insulin receptor substrate [Drosophila melanogaster]
insulin receptor substrate( domain architecture ID 10100909)
insulin receptor substrate is a key mediator in insulin signaling, acting as a docking protein between the insulin receptor and a complex network of intracellular signaling molecules containing Src homology 2 (SH2) domains
List of domain hits
Name | Accession | Description | Interval | E-value | |||
PTB_IRS | cd01204 | Insulin receptor substrate phosphotyrosine-binding domain (PTBi); Insulin receptor substrate ... |
122-235 | 3.05e-57 | |||
Insulin receptor substrate phosphotyrosine-binding domain (PTBi); Insulin receptor substrate (IRS) molecules are mediators in insulin signaling and play a role in maintaining basic cellular functions such as growth and metabolism. They act as docking proteins between the insulin receptor and a complex network of intracellular signaling molecules containing Src homology 2 (SH2) domains. Four members (IRS-1, IRS-2, IRS-3, IRS-4) of this family have been identified that differ as to tissue distribution, subcellular localization, developmental expression, binding to the insulin receptor, and interaction with SH2 domain-containing proteins. IRS molecules have an N-terminal PH domain, followed by an IRS-like PTB domain which has a PH-like fold. PTB domains have a common PH-like fold and are found in various eukaryotic signaling molecules. This domain was initially shown to binds peptides with a NPXY motif with differing requirements for phosphorylation of the tyrosine, although more recent studies have found that some types of PTB domains can bind to peptides lack tyrosine residues altogether. In contrast to SH2 domains, which recognize phosphotyrosine and adjacent carboxy-terminal residues, PTB-domain binding specificity is conferred by residues amino-terminal to the phosphotyrosine. PTB domains are classified into three groups: phosphotyrosine-dependent Shc-like, phosphotyrosine-dependent IRS-like, and phosphotyrosine-independent Dab-like PTB domains. This cd is part of the IRS-like subgroup. : Pssm-ID: 269915 Cd Length: 106 Bit Score: 192.08 E-value: 3.05e-57
|
|||||||
PH_IRS | cd01257 | Insulin receptor substrate (IRS) pleckstrin homology (PH) domain; Insulin receptor substrate ... |
7-112 | 4.80e-41 | |||
Insulin receptor substrate (IRS) pleckstrin homology (PH) domain; Insulin receptor substrate (IRS) molecules are mediators in insulin signaling and play a role in maintaining basic cellular functions such as growth and metabolism. They act as docking proteins between the insulin receptor and a complex network of intracellular signaling molecules containing Src homology 2 (SH2) domains. Four members (IRS-1, IRS-2, IRS-3, IRS-4) of this family have been identified that differ as to tissue distribution, subcellular localization, developmental expression, binding to the insulin receptor, and interaction with SH2 domain-containing proteins. IRS molecules have an N-terminal PH domain, followed by an IRS-like PTB domain which has a PH-like fold. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.cytoskeletal associated molecules, and in lipid associated enzymes. : Pssm-ID: 269959 Cd Length: 106 Bit Score: 145.89 E-value: 4.80e-41
|
|||||||
Name | Accession | Description | Interval | E-value | |||
PTB_IRS | cd01204 | Insulin receptor substrate phosphotyrosine-binding domain (PTBi); Insulin receptor substrate ... |
122-235 | 3.05e-57 | |||
Insulin receptor substrate phosphotyrosine-binding domain (PTBi); Insulin receptor substrate (IRS) molecules are mediators in insulin signaling and play a role in maintaining basic cellular functions such as growth and metabolism. They act as docking proteins between the insulin receptor and a complex network of intracellular signaling molecules containing Src homology 2 (SH2) domains. Four members (IRS-1, IRS-2, IRS-3, IRS-4) of this family have been identified that differ as to tissue distribution, subcellular localization, developmental expression, binding to the insulin receptor, and interaction with SH2 domain-containing proteins. IRS molecules have an N-terminal PH domain, followed by an IRS-like PTB domain which has a PH-like fold. PTB domains have a common PH-like fold and are found in various eukaryotic signaling molecules. This domain was initially shown to binds peptides with a NPXY motif with differing requirements for phosphorylation of the tyrosine, although more recent studies have found that some types of PTB domains can bind to peptides lack tyrosine residues altogether. In contrast to SH2 domains, which recognize phosphotyrosine and adjacent carboxy-terminal residues, PTB-domain binding specificity is conferred by residues amino-terminal to the phosphotyrosine. PTB domains are classified into three groups: phosphotyrosine-dependent Shc-like, phosphotyrosine-dependent IRS-like, and phosphotyrosine-independent Dab-like PTB domains. This cd is part of the IRS-like subgroup. Pssm-ID: 269915 Cd Length: 106 Bit Score: 192.08 E-value: 3.05e-57
|
|||||||
PH_IRS | cd01257 | Insulin receptor substrate (IRS) pleckstrin homology (PH) domain; Insulin receptor substrate ... |
7-112 | 4.80e-41 | |||
