIC) domain, and a PSD-95/DLG-1/ZO-1 (PDZ) domain, and, with the exception of CNK3, a PH domain. A CNK2 splice variant CNK2A also has a PDZ domain-binding motif at its C terminus and Drosophila CNK (D-CNK) also has a domain known as the Raf-interacting region (RIR) that mediates binding of the Drosophila Raf kinase. This cd contains CNKs from mammals, chickens, amphibians, fish, and crustacea. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 269962  Cd Length: 114  Bit Score: 37.39  E-value: 3.57e-03
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 55250041  15 WQPRWFVLEGGTLSYYDSQEDawKGCKGSIKISVCEIQ-------------VHPSDFTrvdliipgeqyFYLRAINAAER 81
Cdd:cd01260  33 WKKYWFVLKGSSLYWYSNQQD--EKAEGFINLPDFKIEraseckkkyafkaCHPKIKT-----------FYFAAENLDDM 99
                        90
                ....*....|
gi 55250041  82 QKWLVALGTA 91
Cdd:cd01260 100 NKWLSKLNMA 109
PH_SKIP cd13309
SifA and kinesin-interacting protein Pleckstrin homology (PH) domain; SKIP (also called ...
1-88 4.28e-03

SifA and kinesin-interacting protein Pleckstrin homology (PH) domain; SKIP (also called PLEKHM2/Pleckstrin homology domain-containing family M member 2) is a soluble cytosolic protein that contains a RUN domain and a PH domain separated by a unstructured linker region. SKIP is a target of the Salmonella effector protein SifA and the SifA-SKIP complex regulates kinesin-1 on the bacterial vacuole. The PH domain of SKIP binds to the N-terminal region of SifA while the N-terminus of SKIP is proposed to bind the TPR domain of the kinesin light chain. The opposite side of the SKIP PH domain is proposed to bind phosphoinositides. TSifA, SKIP, SseJ, and RhoA family GTPases are also thought to promote host membrane tubulation. Recently, it was shown that the lysosomal GTPase Arl8 binds to the kinesin-1 linker SKIP and that both are required for the normal intracellular distribution of lysosomes. Interestingly, two kinesin light chain binding motifs (WD) in SKIP have now been identified to match a consensus sequence for a kinesin light chain binding site found in several proteins including calsyntenin-1/alcadein, caytaxin, and vaccinia virus A36. SKIP has also been shown to interact with Rab1A. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270119  Cd Length: 103  Bit Score: 36.97  E-value: 4.28e-03
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 55250041   1 MEGVL-YKW-TNYISG--WQPRWFVLEGGTLSYYDSQED---------AWKGCKGSIKISVCEiqvHPSDFtrvDLIIPG 67
Cdd:cd13309   2 KEGMLmYKTgTSYLGGetWKPGYFLLKNGVLYQYPDRSDrlpllsislGGEQCGGCRRINNTE---RPHTF---ELILTD 75
                        90       100
                ....*....|....*....|.
gi 55250041  68 EQYFYLRAINAAERQKWLVAL 88
Cdd:cd13309  76 RSSLELAAPDEYEASEWLQSL 96
DMP1 pfam07263
Dentin matrix protein 1 (DMP1); This family consists of several mammalian dentin matrix ...
203-339 4.74e-03

Dentin matrix protein 1 (DMP1); This family consists of several mammalian dentin matrix protein 1 (DMP1) sequences. The dentin matrix acidic phosphoprotein 1 (DMP1) gene has been mapped to human chromosome 4q21. DMP1 is a bone and teeth specific protein initially identified from mineralized dentin. DMP1 is primarily localized in the nuclear compartment of undifferentiated osteoblasts. In the nucleus, DMP1 acts as a transcriptional component for activation of osteoblast-specific genes like osteocalcin. During the early phase of osteoblast maturation, Ca(2+) surges into the nucleus from the cytoplasm, triggering the phosphorylation of DMP1 by a nuclear isoform of casein kinase II. This phosphorylated DMP1 is then exported out into the extracellular matrix, where it regulates nucleation of hydroxyapatite. DMP1 is a unique molecule that initiates osteoblast differentiation by transcription in the nucleus and orchestrates mineralized matrix formation extracellularly, at later stages of osteoblast maturation. The DMP1 gene has been found to be ectopically expressed in lung cancer although the reason for this is unknown.


Pssm-ID: 462128 [Multi-domain]  Cd Length: 519  Bit Score: 39.52  E-value: 4.74e-03
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 55250041   203 KSNDPKNLHPGETRKDLINTSGTSAHESGPDNEPPpspQENISTAHTE-------------SGLMEDQNDLIEPNNGSSS 269
Cdd:pfam07263 313 KSESQEDSEESQSQEDSQNSQDPSSESSQEADLPS---QESSSESQEEvvsesrgdnpdntSSSEEDQEDSDSSEEDSLS 389
                          90       100       110       120       130       140       150
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 55250041   270 STQDHEEPVEEQQTDGSTEDADHSQEEQQEvsmSPTQNKQEVQEDIQTDLELNETQSENKQEEEDEDKVD 339
Cdd:pfam07263 390 TFSSSESESREEQADSESNESLRSSEESPE---SSEDENSSSQEGLQSHSASTESQSEESQSEQDSQSEE 456
 
Blast search parameters
Data Source: Precalculated data, version = cdd.v.3.21
Preset Options:Database: CDSEARCH/cdd   Low complexity filter: no  Composition Based Adjustment: yes   E-value threshold: 0.01

References:

  • Wang J et al. (2023), "The conserved domain database in 2023", Nucleic Acids Res.51(D)384-8.
  • Lu S et al. (2020), "The conserved domain database in 2020", Nucleic Acids Res.48(D)265-8.
  • Marchler-Bauer A et al. (2017), "CDD/SPARCLE: functional classification of proteins via subfamily domain architectures.", Nucleic Acids Res.45(D)200-3.
Help | Disclaimer | Write to the Help Desk
NCBI | NLM | NIH