Insulin receptor substrate (IRS) pleckstrin homology (PH) domain; Insulin receptor substrate (IRS) molecules are mediators in insulin signaling and play a role in maintaining basic cellular functions such as growth and metabolism. They act as docking proteins between the insulin receptor and a complex network of intracellular signaling molecules containing Src homology 2 (SH2) domains. Four members (IRS-1, IRS-2, IRS-3, IRS-4) of this family have been identified that differ as to tissue distribution, subcellular localization, developmental expression, binding to the insulin receptor, and interaction with SH2 domain-containing proteins. IRS molecules have an N-terminal PH domain, followed by an IRS-like PTB domain which has a PH-like fold. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.cytoskeletal associated molecules, and in lipid associated enzymes. Pssm-ID: 269959 Cd Length: 106 Bit Score: 145.89 E-value: 4.80e-41
|
|||||||
IRS | pfam02174 | PTB domain (IRS-1 type); |
123-234 | 1.17e-33 | |||
PTB domain (IRS-1 type); Pssm-ID: 460473 Cd Length: 99 Bit Score: 124.67 E-value: 1.17e-33
|
|||||||
PTBI | smart00310 | Phosphotyrosine-binding domain (IRS1-like); |
124-231 | 5.53e-15 | |||
Phosphotyrosine-binding domain (IRS1-like); Pssm-ID: 197644 Cd Length: 99 Bit Score: 71.29 E-value: 5.53e-15
|
|||||||
PH | pfam00169 | PH domain; PH stands for pleckstrin homology. |
25-104 | 2.95e-04 | |||
PH domain; PH stands for pleckstrin homology. Pssm-ID: 459697 [Multi-domain] Cd Length: 105 Bit Score: 41.01 E-value: 2.95e-04
|
|||||||
Name | Accession | Description | Interval | E-value | |||
PTB_IRS | cd01204 | Insulin receptor substrate phosphotyrosine-binding domain (PTBi); Insulin receptor substrate ... |
122-235 | 3.05e-57 | |||
Insulin receptor substrate phosphotyrosine-binding domain (PTBi); Insulin receptor substrate (IRS) molecules are mediators in insulin signaling and play a role in maintaining basic cellular functions such as growth and metabolism. They act as docking proteins between the insulin receptor and a complex network of intracellular signaling molecules containing Src homology 2 (SH2) domains. Four members (IRS-1, IRS-2, IRS-3, IRS-4) of this family have been identified that differ as to tissue distribution, subcellular localization, developmental expression, binding to the insulin receptor, and interaction with SH2 domain-containing proteins. IRS molecules have an N-terminal PH domain, followed by an IRS-like PTB domain which has a PH-like fold. PTB domains have a common PH-like fold and are found in various eukaryotic signaling molecules. This domain was initially shown to binds peptides with a NPXY motif with differing requirements for phosphorylation of the tyrosine, although more recent studies have found that some types of PTB domains can bind to peptides lack tyrosine residues altogether. In contrast to SH2 domains, which recognize phosphotyrosine and adjacent carboxy-terminal residues, PTB-domain binding specificity is conferred by residues amino-terminal to the phosphotyrosine. PTB domains are classified into three groups: phosphotyrosine-dependent Shc-like, phosphotyrosine-dependent IRS-like, and phosphotyrosine-independent Dab-like PTB domains. This cd is part of the IRS-like subgroup. Pssm-ID: 269915 Cd Length: 106 Bit Score: 192.08 E-value: 3.05e-57
|
|||||||
PH_IRS | cd01257 | Insulin receptor substrate (IRS) pleckstrin homology (PH) domain; Insulin receptor substrate ... |
7-112 | 4.80e-41 | |||
Insulin receptor substrate (IRS) pleckstrin homology (PH) domain; Insulin receptor substrate (IRS) molecules are mediators in insulin signaling and play a role in maintaining basic cellular functions such as growth and metabolism. They act as docking proteins between the insulin receptor and a complex network of intracellular signaling molecules containing Src homology 2 (SH2) domains. Four members (IRS-1, IRS-2, IRS-3, IRS-4) of this family have been identified that differ as to tissue distribution, subcellular localization, developmental expression, binding to the insulin receptor, and interaction with SH2 domain-containing proteins. IRS molecules have an N-terminal PH domain, followed by an IRS-like PTB domain which has a PH-like fold. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.cytoskeletal associated molecules, and in lipid associated enzymes. Pssm-ID: 269959 Cd Length: 106 Bit Score: 145.89 E-value: 4.80e-41
|
|||||||
IRS | pfam02174 | PTB domain (IRS-1 type); |
123-234 | 1.17e-33 | |||
PTB domain (IRS-1 type); Pssm-ID: 460473 Cd Length: 99 Bit Score: 124.67 E-value: 1.17e-33
|
|||||||
PTBI | smart00310 | Phosphotyrosine-binding domain (IRS1-like); |
124-231 | 5.53e-15 | |||
Phosphotyrosine-binding domain (IRS1-like); Pssm-ID: 197644 Cd Length: 99 Bit Score: 71.29 E-value: 5.53e-15
|
|||||||
PH | pfam00169 | PH domain; PH stands for pleckstrin homology. |
25-104 | 2.95e-04 | |||
PH domain; PH stands for pleckstrin homology. Pssm-ID: 459697 [Multi-domain] Cd Length: 105 Bit Score: 41.01 E-value: 2.95e-04
|
|||||||
PH_PLEKHD1 | cd13281 | Pleckstrin homology (PH) domain containing, family D (with coiled-coil domains) member 1 PH ... |
25-104 | 3.28e-04 | |||
Pleckstrin homology (PH) domain containing, family D (with coiled-coil domains) member 1 PH domain; Human PLEKHD1 (also called UPF0639, pleckstrin homology domain containing, family D (with M protein repeats) member 1) is a single transcript and contains a single PH domain. PLEKHD1 is conserved in human, chimpanzee, , dog, cow, mouse, chicken, zebrafish, and Caenorhabditis elegans. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. Pssm-ID: 270099 Cd Length: 139 Bit Score: 41.92 E-value: 3.28e-04
|
|||||||
Blast search parameters | ||||
|